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ROBUST ESTIMATION OF THE CONCENTRATION PARAMETER
OF THE VON MISES-FISHER DISTRIBUTION?

By Dalyin Ko

Virginia Commonwealth University

We introduce a simple procedure for obtaining robust estimates of the
concentration parameter of the von Mises-Fisher distribution on the g-
dimensional unit sphere. The procedure is based on the median deviation
from a location parameter. Its influence function is derived and standard-
ized bias robustness is proved. The asymptotic efficiency is calculated and
an example is given.

1. Introduction. The von Mises—Fisher distribution is most frequently
used as a model for samples of circular or spherical data. The maximum
likelihood estimators (m.l.e.) of the (directional) location and concentration
parameters of the distribution are known to be nonrobust [Fisher (1982);
Kimber (1985); Watson (1986); Ko and Guttorp (1988)]; therefore, inference
based on them is bound to be nonrobust. Several attempts have been made to
robustify the estimator, but they are dependent upon a robust initial estimator
[Lenth (1981)] or limited to spherical data with a high concentration parame-
ter [Fisher (1982)]. In this paper we develop a simple estimator for the
concentration parameter which is comparable to the median absolute deviation
in linear data. It may be used as an exploratory analysis as well as a starting
value for more efficient robust estimators for concentration and (directional)
location parameters.

The paper is organized as follows. In Section 2 an estimator based on the
median deviation is introduced. The asymptotic efficiency of the estimator for
the von Mises-Fisher distribution is derived in Section 3. In Section 4 we
derive the influence curve and prove standardized bias robustness. In Section 5
we discusses the case of unknown location. An example is given in Section 6.

2. Estimator based on median deviation. The most commonly used
distribution in directional data analysis is the von Mises-Fisher distribution.
The density of the g-dimensional von Mises—Fisher distribution VF,(-; u, «),
with location parameter u and concentration parameter « on the unit sphere
), in the g-dimensional Euclidean space R is given by

fo(x5m, k) = agl(x)exp(ku'x),

where u,x € Q,, « € [0, ), a;l(K) = K"/Z_1/[(277)q/21(q/2)_1(l<)] and I,() is
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the modified Bessel function of the first kind and order p. Let A ()=
I, ,5(:)/1, 5_(-). Let x,,...,x, be n independent realizations of a random
unit vector X whose distribution is VF,(-; i, «). The m.Le. & of « is given by
Mardia (1972) as
o ST

. R=—|— x; .

Ag\n i—1M '

Replacing p in (2.1) with its m.l.e. 4 given by Lx,/|L x,| results in & =
A;l(l(l/n)):xil), where | - | is the Euclidean norm in R?

For g = 2, Lenth (1981) proposed an estimator &; = d%/med (2(1 — (iTx,)),
where d is the upper quartile of the standardized normal distribution, which
is approximately 0.6724, and /i, is the circular median. Since y/2(1 — u"x;) is
equal to |u — x,|, it is distributed approximately as the absolute value of a
normal random variable with variance 1/k when « is large; hence K, is a
reasonable estimator for large x. For small «, however, this approximation is
not as good. For example, when X is a two-dimensional random unit vector
following the von Mises distribution with parameter x = 1, d2/[med 2(1 —
uTX)] is only 0.74. A weighted version of (2.1) was also proposed by Lenth
(1981) as

A

1 Tw;pu'x;
Ky=——".
A, Luw
Here the w,’s are weights used in computing a robust circular location
estimate fi. They are dependent on the unknown parameter « and, hence, to
calculate &, we need a robust initial estimate of «.

For g = 3, using the fact that the distribution of 1 — u”X is approximately
exponential with mean « for k > 2.5, Fisher (1982) proposed the following L
estimator &, ,:

n—-r+1

w,r = ] )
L1 7 ey + (r+ eg-n

A
K

where ¢; = 1 — u"x; and ¢y, < ‘- < ¢, are ordered c,’s. This estimator is
useful and the approximation is very good for moderately large « (say x > 2.5),
but it cannot be used for g # 3.

The mean operator (1/n)X in (2.1) is very sensitive to outliers, causing the
m.le. £ to be nonrobust. An alternative is the median, which is more
insensitive to the outliers. Let C,(x) be the median of uFX where X is a
random unit g¢-dimensional vector with von Mises—Fisher distribution
VF,(-; i, «). Replacing A, and (1 /n)X with C, and med;, respectively, in
(2.1), we obtain an estimator of «,

(2.2) R = C;I[mied(/ﬂx,-)],

which is Fisher consistent and robust. One may use the median of 1 — u’X
instead of u'X. If M,(k) is the median of 2(1 — u"X), then M, (x) =
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2(1 — C,(«)) and the estimator becomes M, '[med; 2(1 — u"x,)]. The median of

va2(1 - utX ) is, in fact, the median deviation from the location parameter u

with respect to the Euclidean metric | - | on RY.
We can evaluate the function C, and C, ! using the distribution of T' = u7X.
When the distribution of X is VF,(; u, k), the density g, of T is given as

_ . q-3)

8,() = a7 (k)e (1 — )%,

where a% k) = w,_;a;' (k) with w, = 279/2/T(q/2), the area of Q,
[Watson (1983), page 136]. Therefore, C (k) is the solution of the equation

1
C,(«) _ -
(2:3) [ ety dt = 5.

When g =3, C,(x) = (1/k)log(cosh k) and C/(x) = —(1/k?)log(cosh ) +
(1/k)tanh k. For g # 3, the function C;' as well as C, and C, can be
calculated by numerical integration. The values of C; ! are evaluated in Tables
1l and 2 for ¢ = 2 and 3.

-1<t<1,

ProposiTioN 1. () 2x(1 — Cy(«)) > m,_y as k = © where m,_,, is the
median of the chi-square distribution with q — 1 degrees of freedom; hence we
can approximate C; (x) by m,_,/2(1 — x) for x close to 1.

(i) C;Y(x)/x — (g — 1) as x - 0; hence C; (x) = (¢ — 1x for small x.

ProoF. (i) follows from the fact that 2x(1 — u"X) converges to x2_, in
distribution as k — « [Watson (1984)].
By differentiating (2.3) with respect to k, we have

A (k)/2 - ffql(")a,;—l(K)tekt(l _ tz)(q—a)/z dt

*— kCy(k 2\(a—3)/2
@y (1) e (1 = C,()?)

(24)  Cy(x) =

Since C, (k) - 0 and A (k) > 0 as k — 0, by evaluating (2.4) at x = 0, we
have C,(x) » (¢ — D" 'as k - 0.

(ii) follows from noting that (C, 'Y(x) = 1/C;(C; (x)) and the first order
Taylor expansion of C,;'. O

In calculating m,_;, in Proposition 1(i), we can use the fact that m;, =
0.45453 and m ) = 2log2. For ¢ > 3, m,_,, is approximated by (¢ — D[1 —
(2/9)/(q — DJ? [Wilson and Hilferty (1931)].

3. Asymptotic properties. Let X;,..., X, be ii.d. unit random vectors
with distribution VF,(-; u, «). Let &,, = C; '(med,(u"X,)). Then we have the
following proposition.

PROPOSITION 2.

(3.1) Vi (R = 1) = N(0,[2C;(x)g,(Co(x))] %)
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TABLE 1
c;t
x C,; Ux) x C; Ux) x C,; Ux) x C; Ux)

0.01 0.0100 0.30 0.3162 0.59 0.7521 0.88 2.2311
0.02 0.0200 0.31 0.3280 0.60 0.7731 0.89 2.3990
0.03 0.0300 0.32 0.3399 0.61 0.7948 0.90 2.5998
0.04 0.0400 0.33 0.3519 0.62 0.8173 0.905 2.7160
0.05 0.0501 0.34 0.3641 0.63 0.8405 0.910 2.8452
0.06 0.0601 0.35 0.3765 0.64 0.8647 0.915 2.9897
0.07 0.0702 0.36 0.3890 0.65 0.8897 0.920 3.1525
0.08 0.0803 0.37 0.4017 0.66 0.9158 0.925 3.3374
0.09 0.0904 0.38 0.4146 0.67 0.9430 0.930 3.5492
0.10 0.1006 0.39 0.4277 0.68 0.9713. 0.935 3.7944
0.11 0.1107 0.40 0.4410 0.69 1.0010 0.940 4.0812
0.12 0.1210 0.41 0.4545 0.70 1.0321 0.945 4.4212
0.13 0.1312 0.42 0.4683 0.71 1.0648 0.950 4.8304
0.14 0.1415 0.43 0.4822 0.72 1.0992 0.955 5.3317
0.15 0.1519 0.44 0.4964 0.73 1.1356 0.960 5.9597
0.16 0.1623 0.45 0.5109 0.74 1.1741 0.965 6.7686
0.17 0.1728 0.46 0.5257 0.75 1.2149 0.970 7.8485
0.18 0.1833 0.47 0.5408 0.76 1.2585 0.975 9.3619
0.19 0.1939 0.48 0.5562 0.77 1.3050 0.980 11.6337
0.20 0.2046 0.49 0.5719 0.78 1.3550 0.985 15.4221
0.21 0.2153 0.50 0.5879 0.79 1.4088 0.990 23.0017
0.22 0.2262 0.51 0.6043 0.80 1.4671 0.991 25.5287
0.23 0.2371 0.52 0.6212 0.81 1.5306 0.992 28.6874
0.24 0.2481 0.53 0.6384 0.82 1.6001 0.993 32.7489
0.25 0.2592 0.54 0.6561 0.83 1.6768 0.994 38.1643
0.26 0.2703 0.55 0.6742 0.84 1.7619 0.995 45.7461
0.27 0.2816 0.56 0.6929 0.85 1.8573 0.996 57.1190
0.28 0.2930 0.57 0.7120 0.86 1.9651 0.997 76.0742
0.29 0.3046 0.58 0.7318 0.87 2.0884

ProOF. Since Vn (med,(uTX,) — C,() = N(0,0?) in distribution with
o? = [2g,(C, (k)] 72, the result follows from the & method. O

The asymptotic variance of Vn &, where & is the m.le., is 1 /A (k). Hence
the asymptotic efficiency of the estimator &, is given by

4[Cy )8, (C, )] Ay(0).

Table 3 gives the values of efficiencies for « = 0.1, 0.5, 1, 3, 5, 10, 50 and for
q = 2 and 3.

Let- us consider the case of ¢ =2. Let X = (cos®,sin®)” and u =
(cos 8, sin 0,)T where 8, — 7 < ® < 6, + 7. For large x, ® — 0, is distributed
approximately N(0, k~!) [Mardia (1972), page 60]. One may use an estimate
& = [®7%0.75)/med|® — 6, using the fact that MAD = med|® —
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TABLE 2
Cst
x Cs(x) x Cy (x) x Cs Ux) x Cy Ux)

0.01 0.0200 0.26 0.5450 0.51 1.2552 0.76 2.8749
0.02 0.0400 0.27 0.5682 0.52 1.2927 0.77 3.0030
0.03 0.0600 0.28 0.5916 0.53 1.3313 0.78 3.1422
0.04 0.0801 0.29 0.6153 0.54 1.3711 0.79 3.2942
0.05 0.1002 0.30 0.6393 0.55 1.4122 0.80 3.4608
0.06 0.1203 0.31 0.6637 0.56 1.4547 0.81 3.6445
0.07 0.1405 0.32 0.6883 0.57 1.4987 0.82 3.8483
0.08 0.1607 0.33 0.7134 0.58 1.5442 0.83 4.0756
0.09 0.1810 0.34 0.7388 0.59 1.5915 0.84 4.3311
0.10 0.2013 0.35 0.7646 0.60 1.6406 0.85 4.6203
0.11 0.2218 0.36 0.7909 0.61 1.6917 0.86 4.9507
0.12 0.2423 0.37 0.8176 0.62 1.7450 0.87 5.3317
0.13 0.2630 0.38 0.8447 0.63 1.8006 0.88 5.7761
0.14 0.2837 0.39 0.8724 0.64 1.8587 0.89 6.3013
0.15 0.3046 0.40 0.9005 0.65 1.9196 0.90 6.9315
0.16 0.3256 041 0.9293 0.66 1.9835 0.91 7.7016
0.17 0.3467 0.42 0.9586 0.67 2.0507 0.92 8.6643
0.18 0.3680 0.43 0.9885 0.68 2.1215 0.93 9.9021
0.19 0.3895 0.44 1.0191 0.69 2.1963 0.94 11.5525
0.20 0.4111 0.45 1.0504 0.70 2.2755 0.95 13.8629
0.21 0.4329 0.46 1.0824 0.71 2.3595 0.96 17.3287
0.22 0.4549 0.47 1.1152 0.72 2.4490 0.97 23.1049
0.23 0.4771 0.48 1.1488 0.73 2.5444 0.98 34.6574
0.24 0.4995 0.49 1.1833 0.74 2.6467 0.99 69.3147
0.25 0.5221 0.50 1.2188 0.75 2.7565

8, /®71(0.75) is a consistent estimate of x~!/2. Here, MAD stands for median
absolute deviation. Now

R, = C3'[medcos(® — 6,)]

is approximated by m;,/[2(1 — med cos(® — 6,)] by Proposition 1. Using a
Taylor expansion of the cosine function, we can approximate &,, by
®~1(0.75)? /med|® — 00|2, which is MAD 2, Therefore the asymptotic effi-
ciency of k,,, when « is large, is the same as MAD at the normal distribution.

TaABLE 3
Asymptotic efficiencies of ik,

.q k=0.1 k=05 k=1 k=3 k=25 k=10 k=50

2 0.81 0.73 0.59 0.36 0.36 0.37 0.37
3 0.75 0.73 0.67 0.51 0.48 0.48 0.48
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As in the location-scale problem in linear data, the estimator &, is favored
for its robustness not for its efficiency. We can improve the efficiency by
introducing M estimators with an initial value &,, [Ko and Chang (1991)].

4. Standardized bias (SB) robustness of &,. Ko and Guttorp (1988)
proposed SB robustness in assessing robustness of estimators for directional
data. They argue that even for the same amount of bias the problem is more
serious if the main mass of data is more concentrated, where more accuracy is
needed. They measure this relative seriousness by standardized gross error
sensitivity (SGES), defined by

y*(T,F,8) = Sl‘{pv(T,F)/S(F),

where y(T, F)/S(F) is the gross error sensitivity (GES) of the functional 7" at
F, S(F) is the measure of concentration of the main mass of the data and the
supremum is taken over a family F of distributions. The same definition may
be stated in terms of the breakdown function using the fact that the GES is
the slope of the breakdown function at 0 [He and Simpson (1989)].

A reasonable choice of S(F) is the inverse of Fisher information [or
equivalently the Cramér-Rao (CR) bound for the standard error of T']. Then
y*(T,F, S) is the supremum of the information standardized sensitivities
[Hampel, Ronchetti, Rousseeuw and Stahel (1986)] over the family F of
distributions. An estimator 7 is called SB robust at F if the SGES is bounded.
If an estimator is SB robust at F, then the ratio between the GES and the CR
error bound is bounded over the family F of distributions.

For the concentration parameter x from the von Mises—Fisher distribution,
the inverse of Fisher information is [A,(x)]~'/? and we have the following
proposition.

ProposITION 3. The estimator k,, is SB robust at the family of the von
Mises distributions.

Proor. Using the influence function of the median and the chain rule, we
can derive the influence function of &,, at z and VF,(; u, k) as

1 sign[u’z — Cy(x)]
Ca(k)  284(Cy(x))

Therefore the GES is [2C}(k)g,(C («)]~! and SGES y* at the von Mises—
Fisher family F is

IF(2; R,,, VF,) =

1/2

(A,q(’())

Y*(Rn,F,S) = sup —; .
( ) = P () 2,(Co()

C(k) > 0, A(x) > q~" and Cj(k) > (g — 1)~" as x — 0. Hence y* stays

bounded as x — 0. When k — o, C (k) =1 - 0(x™", C/(k) = O(x~?) and

A (k) = O(x~?). Since I, ,5_(k) = (2m) /% 1/%e(1 — 0(kc=1) for large «,
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we have that a%(x) = w;*(27) ™ D/2=9*D/2e5(1 + O(k 1)) and g,(C,(x)) =
O(k). Therefore y*(k,,, F, S) =0(1). O

Ko and Guttorp (1988) show that the m.le. k& is not SB robust. In fact,
y(&, F)/S(F) when F is VF (-; u; k) is O(x) and hence y*(&,F) = .

5. When location is unknown. The location vector u is usually un-
known. In this case, we may substitute an estimate of w. In this section, we
show that if the location estimator is SB robust, the estimator &,, based on the
estimated location is also SB robust. We also prove that the asymptotic
property obtained in Section 3 holds when the estimated location is used.

For any location estimator M with M(F)=pu € Q,, M1 -¢&)F +
£8,)TM((1 — &)F + £5,) = 1. By differentiating with respect Yorate= 0, we
have IF(z; M, F)™u = 0. That is, as vectors in RY, IF(z; M, F) is tangent to
Q, at u. Since Fisher information can be formulated as the metric of the inner
product on the tangent space at u [see Kass (1989), page 198], the information
standardized sensitivity is sup[{IF(z; M, F), IF(z; M, F))pr)/? and the
SGES at F is y*(M,F, S) = supg sup,[{IF(z; M, F), IF(z; M, F))y)"/?,
where (v, w), denotes the Fisher information metric at u. For the rotationally
symmetric distribution with density f(u”x) with respect to the surface mea-
sure on Q,, v*(M, F, S) = supg supz‘/KAq(K) |IF(z; M, F)|; therefore the
estimator M is SB robust at F if and only if sup, [IF(z; M, F)| = O(«x~1/2). See
Ko and Chang (1991) for details. In the following, M(X) and K,(X) denote
M(F) and K,(F), respectively, where X is a random unit vector with
distribution F.

Let K,, be a functional defined by

K, (F) = C;'[med(M(X)"X)].

Let K, = K,(F,) and ji = M(F,) where F, is the empirical distribution.
KR, = K,(F,) is obtained by replacing p by an estimate M(F,) in (2.2) in
Section 3.

ProposiTioN 4. K,, is SB robust at F if M is Fisher consistent and SB
robust at F.

Proor. See the Appendix.

Suppose further that 4 is a Vn consistent estimate of u. The limiting
distribution of K is the same as that of &, as follows.

PropoSITION 5. Vn (K, — k) =, N(0,[2C.(k)g,(C, (k)] ~?).
ProOF. See the Appendix.

If M is B robust, that is, it has a bounded influence function, but not SB
robust (e.g., the directional mean), then the term IF(X — u) in (7.1) in the



924 D.KO

Appendix is O(k %), not O(k~!) for some 0 < a < 1 and becomes the dominat-
ing term in calculating the influence function of MD, the functional corre-
sponding to med; u7X;. In fact, in this case, the influence function of MD is

1

IF(z; MD, VF,) = 2gq(C & 7 06)

+ O(k™%)

and the SGES is sup, O(x'~%), which is . Therefore we do not recommend
the directional mean for the location estimate in calculating K

The circular/spherical median [Mardia (1972); Fisher (1985) Ducharme
and Milasevic (1987)] is SB robust [Ko and Guttorp (1988); He and Simpson
(1989); Ko and Chang (1991)] and can be used as an estimator of location for
K,,, which is a monotone function of the median distance from the estimated
spherical median. For the computation of the spherical median, especially for
q > 3, see Fisher (1985) and Gower (1974).

Another interesting example for the location estimator is the least median
square (LMS) estimator fi;yg [Rousseeuw (1984)], which is defined as the
center of the smallest c1rcular cap on (), which covers more than half of the
data. Then the med; AT yex;, = 1 — r2/2 where r is the radius (in R?) of
the smallest circle. On Q,, med; [iTysx; coincides with the cosine of half of the
circular interquartile range. In linear data, the LMS location estimate con-
verges slowly with rate n~1/3; therefore, its influence function and gross error
sensitivity are not well deﬁned and the argument of Proposition 3 cannot be
used to prove or disprove SB robustness. However, the scale estimator S(F')
based on the LMS estimate defined as the median of |X — fi;ysl, where the
distribution of X is F, is an S estimator, which has better continuity
properties than the LMS location estimator. In fact, S(F,,) has the usual rates
of normal convergence [Griibel (1988)] and is approximately most bias robust
[Martin and Zamar (1989)] Since med|X — Ayl = inf, c o med|X — ul?, the
estimate C; '(med 2] X) can be viewed as an S estimator and is expected to
have sumlar robustness properties. However, SB robustness of the estimator
K, based on fijg is yet to be proved.

6. Examples. Ferguson, Landreth and McKeown (1967) have investi-
gated the homing ability of the northern cricket frog. These data have been
reanalyzed by Collett (1980), Ducharme and Milasevic (1987) and Rousseeuw
and Leroy (1987). The data are (in degrees) 104, 110, 117, 121, 127, 130, 136,
145, 152, 178, 184, 192, 200, 316. The directional mean angle is 146°, where
the circular median is 133° and the circular LMS estimate is 120°. The true
home direction is 122°. uTx; = cos(¢; — ¢), where p and x; are points on Q,
corresponding to angles ¢; and ¢.

With the true home direction 122° the m.l.e. £ is 1.8, while the estimate
k,, based on the median deviation is 3.83. Ninety-five percent (resp. 99%) of
the data for the von Mises distribution fall in the range of 122° + 111.6° (resp.
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159.2°) when & is used and 122° + 63.4° (resp. 88.5°) when &, is used. The
angle 316° is an extreme point beyond 1% by both estimates. The points 192°
and 200° are identified as extreme points beyond 5% only when &, is used.

Without the extreme point 316°, the m.l.e. is 2.73 and &,, is 4.92. None was
found to be an extreme point beyond 5% when the m.l.e. is used; 178°, 184°,
192° were identified as extreme points beyond 5% and 200° was observed as an
extreme point beyond 1% when &,, is used. The m.le. picked up the most
outlying point 316° as a 1% extreme point but failed to detect other extreme
points.

R,, is estimated as 3.69 when the circular median is used; it is 3.73 when
the LMS estimate is used; the m.lLe. of k is 2.18. Ninety-five percent (resp.
99%) of the data for the von Mises distribution fall in the ranges of 133° + 65°
(resp. 91.2°), 120° + 64.5° (resp. 90.5°) and 146° + 95.8° (resp. 144.3°) when
these estimates of x and p are used. Using the LMS estimate and the
corresponding K m» we identify 192° and 200° as 5% extreme points and 316°
as a 1% extreme point. If the circular median and the corresponding K are
used, we identify 200° as a 5% extreme point and 316° as a 1% extreme point,

where the inference based on m.l.e. identifies only 316° as a 1% extreme point.

APPENDIX

Proor or ProprosITION 4. Let X be a random unit vector with the distri-
bution VF,(:;u,x) and X, , = (1 — W)X + W,, where X and W are indepen-
dent, W is a Bernoulli random variable with Pr{W = 1} = ¢ and z is a unit
vector. Then X, , is a random unit vector with the contaminated djstribution
(1 - e)VF, + 68 where 8, denotes the point mass of 1 at z. Let D,
M(X, )TX D= M(X )TX u'X and let g, be the density of D. Let IFM

£,2)

denote IF(z; M, VF,). For small ¢ > 0,
(11) D,,—D=(1-W)[eIFFX +o(e)] + W(M(X, )"z - u"X)
= (1 - W)[eIFf(X — u) + o(e)] + W(M(X,,)"z - uTX)

because IFu = 0. Since M is SB robust, sup, |IF(z, M, VF,)| = O(x~'/?) and
also |X — pu| = 0,(k~'/2). Therefore,

D,.=(1-W)[D+e0,(x7") +o(e)] + W(M(X,,)"2).

Using the influence function of the median we have

med[(1 — W)Y + Wz*] — med(Y) =¢ + o(e)

2g(med(Y))

for any random variable Y with density g. By letting Y = D + EOP(K_I) + o(e)
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and z* = M(X, )"z we have
¢IF(z; MD, VF,)
= med(D, ,) — med(D)
[med((1 — W)Y + Wz*) — med(Y)] + [med(Y) — med(D)]

1
°| 28(med(Y))

+o(e)| +e0(xk™1) + o(e),

where g is a density function of Y and MD is the functional corresponding to
med D. As £ — 0, the distribution of Y converges to the distribution of D and
the median of Y can be written as C, () + O(k~1). Therefore, the influence
function is given by

1
2gq(Cq(:<) + O(K'l))

Since K,, = C; 1o MD, 2g,(C (k) + O(k™1)) = O(x) and Cyi) = O(k™2), by
the chain rule, we have

+ O(x71).

IF(2; MD, VF,) =

IF(z; K,,, VF,) = Ci(x) " +0(x™Y)

2g,(C,(x) + O(x™Y)
= 0(«?)[0(k™1) + O(k™Y)] = O(x).
Since A, (k) = O(x™?),
v*(K,,,F, 8) = sup sup (A,(x))""*C;(x) *|IF(z; MD, VF,)|

= 0(«x" 1) 0(k) = 0(1).
Therefore K,, is SB robust. O

PROOF OF PropPOsITION 5. Since |X; — ul|®> = 2(1 — u7X,), by Proposition 2,
it is enough to show that va med; |X; — 2|* = Vn med, |X; — ul® + 0,(1). De-
fine

medZ, = F;'(3) = inf{tF,(2) > ),
1]

 where F, is the same distribution function based on Z,...,Z,. By the
Cauchy-Schwarz inequality, we have

12 |X; —u> —2|X,— u|lp— 4] +|p - 4

<|X; - A" <|X, - ul + 2| X, — p|ln - 4] +]p — 4l
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for all i. Since A(x) = x2 + 2|u — filx is a monotone function of x on (0, «),
mlged(|Xi —pl*+ 21X - pllp - ﬁl)
= med|X; — [ +2(med| X, — ul)ln - al.
Let |X;) — ul < -+ <|X,, — ul. For any fixed a € (0,1/2), say a = 1/4,
| Xnap — | == H™Y(a) >0,

where H is the distribution function of |X; — u|® and [ra] is the integer
part of na. Therefore, as n — o, 2|u — 3| < |X,,; — #l with probability
tending to 1. (Most of the identities and inequalities in the rest of the proof
hold with probability tending to 1.) Note that the function h(x) =
x2 — |u — filx is increasing on (|u — fil,®) and A(x) < h(s) forall 0 <x < s
where s € (2|u — fi], ). Hence, for large n, the order of |X;,,), —ul < --- <
IX,,, — | is maintained under the transformation A(-) and also

|X(j) - #|2 - 2|X(j> - #| ln — &l S|X([na:1> - #|2 - 2|X<[na1> - #| lu — Al

for all j < [na]; that is, all the lower 100a% order statistics of A(|X; — u|) are
not greater than A(IXy,,; — u|). Therefore, 100(1 — a)% upper order statistics
are

| Xinap = BI° = 2| Xgnap — 1l I = il
< 0 2| Xy - wl’ - 2| Xy — s - Al
and hence
mied(IXi_#lz_ZIXi_M“/i—lﬂ)
= med|X; — u* ~ 2(med|X; — ul)ln - 4.
Since Vn med; |X; — u| and Vn |u — 4| are Op(1) and |u — 4 is 0,(1),
Vo med (|X; - uf* - 21X - ullu — Al +u - AI%)
=‘/ﬁ_ml¢d|Xi—u|2+op(1)
and ,
\/’Tm?dﬂxi - M|2 +2|X; —pllp — Al +|p - ﬂ|2)
=\/;z_ml¢d|Xi—p,|2+op(1).

By:(7.2), Vn med; |X; — AI® = Vn med; |X; — ul® + 0,(1) and the result follows
from (3.1). The arguments hold for the other definition of sample median such
as med; Z; = sup{¢t|F,(¢) < 1/2} and therefore for the usual definition of
sample median med; Z; = [inf{¢|F,(¢) > 1/2} + sup{t|F,(¢) < 1/2}]/2. O
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