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By Y. Varpi! anp CuN-Hui ZHANG?2

Rutgers University

Consider an incomplete data problem with the following specifications.
There are three independent samples (Xi,...,X,,), (Z,...,Z,) and
(Uy,...,U,). The first two samples are drawn from a common lifetime
distribution function G, while the third sample is drawn from the uniform
distribution over the interval (0,1). In this paper we derive the large
sample properties of Gm,n, the nonparametric maximum likelihood esti-
mate of G based on the observed data X,,..., X, and Y,,...,Y,, where
Y;=Z,U,i=1,...,n. (The Z’s and U’s are unobservable.) In particular
we sl}ow that if m and n approach infinity at a suitable rate, then
sup,|G,, ,(t) — G(8)] - 0 (as.), ym + n (Gm‘,, — G) converges weakly to a
Gaussian process and the estimate G, , is asymptotically efficient in a
nonparametric sense.

1. Introduction and summary.

1.1. The problem. We consider the random-multiplicative censoring model
introduced in Vardi (1989). There are three independent random samples:
(Xy,..., X)), (Z,,...,Z,) and (U,...,U,). The X and Z samples are both
from a lifetime distribution G, while the U sample is from the uniform (0, 1)
distribution. Let

Y,=ZU, i=1,...,n,

so that the Y’s are continuous rv’s with a common lifetime distribution F and
density

(1.1) f() = [ 27'dG(2), 0<y.
y<z

The observed data are the two random samples (X,..., X,,) and (Y;,...,Y,),
while the Z’s and the U’s are unobservable. We can think of this as an
informative censoring model where the probabilistic relationship between the
censored observations Y’s and the unobservable ‘‘parent’” variables Z’s is
specified. The purpose of this paper is to study the large sample behavior of the
nonparametric maximum likelihood estimate (NPMLE) for the unknown dis-
tribution G.

Received February 1989; revised March 1991.

'Research partially supported by NSF Grant DMS-88-02893.
) 2Research partially supported by NSF Grant DMS-89-16180 and ARO Grant DAAL03-91-G-
0045.

AMS 1980 subject classifications. Primary 62G05, 62G20.

Key words and phrases. Censored data, informative censoring, nonparametric maximum
likelihood estimation, weak convergence, efficiency, survival function.

1022

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 22
The Annals of Statistics. RINGJY

Www.jstor.org



RANDOM-MULTIPLICATIVE CENSORING MODEL 1023

Since X; has distribution G and Y; has density (1.1), the nonparametric

likelihood function based on the observations xy,...,x,,,¥;,...,y, is
(12) 1@) - | [16(a=)| 11 [ _=-'6(de).
i=1 Jj=1%yj<z

Vardi (1989) derived the NPMLE (A;m,n which maximizes this likelihood. He
also showed that the above model unifies several well studied statistical
problems, which we briefly describe below. An elegant discussion of a related
line-segment model was given by Laslett (1982).

Nonparametric estimation in renewal processes. Suppose we observe
Ap Ry AT,, 8, =KR, <T,}), 1<k <N, where A, and R, are ages and
residual lifetimes of N iid stationary renewal processes with an underlying
distribution function F° and T, are censoring times. Let x,1<i<m,be
those uncensored lifetimes A, + R, with §, = 1, and ¥j» 1 <j <n, be the
censored lifetimes A, + T, with §, = 0. Then the likelihood of the data is

m dF°(x;) | = FOy,-
[H /‘LS) ) ] 1::[ fLOJ ) ’

i=1

where F°=1—F° and u° is the mean of F°. The problem of maximizing
this likelihood is equivalent to that of maximizing (1.2) under the transforma-
tion G(dx) = xdF°(x)/u® and F°(y)/u’ = [, .,z *G(dz).

Nonparametric deconvolution. In a deconvolution problem, we are inter-
ested in estimating the distribution of a random variable Z° based on a sample
Y’ 1<j <n, from the population Y°=Z° + U°, where Z° and U° are
independent. If U? is an exponential random variable with the density func-
tion e™*, u > 0, and we assume no knowledge about the distribution of Z°,
then exp(— U ) is uniform (0, 1) and the transformation Y, = exp(— Y%) gives
us a sample from the density (1.1), where G is the distribution of Z =
exp(—Z9).

Estimating a decreasing density. This well known problem was originally
studied by Grenander (1956). A nonnegative random variable has a decreasing
density on (0, ) if and only if (iff) it is a product of a nonnegative random
variable and an independent uniform (0, 1) random variable.

1.2. Organization of the paper and summary of results. The NPMLE Gm,n
is a consistent estimator in the sense that Gm,n -4, G (as)as(m +n) > =
This can be proved by the methods of Wang (1985) and Pfanzagl (1988). The
uniform consistency of Gm,n is proved in Section 2. Specifically, we show
that if m and n approach infinity such that m?/(m + n) — o, then
suptl(fr'm’n(t) — G(#)| > 0 in probability. Apparently, the condition m2/(m +
n) — o cannot be completely omitted due to the difference between conver-
gence in distribution and uniform convergence when the limit G is not a
continuous function. For example, if G puts unit mass at 1 and m = 0, then
the NPMLE Go,n is induced from the Grenander estimate, which puts no
mass at 1, so that sup,|G, ,(t) — G()] = 1 (a.s.). In Section 3 we derive the
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weak convergence of Gm,n. In particular we show that if m,n — « such that
m/(m + n) > p > 0, then Vm + n(Gm,n — G) converges weakly to a Gauss-
ian process. This limiting Gaussian process can be described as an inverse of a
bounded linear operator (in function space) applied to a mixture of Bx(G(¢))
and an integration of By(F(-)), where By and By are two independent
Brownian bridges.

It is well known that estimation is less efficient and sometimes impossible if
the data are dominated by censored observations, so that the relationship
between the sample size of the censored data (n) and that of complete data
(m) under which asymptotic theorems for Gm’n hold is very important in
assessing the usefulness of the estimator in practice. For instance, the condi-
tion m%2/(m + n) > =, besides the obvious possibility of m — « and n
bounded (which is in agreement with our intuition of the need to keep the size
of the Y sample small), allows the Y sample to be considerably larger in size
than the X sample. This is true as long as the size of the X sample is also
large. As an example take m = N'/3 and n = NY/? for some large N,
so that as N — « the proportion of the X’s in the data approaches zero
[m/(m + n) > 0], but m2/(m + n) - » and the uniform consistency holds.
The issue of the relative sizes of the two samples is interesting beyond the
mathematical aspect, because unlike many censored data problems, here G
can be consistently estimated solely on the basis of the Y’s. Such an esti-
mate, however, would be n!'/3-consistent for each ¢ [Prakasa Rao (1969);
Groeneboom (1985)] via its connection to the Grenander estimate [Vardi
(1989)], as compared to the m'/2 consistency of an estimate based solely on the
X’s. Thus, it is not clear what the asymptotic contribution of the ¥ sample to
the (m + n)'/? consistency of G,, , is. In Section 4 we present the asymptotic
efficiency of G,, , within a class of “regular” estimators, which shows that
there is a genuine gain in asymptotic efficiency when the NPMLE Gm, ,. 1s used
instead of the empirical cumulative distribution function (ECDF) based on the
X sample alone. (This gain cannot be achieved by a linear combination of the.
NPMLE’s based on individual samples.) Our approach to the asymptotic
efficiency is simple but nonstandard, and the class of estimators we consider is
slightly smaller than a usual one in a standard theorem.

Section 5 contains miscellaneous discussions. For ease of reading we post-
pone some more involved parts of our proofs to the Appendix.

2. Uniform consistency of (;‘rm,,,. The key steps in the development of
the asymptotic behavior of G = Gm,n in this section (as well as in Section 3)
are (2.5) and Lemma 1. The basic approach is first to use the maximum
likelihood score equation (2.3) to express

(2.1) U, ,=Vm+n(G, ,-G)
as an implicit linear function of the empirical processes
(2’2) VVX,mE ‘/E(Gm_G) and WY,nE ‘/'T(Fn_F)’

with G,, and F, being the ECDF’s of x,,...,x,, and y,,...,Y,, respectively.
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This functional relation is given in (2.5). The second step is to show that this
equation uniquely determines the behavior of U,, ,, in terms of the behavior of
Wy . and Wy . The final step in the analysis is then to use the weak
convergence of Wy ,, and Wy, ,, to Brownian bridges in conjunction with (2.5)
and Lemma 1 to establish the uniform consistency of Gm . (in this section)
and the weak convergence of U, , (in Section 3). The details now follow.

Let t; < -+ <t¢, be the distinct values of x,,...,x,, and y,,...,y,. The
NPMLE must satisfy the score equation

dF,(y)

m +nf0<y<tfysz _ldé( )t—ldé(t)’

dG(t) = —— — dG,(t) +

subject to ):5;1 d@(tj) = 1 and dG(¢,) > 0. This equation can be obtained by
standard methods such as differentiating the logarithm of the likelihood
function (1.2) with respect to G [cf. Gill (1989)] or taking the limit in the EM
algorithm of Vardi [(1989), Equation (2.10)]. Integrating both sides of this
score equation, we have

Gn(2)

(2.3) m
+

dF
f f ——Ly)r— x~1dG(x).
m +nJo<x<t|’0<y<x [yszz'l dG(2)
The asymptotics developed in this paper are entirely based on this equation
and therefore hold for all its solutions.
Recall from (1.1) that f(y) = F'(y) = [, .,2~ ' dG(2) and define

(2.4) F) = Fun() = [ 274G n(2).

Note that f is a nonincreasing function and it is defined to be right-continu-
ous to agree with the right continuity of CDF’s in general, as they appear
together in subsequent equations [e.g., (2.5)]. Denoting m/(m + n) by p, we
get as a first order approximation to (2.3),

G(t) - G(¢)

f d(F, - F)(y)x_ldG(x)
O0<y=<x

=~p(Gn~G)(t) + (1-B) [ )

O<x<t

+(1-P)(G - G)(2)

campf [ OO0 gryiaoi),

O<x<t’O<y<x fz(y)

which is a nice linear equation in G — G. A more careful treatment of the
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preceding derivation (in the Appendix) yields our key equation

f(t) [ y[ 27U, .(2)dzd f(l

O<y<t y<z y)

(25) m+tn Unnl8) *

=W, .(2),
where the integration is defined to be 0 for ¢ > ¢, and the process W, , is

defined by
W, (&) + \/—7‘— (¢t W, dr
n X,m( ) m+n f( )£)<y5t Y,n(y) fA(y) ’

with Wy m and Wy , being the empirical processes in (2.2). Note that for a
fixed ¢, £(¢£)/f(y) is nondecreasing in y and bounded by 1 on (0, ], so that the
integrations in (2.5) and (2.6) are well defined. In addition, by (2.6) the process
W, ., is an explicit linear function of empirical processes and bounded in

absolute value by

n
2.7 t
(2.7) W, n(8)] < \/m+n W n®l+ ) S S0P [Wran)]-

In (2.5) the process W, , is expressed as the image of a linear operator
applied to U, ,, say R, .U, .= W, .. By inverting this operator R, ,, we
obtain U, R nWm s " "which suggests a limiting Gaussian process for U,
of the form U= R 1W. The invertibility of R,, , is essentially estabhshed in
Lemma 1 and explicitly given as linear operators from and to Banach spaces of
functions in Section 3, where we also prove the convergence of W,, , and
justify the passage of limit from R}, to R™'. For _now, we state Lemma 1
and show in Theorem 1 the uniform con31stency of Gm e

(2.6) W, (1) =

LEMMA 1. Let h(t) be a nonnegative, right-continuous nonincreasing func-
tion defined on (0,x). Also let u(t) be a function on (0,®) which is right-con-
tinuous with left limits, satisfying [o<, <], <22 “2u(2) dzd[h(y)]~! <  for
h(t) > 0 (inner integral is Lebesgue’s, outer integral is Stieltjes’). For 0 <
p <1, define

(2.8) w(t) =pu(t) + (1 —p)h(t)[o<y<ty[y<zz—2u(z) dzd(h(y)) ',

where the integration is defined to be 0 if either t = 0 or h(¢) = 0. [Compare
with (2.5).] Then the following hold:

() If w(:) =0, then u(-) = 0.
- @) If u(0 + ) = u(0) = 0, then

2 1-p
(2.9 sup Iu(t)ls—maX( sup |w(t)l, sup |w(t)]
0<t<T p 0<t<T t>T
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and

(2.10) sup|u(t)| <c sup|w(t)|
t=0

with ¢, = (2/p)max(1,(1 — p)/p).and T = 1nf{t. h(t) = 0}.

Lemma 1 is proved in the Appendix. The uniform consistency of the
NPMLE follows immediately from (2.5) and Lemma 1 upon substituting in
28 Uu,, foru, W, , for w, fm , for h, m/(m + n) for p and applying part
(ii) of the lemma. Thls is stated and explained in the following theorem.
[Lemma 1(i) is needed for the proof of Lemma 3, which comes later.]

THEOREM 1. Let G = Gm’n be the unique NPMLE for the lifetime distribu-
tion function G based on samples X, ..., X,, and ¥,,...,Y,.

G If m/(m +n) > p >0, then
(2.11) sup|ém,n(t) - G(t)| -0 a.s.
£20

(i) If m2/(m + n) - «, then sup,lém,n(t) — G(t)| > 0 in probability.

Proor. It follows from (2.5) and (2.10) that

|G ; G(t)l 2(m +n) (1 n ) W, (t)
su - < —max|l, — |sup | —|,
o ) m m )28 Ve

which implies (2.11) by (2.7), (2.2) and the uniform consistency of the ECDF’s.
For part (ii), we have

m A m
W, .(t) = W(Gm,n(t) -G(t)) = 1/T—Jj(l - G(t)),
so that by (2.5) and (2.9),
sup |G, .(t) - G()]

0<t<t,

(2.12) om +
< —
m

t>t,,

ma{ sup. | Wy, (0)], 7o (1~ G(1)

0<t<t,
Since ¢, > x¥ = max(x,, ..., x,,),
1-G(¢t,) <m'm(1-G(x})) =m™10,(1).
Hence, by (2.12), (2.7), (2.2) and the stochastic boundedness of the empirical
processes,
sup |G, .(¢) — G(2)]
t>0
< sup |G, (1) - G()|+1-G(t)
0<t<t,
< 2m~'Vm + n max{0,(1),n(m + n) "V m710,(1)} + 0,(1)

=0,(1) as m?>/(m +n) - . O
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3. Weak convergence of Vm + n (G,, , — G) to a Gaussian process.
Let Dy[0,] be the Banach space of all functions u(-) on [0,) that are
right-continuous with left limits, converge to 0 at « and vanish at 0:

Do[0,0] = {u: u(t'+) = u(t), u(t —) exists, V ¢;
u(t) » O0ast — »; u(0) = 0},

with the sup norm||u|l = sup, _, .,,[«(¢)|. This Banach space is an isomorphism
of the subspace {z € D[0, 1], u(0) = 0, u(1) = u(1 — ) = 0} of the usual D[0, 1]
space via a one-to-one transformation u(¢) — u(¢/(1 + t)). We shall show that
under the condition m/(m + n) - p > 0, the processes U, , in (2.1) con-
verge weakly to a Gaussian process in the space D([0,»]. Let & be the o
algebra generated by all closed balls in D[0, «]. Here a stochastic process in
D[0,x] is a F/%# measurable mapping from a probability space (Q, &, P)
to Dy0,»], and the weak convergence of U, , to U in Dy[0,~] means
Ee(U,, ,) = E¢(U) for all bounded continuous real functions ¢ on D[0, »]
which are measurable with respect to & [cf. Pollard (1984), page 65]. As
discussed in the paragraph preceding Lemma 1, the method of proof is to
consider the left side of (2.5) as a linear operator applied to U,, , and to invert
this linear operator.

For any nonnegative right-continuous nonincreasing function A(-) on (0, )
define linear operators A, and A, from D0, ] to D0, 00] by

(3.1) (Ahu)(t)=h(t)/;) _y[Nz *u(z) dzd ()
_ 1
(32) (&u)(®) = h(1) [ ke

[cf. the integrations in (2.5) and (2.6)]. Here and in the sequel we use the
convention that

h(t)/ ) dm =0 ift=0o0rh(t)=0,Yuv(-).

Let f and fm n be the density of Y, in (1.1) and its right-continuous NPMLE
in (2.4), respectively, and define via (3 1) and (3.2),

(33) A,,.=A; ., A=A, A4, n=Ap ., A=A,
m n

4 = , =pl + (1 - p)A,

(34) R, . m+n1+m+nAm,n R=pl+ (1-p)

where I is the identity operator, Tu = u. Then (2.5) and (2.6) become

m,n

(3'5) Rm nUm n= Wm n=
, ’ ’ ’ m+n

and (2.10) of Lemma 1(ii) can be restated as
(3.6) Iulscp||(pI+ (l—p)Ah)u", Vu € Dy[0,o],p>0,h,
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where ¢, = (2/p)max(1,(1 — p)/p) The limiting process of U, , is obtained
by 1nvert1ng the operators R, , in (3.5) and then taking the limit.

THEOREM 2. Let the processes U, , be given by (2.1). Suppose that
m/(m +n) = p > 0. Then

(8.7 U, , converges weakly to a Gaussian process U = R~Win D,[0, ],

where R™1, a bounded linear operator frcm D0, ] to Dy[0,»], is the inverse
of R in (3.4), and for some independent Brownian bridge processes By and
By,

1
(38) W(t) = VpBx(G(£) +VI=Pf(O [ _Br(F)d7 s
[ Note: The right side of (3.8) is the limiting version of the right side of (3.5).]

Proor. The proof has two parts.

() Finding the limit of W,, ,: By the asymptotic theory of ECDF’s there
exist Brownian bridge processes By ,,, By ,, m = 1, n > 1, such that By ,, is
independent of By , and
(3.9) |Wx = Bx,m°Gll +|Wy, — By,°F| =0, inprobability,

where (uovX¢) = u(v(¢)) for any functions u and v. Let Cy[0,b] be the
Banach space of all continuous functions on [0, b] which vanish at 0 and b
with the sup norm. Since By ,,, By,,, m =1, n > 1, are tight, for any ¢ > 0
there exists a compact set K in Cy[0, 1] such that

P{BX,MGK7BY,7LEK}Z]‘_£’ Vm,n,
so that by the continuity of F(-) there exists a compact set K, in C,[0, ]
satisfying P(By ,° F € K;} > 1 — ¢ for every n.

LeEMMA 2. Let the operators Am . A, A, ., A R, ., and R be defined by
(3.3) and (3.4). Then ||A,, Il <1, IIAm <1, IR, .ll<1,
||Am,nu - Au || -0 a.s.,VueCyo,x]
and
|A,, ,»—Aull >0 as, |[R,,u—Rul|->0 as, Vue D,[0,x].

Lemma 2 is proved in the Appendix. Since K, is compact, it follows that
SUp,, < k, |A,, ,w — Awll - 0 a.s., which implies by (3.5), (3.9) and the bound-

edness of [|A,, , that
(3.10) W, » = Vn..ll = 0 in probability,

where V,, = p By, moG +y1 - pA(BYno F). Since AK, is compact, for
every ¢ > 0 there exists a compact set K, in Dg[0, <] such that

(3.11) P(V,,€K))=1-¢, Vm,n.
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(i) Taking the limit of the inverse of the operator:

LEMMA 3. Suppose 0<p <1 and m > 1. Then the linear operators
R, , and R are one-to-one linegr mappings from D0, ] onto D0, »] with
IR, Il < 2(m + n)?>/m? and |IR™Y|| < 2/p2.

Lemma 3 is also proved in the Appendix. Let K; = {R 'v: v € K,} with K,
in (3.11). Then Kj is compact in D[0,«] by Lemma 3 and sup, ¢ ¢,|IR,, ,u —
Rul| - 0, a.s., by Lemma 2. Hence, on the event V, , € K,, by (3.10) and
Lemma 3, as m/(m + n) »> p > 0,

1T, » = RV, Ll
=R W = RV, L
<2(m+n)’m W, .~ V, .| +|R .V, . — RV, |
=0,(1) +| R, (R — R)RT'YV, |

<o,(1) +2(m +n)’m~2 sup |R,, ,u — Rul|

uekKy

=0,(1).

Since this inequality holds for an event whose probability of occurring is
arbitrarily close to 1[¢ > 0 is arbitrary in (3.11)] and the processes V,, , and W
in (3.8) have the same distribution, the assertion of the theorem follows. O

4. Asymptotic efficiency. In this section we shall demonstrate the
asymptotic efficiency of the NPMLE G. The original Hajék-Le Cam convolu-
tion theorem has been generalized to various nonparametric cases by essen-
tially calculating a kernel operator at a fixed underlying probability measure
Pg; see for example Beran (1977), Wellner (1982), Begun, Hall, Huang and
Wellner (1983) and Millar (1985), among others. Here we shall take a slightly
different approach: first proving a finite-dimensional convolution theorem for
the case where the underlying distribution G is discrete with finite support,
and then taking a smooth transition from the finite-dimensional case to the
infinite-dimensional case. This produces a simple proof of the superiority of
the NPMLE over all regular estimators whose finite-dimensional limiting
distributions are continuous in G.

For any stochastic process H(-) in D[0, «] we shall denote by .2 (H; G) the
distribution of H(:-) in D0, ®] under the probability P; and by
Z(H;G,s,,...,s;) the k-dimensional joint distribution of H(s,),..., H(s;)
under P;. Assume that m/(m + n) - p > 0. Let u be a measure on (—, )
with respect to which the distribution G has a density g. Let €(G) be the set
of all sequences of distribution functions {G,, ,} such that the density g, , =
dG,, ,/du exists and

(4.1) Vm + n (gy/% — g'/?) converges in L?(u).
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As in Beran (1977), we shall say that a sequence of estimators G = Gm,,, based
on X and Y samples of sizes m and n is regular if

(4.2) Z(Vm +n(ém,,— G);Gn.n) »o Z(U;G)

for all sequences {G,, ,} € €(G) where U is a stochastic process in D[0, ]
such that the distribution -Z(U;G) in (4.2) depends only upon G and not
upon the choice of the sequence {G,, ,} € €(G) that determines the sampling
scheme. Since the functional ¢,(k) = arctan(k(¢)) is bounded and continuous
on D0, =] and measurable with respect to the o algebra % generated by all
closed balls, (4.2) implies

(4.3) ../(Vm +n(Gpn = Gpp)s Gm’n,sl,...,sk) =4 Z(U;G,s4,...,5;)

for all s,,...,s,.

THEOREM 3. Suppose that m/(m +n) - p > 0. Let G be a sequence of
regular estimators with a limiting distribution 2 (U;G) whose finite-dimen-
sional distributions -Z(U; @, s,,...,s,) are continuous in G under the sup-
norm topology for G. Then there exists a stochastic process H(-) in D0, ]
such that

Z(U;G) = #(H;G)* £(U;G),

where U is as in Theorem 2 and * denotes the convolution.

A sequence of estimators G satisfies the conditions of Theorem 3 if
IG,. .-Gl »0=2(Vm +n(G-G,,);Gn.) ~s £(U;G),

since (4.1) implies [|G,, , — Gl = 0. Our argument in Sections 2 and 3 can be
slightly modified to show that the NPMLE G possesses this property.

Proor. There are two steps.

(i) Finite-dimensional case: Suppose G is a discrete distribution function
with a finite support {s,, ..., s,}. Let G, be the maximum likelihood estimate
(MLE) of G based on the observations and the extra knowledge of the support
{s1,...,5,). Then Gy is a solution of (2.3), provided that ¢, = s¥, where

= max(sy, ..., s;). Since our derivation of the limiting processes in Sections
2 and 3 holds for all solutions of (2.3) (e.g., Gy It, = s} + GI{t, + s}}) and
P{t, = st} - 1,

(4.4) Z(Vm + 1 (G — G);G) =5 Z(U;G).
Therefore, by (4.3) and the Hajék—Le Cam convolution theorem for the MLE

in the finite-dimensional parametric case, there exists a k-dimensional joint
distribution p,  ,, such that

.....

(4.5) Z(U;G,s4,...,5,) = 1,
Note that the support of G is assumed to be {s;, ..., s;} here.

0 *ZL(U;G,81,...,8).

.....
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(ii) Transition to the infinite-dimensional case: For an arbitrary fixed G, let
s4, k > 1, be a sequence of distinct positive numbers dense in (0, ), and G,
k > 1, be distribution functions such that the support of G, is {sy,..., 53}
and |G, — Gl - 0. Then by (4.5)

./(ﬁ;G(k), 81y ..,Sj) = Hji *j(U;G(k), Sis- ..,Sj), j < k,

where p, is the marginal distribution of u, . for the first j coordinates.
Letting k& — o by the continuity of £(U; G, s,,...,s;)and £ (U;G, sy, --, ;)
in G, we can find a j-dimensional distribution u; such that

(4.6) _/(lj;G,sl,...,sj)=uj*./(U;G,sl,...,sj).

Let sq) < -+ < s, be the ordered values of s,,...,5s;, and s, = 0. Define
stochastic processes

Ui(s) = U(sw), Ij(j)(s) = lj(s(i)), Si) <8 < S;i+1y 0<i<y,
and U;(s) = ljj(s) = 0 for s > s;,. Then by (4.6) there exist stochastic pro-
cesses H ;) independent of the process U such that
(4.7) /(U'(j)?G) = Z(Hg;y + Uy, G) = Z(H;y; G)* £ (U G).

Since U;, — U a.s. and U'( — U as. in the Skorohod topology, the processes
U,y U,y J = 1, are tight in the Skorohod topology, which implies the tight-
ness of H,;,, j > 1, so that by (4.7) there exists a process H independent of U
such that

Z(U;G) =Z(H + U;G) =£(H;G)* £(U;G)
[cf. Billingsley (1968), pages 37, 121 and 123]. O

5. Remarks.

5.1. The inversion of the operator R. Although the inverse operator R™'
in Theorem 2 is not explicitly given, it can be calculated by multistage infinite
series expansions. For simplicity, let us assume f(¢) > 0 for all ¢. Then by
Lemmas 2 and 1,

lal<1, la+ayl<2mn,  a=p/a-p)>o,
so that the following expansions converge in the norm || - || of operators
(51) (A+A) =AY I+AM) T =21 T (mDHAME, a>1,
k=0
and for 0 <2A;/2 <A;, <A,
-1 -1
(Ajer +A) " =(Ap1—A;+2;+A)

(5.2) = A I+ A=A+ A) ]

=(A; + A" kéo[(/\j — A1) (A +A)_1]k'
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If A=p/Q—-p)>1, then R°'=(p+1-pA)1=0-p)r+A)"
is given by (5.1); otherwise, there exist constants Aq>A; > -+ > A, =
p/(L —p) with Ao > 1and A;/2 <2,,; <Aj, so that we can calculate (A, +
A)~! by (5.1) and then apply (5.2) successively for j = 0,...,k — 1 to obtain
R™1'=(Q1 - p) XA, + A~ In addition, by (3.1) and (3.3),

1

(Au)(¢) = j:A(t,x)u(x) dx, A(t,x) =f(t)x*2f0<y<mydﬂ—y)—,

so that the above expansions imply that the operator R~! has the form
(5.3) (R ') (t) =p~u(t) + /:K(t,x)u(x) dx
for a kernel K(¢, x) satisfying

pPK(t, x) + (1 — p)A(t, x) + p(1 —p)[:K(t, 2)A(z,x)dz = 0,

[K(t,2)A(2,x) dz = [ A(t,2)K(z, %) da.
0 0
For example, if A = p/(1 — p) > 1, then by (5.1),
1 ©
K(t,x) = —— ¥ (=1)*A~*+Dpkz ),
1-pyy

where A**!(t,x) = [FA¥(t,y)A(y, x) dy and Al(t, x) = A(t, x). The details of
the analysis leading to the above conclusions involve infinite series expansions
of resolvent operators in Banach spaces [Dunford and Schwartz (1958), page
566].

5.2. The covariance function. The covariance function of the Gaussian
process {U(¢), 0 < t} is defined by
(5.4) (s, t) =yg(s,t) = EGU(s)U(t).
Since the operator R~ can be calculated by expansions and has the form (5.3)
and the covariance function ¢(s,t) = EW(s)W(¢) can be explicitly written
using (3.8), the covariance function of U = R~'W in (3.7) can be calculated in
principle.

It follows from (3.8) that

¢(s,t) =p[G(s A t) — G(5)G(?)]

(5.5) @, 1)

+(=p) [ [1F(x Ay) = F(x)F(»)] %50y ST
Integrating by parts, we have
1 1
f(t)fo<y$tF(x AY) dm =F(xAt) - f(t)fo<yst/\xm
=F(x At) —f(t)(x AE),

dF(y)
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so that by (2.2) of Vardi (1989)

rof F(y)df = F(t) - #f(2) = G(2)

()

and for s < ¢,

f [Pz A )dy;(“) ;Esi [ [F@) = f()=] d,

f(s)
f(x)
=@ d !
=G(s) ~f(Of(s)[ = OL
which imply by (5.5) that

#(,6) = [G(s A1) = G(5)G(] — (L=p) LD [ ad[ f(@)] ™
Finally, by (5.3) the covariance function of the limiting process U is

_ 2 ! g d
W(s,) = —50(s,t) + ;/0 (s,2)(x,t) dx

+ l[oogo(s, x)K(t,x)dx + fmfwK(s,x)K(t,y)qo(x,y) dxdy.

We can also consistently estimate the covariance function (s, t) through
its continuity in G. If G has a finite discrete support, then by (4.4) the limiting
distribution of the NPMLE is the same as that of MLE with the extra
knowledge of the support set, so that ¢4(s,¢) in (5.4) can be calculated by
inverting the Fisher information matrix for the finite-dimensional parametric
case. In particular, by the discreteness of Gm »» this provides us with a method
of calculating Ye, (s,¢) which can be used to estimate Ye(s, t). Since the
covariance function is continuous in G and IIG'm » — Gl = 0, we have the
consistency Yz = (s,¢) = Yg(s, ) as.

APPENDIX

Proor oF (2.5). Since
1 A
_ 1
T Of W dfi o)

£(1)
= — - dl1- —=
fow(Fn(y) F(y)) (1 0 ))

= qu(l - —ff( ) ) d(F,(y) — F(y)) (integrating by parts)

=f0<y<t[y tx-ldé(x)f‘-l(y—)d(pn(y)—F(y)) [by (2.4)]

d(F.(y) — F(y)) =
.

<=z [,.,2 _ldG(z) (x) (change order),
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it follows that for ¢ < ¢,,

(gt~ W)
: SRR
= ——(6(®) - Gu(1)) - = F () L., Trva( df ()
[by (2.1) and (2.6)]

= ——(G(1) - G,.(1))

n d(F.(y) ~F(») _, 4

- m + n‘/;)<xst‘/;)<ysx fyszz_l dé(z) x‘ dG(x)
n dF(y) B

- m + n</;)<xst ‘/;)<ysx fyszz_ldé(z) XX dé(x) [by (2~3)]

-n fy<zz_ldUm,n(z)

= e dyx~1dG(x
(m+n)3/2/o<xstfo<y<x Jy<.2"1dG(2) Y (x)

[by (2.1) and (1.1)]

—-n . ,2 41U, (=
- sz [ x‘ldG(x)fy< ni(2)
(m + n) O<y<t/y<x<t f(y)
(change order).
Since
-2 -1 -1
—\y 27U, .(z dz)=— U, .(2)dz"" =y~ U, (¥
o PR AR CT S By AR )

f z271dU,, ,(z) (integrating by parts),

y<z

the above equation can be written as

Um,n(t) - Wm,n(t)

m+n

__" j0< <t(1—f(t))d(yf Um’—’;(z)dz) [by (2.4)]

m-+n fA(y) y<z z
-n U, n(2) £ ()
= d dzd, — integrating by parts).
m+n/;><ysty/;<z 2? ¢ "f(y) (integrating by parts)

Hence, we have (2.5). O

PrOOF OF LEMMA 1. We shall only prove part (ii) since the proof of part (i)
is similar and easier. Since |u(#)| = |lw(t)/p| < c,lw(?)| for t > T, (2.10) fol-
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lows immediately from (2.9). Now, let ¢, € (0, T') be a point with u(¢y) > 0 and
M be a constant such that

max( sup [w(t)], suplw(®)|(1 - p)/p) < M.
0<t<T .t t=2T

Our goal here is to show that pu(¢,) < 2M. We shall treat the following two

cases separately.

Case a. For some 0 <¢; <t,, u(t)> 0 for all #>¢, and u(?, — ) < 0 if
t; > 0. Let

- t 1
v(¢) = W—) =-(1 —P)j; yf 27 %u(2) dZdh(y) .

<yst ‘y<z

Then v(¢,) < v(¢, —), since the right-hand side of the above equation is
decreasing from ¢, — to ¢,. It follows that

pu(ty) <w(to) + k(tp)v(t; —) <w(ty) +|w(t —)| < 2M,

which proves the result for Case a.

CasE b. For some 0 <t <t,<t, < o,
(A1) u(t;-)<0 if£,>0, u(t)=20 V¢ <t<t, u(ty) <0.
We shall assume pu(¢,) > 2M and establish a contradiction. For ¢ < T' set
u(t) —w(t) - M
o) = 2 (1) —w(2)
h(2)

1
—Mh-l(t)—(1—p)j0<y yf z‘2u(z)dzdh(y).

<t ‘y<z

Then v(¢, -) < 0if ¢, >0, v(0 +) < 0 and v(¢,) > 0, so that we can find a
positive constant y, € [¢;,¢,] such that duv(y,) > 0. Since d[1/A(y)] > 0 and

1
dv(y) = —[M + (1 —p)yLQz'zu(z) dz]dm,
we have
A2) M+(Q1 —p)y141<zz‘2u(z) dz <0 forsomet; <y, <t,.
If t, < T, then v(¢,) < 0 and the above argument also leads to
(A3) M+(1 —p)yzfyzqz‘zu(z) dz > 0 for some t;, <y, < t,.

For the case ¢, > T, we have

—-p
sup|w(z)| > 0,
z2>T

M+ (1 —p):ro< 27 2u(2)dz > M -
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so that (A3) remains valid for y, = T. Now, putting (A2) and (A3) together, we
have ¢, <y, <t, <y, <, and by algebra

1-p 1 1 Y2 =01

—_ 27 %u(z)dz< —— + — = - —— <0,
M ’l;'1<2<yz Y1 Y2 Y12

which is a contradiction to (A1). Hence, the proof is complete. O

ProoF OF LEMMA 2. The bounds for [|A,, I, 1A, .|l and IR, Il follow
from the monotonicity of f(y); see (3.1)-(3.4) and (2.7). Let #(z) =
¥Jy <2~ 2u(2) dz. Then

linzﬁ(y) =u(0+)=0 and lim#z(y) = limu(z) =0,
y— y—x zZ—>o
so that z € C,[0,«]. Since (4, , — A)u = (Zm,n — Az and
(R = B)u = (=2 = p) (@ = A ) + (1 = p)(&,.,0 - D)3,
it suffices for us to show that
”Zm’nu - Au ” ="(Km’n - Z)u” -0 as.,VueC,0,x].
Let T = inf{¢: f(¢) = 0}. By (2.4) and (1.1),
Frn9) = £) =[2G n(2) = G(2)) dz =y} (G, () — G()),
y<z
so that by Theorem 1 for any ¢ > 0 and f(T, —) > 0,

e s | O
™ t>e e<y<min(¢, T,) fm,n(y) f(y)
For any differentiable function u(-) in C[0, «] satisfying

—- 0 a.s.

(A1) [lw(y)ldy <o, u(t)=0 fort<s, w(t)=0 forT, <t<T,

we have
|(&.... — A)u]
= £ (¢ d— L d—— !
= | Fo J) Lt 7o) o [ L ks
B eiltlfT '[e<y<min(t,7‘) “l )[ frm.n(Y) f(y)]d

<Emon flu’(y)ldy - 0.

The set of functions satisfying (A4) for all ¢ > 0 and T, < T is dense in the set
of all differentiable functions in Cy[0, «] and therefore dense in Cy[0, »]. Since
KA., . — Al < 2, the proof is complete. O
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Proor oF LEMma 3. Let R = pI + (1 — p)A. Then ||R]|| < 1 and by (3.6),
lull < c,|Rull < 2p~2lRul, V¥ u € Dy[0,].

It follows that R is a one-to-one mapping from D0, ] onto its range
RD,[0,»], the range RD,[0,] is closed and R~' is a linear operator
from RD,[0,] to D0, ] with norm R~ <c,. It suffices to prove that
RD [0, »] = D[0, »]. By the Hahn-Banach theorem we only need to show that
u = 0 is the only bounded linear functional u on D [0, «] satisfying u(u) = 0,
V u € RDJ0, =].

Let u be a bounded linear functional such that u(z) = 0, V u € RD[0, «].
Then

(45) pu(u) = —(1 - p)u(Au), V¥ u € Dg[0,)].

Since p is also a bounded linear functional on C[0, ], there exists a measure
wo with support (0, ») such that uw(u) = [u(y)uy(dy), V u € Cy[0,x]. For any
given u € D0, ] there exists a sequence u, € Cyl0, =] such that |u,(#)| <
lu(®)|, V ¢, and u, — u a.e. in both Lebesgue measure and the measure p,, so
that

sup -0 ask > o

O<y<wo

yf 27 %u(2) dz - yf< 2 %u,(2) dz
y<z

y<z

which implies that ||Auz — Au,|l > 0 by the fact that [|All < 1. It follows
that u(Au) = lim u(Au,) and p(u) = lim [u,(y)uo(dy) as k — «. Therefore,
w(u) = [u(y)u,(dy), V u € D0, =]. [Note that this is not true in general for
bounded linear functionals on D[0, «]. For example, u(z) = u(b) — u(b —).]
By (A5) and Fubini’s theorem,

—p [u(y)mo(dy)

-A-pffOf v a2 dzd[f()] mo(d)

- =) fu@ {2 o] _omaandl ;)] e
O<y=<z “y<t
which implies that there exists a Lebesgue integrable function v(¢) such that

u(u) = [u(t)mo(de) = [u(t)o(t) dt

‘and

(46) pug(2) + (1-p)27* [ LY f JOu()dtdlf(n)] 7 =0, Ve
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Set u () = vy(£)t3f(2). Then,

f y| 2z uy(2)|dzd !
0<y<t “y<z 0 f(y)
- 1
</ L2 [y w21 (=) ded s

1 ]
B ";)<z<wf(2)|v0(z)|'£)<yszAtyd f(y) dz = tj;) 'vo(Z)ldz < o,

and, by (A6),
puo(t) + (1 —p)f(t)[0 tyf 27 2uy(2) dzdf Y(y) =0, V¢,
<y=< y<z

so that by Lemma 1(i), u, =0 and v, = 0. Hence pu = 0 and the proof is
complete. O
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