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CHANGE-POINTS IN NONPARAMETRIC
REGRESSION ANALYSIS?

By Hans-GEORG MULLER
University of California, Davis

Estimators for location and size of a discontinuity or change-point in
an otherwise smooth regression model are proposed. The assumptions
needed are much weaker than those made in parametric models. The
proposed estimators apply as well to the detection of discontinuities in
derivatives and therefore to the detection of change-points of slope and of
higher order curvature. The proposed estimators are based on a comparison
of left and right one-sided kernel smoothers. Weak convergence of a
stochastic process in local differences to a Gaussian process is established
for properly scaled versions of estimators of the location of a change-point.
The continuous mapping theorem can then be invoked to obtain asymptotic
distributions and corresponding rates of convergence for change-point esti-
mators. These rates are typically faster than n~1/2. Rates of global L?
convergence of curve estimates with appropriate kernel modifications
adapting to estimated change-points are derived as a consequence. It is
shown that these rates of convergence are the same as if the location of the
change-point was known. The methods are illustrated by means of the well
known data on the annual flow volume of the Nile river between 1871 and
1970.

1. Introduction. Nonparametric regression methods are usually applied
in order to obtain a smooth fit of a regression curve without having to specify a
parametric class of regression functions. Sometimes a generally smooth curve
might contain an isolated discontinuity or change-point in the curve or in a
(possibly higher order) derivative, and in many cases interest focuses on the
occurrence of such change-points. In parametric approaches to the regression
change-point problem, simple linear regressions before and after a possible
change-point are assumed, and then the possibility of a discontinuity in the
form of a jump or of a jump in the first derivative, or, equivalently, a slope
change, is incorporated into the model; see for instance Hinkley (1969) and
Brown, Durbin and Evans (1975).

The analysis of change-points which describe sudden, localized changes
typically occurring in economics, medicine and the physical sciences has
recently found increasing interest. General smoothness assumptions, allowing
for a large class of regression functions to be considered, seem to be more
appropriate in a variety of applied problems than parametric modelling. An
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example which will be discussed is the annual Nile river flow data for the years
1871-1970, which have been analysed under a parametric change-point model
by Cobb (1978).

If the regression functlon g is I times continuously differentiable for some
1>0, g € ¢, and a kernel smoother with a kernel function of the order % is
chosen, that is, a kernel function with exactly (¢ — 1) vanishing moments, the
rate of convergence of mean squared error (MSE) or integrated mean squared
error (IMSE) is well known to be n ™%, where a = 2min(k, [)/(2 min(k, ) + 1);
the rate therefore depends jointly on the smoothness of the curve and the
order of the kernel function. Obviously, a change-point in a curve or a
derivative will alter this rate of convergence; in fact, if the curve or derivative
to be estimated is not continuous at a given point, the ordinary kernel
estimator at this point for curve/derivative will not be consistent. It is
therefore of interest for purposes of curve estimation itself to adapt for
change-points. In addition to this statistical motivation, for many applications
it is of intrinsic concern to analyse change-points in curves or derivatives; see
Cobb (1978), and the references given in McDonald and Owen (1986); compare
also Cline and Hart (1991).

Although the focus in this paper is on fixed design nonparametric regres-
sion, the proposed methods can be adapted to other settings of curve estima-
tion. For example, in hazard rate estimation, simple parametric change-point
models require already quite sophisticated techniques; see, for example,
Matthews, Farewell and Pyke (1985). Smooth approximation of a change-point
model by a model which contains a point of most rapid change and the
corresponding statistical inference was considered by Miiller and Wang (1990)
in the context of hazard functions under random censoring.

Other related approaches for detecting a change in the distribution of a
sequence of random variables have been developed by Chernoff and Zacks
(1964), Bhattacharya and Brockwell (1976) and Siegmund (1986), among many
others. Weak convergence of change-point estimators in parametric regression
models was investigated by Bhattacharya (1991).

The setting considered here is the fixed design regression model

(Ml) Yi,n =g(ti,n) + Eins ti,n € [07 1]’ 1<ix< n,

where y; , are noisy measurements of the regression function g taken at
points ¢; , and ¢; , are iid. errors with E(e; ,) = 0, var(e; ,) = o> < ». The
design pomts t; n are. assumed to be equ1d1stant This assumption could be
relaxed by requiring only the existence of a smooth design density, where
[&rf(x)dx = (i — 1)/(n — 1). With minor modifications, the results then re-
main valid for asymptotically nonequidistant designs. Fixing the left and right
endpoint of the compact support of g at 0 (respectively 1) incurs no loss of
generality. In the following, indices n will be omitted whenever feasible.

Let » > 0 be an integer and k2 > 2 be an even integer. Assume that a
change-point exists for g® at 7, 0 < r < 1, in the following sense: There exists
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f € €**7(0, 1)) such that
(M2) g¥(t) = fO(t) + Avl[‘r,ll(t)’ A,>0,0<t<1.

The case A, < 0 can be treated analogously. Define g¢(r) = lim,, g®(¢),
g¥(7) = lim,,, g®(¢) and g™(r) = g¢(r), and observe that

(1.1) A, =gP(7) - g¥(n),
where A, is the jump size at the possible change-point 7 of the »vth derivative.
The case A, = 0 corresponds to the nonexistence of a change-point at .

The main results of this paper concern weak convergence of estimators 7 of
the location of the change-point 7 (Theorem 3.1) and rates of global L?”
convergence of kernel estimators adjusted to an estimated change-point (Theo-
rem 4.1). The paper is organized as follows: Section 2 presents a discussion of
kernel estimators using kernel functions with one-sided support and their
application to change-point estimation, which is based on maximizing the
difference between one-sided kernel smoothers. Section 3 is devoted to the
study of a functional limit theorem for a local deviation process. The func-
tional mapping theorem is used to obtain the limit distribution for estimated
change-points. These results are applied in Section 4 to obtain rates of L?
convergence for kernel estimators with and without change-point adaptation.
An application of the methods to the Nile data is discussed in Section 5. The
proofs for Section 3 are compiled in Section 6; those for Section 4 in Section 7.

2. One-sided kernels and change-point estimators. Omitting in the
following indices n, that is, writing s, =s; ,, ¢, =¢; ,, ¥, =y, , and ¢; = ¢, ,,
define s; =(¢; +¢,.1)/2, i=1,...,n—1, 5,=0, s, =1 and consider the
following kernel estimators g®(¢) of g®(¢), ¢t € [0, 1]:

1 n s; t—u
2. () = | k® )
2.1 £ = g L[ K57
Here b = b(n) is a sequence of bandwidths which is required to satisfy
(Bl) -0, nb**'>w as n- o, lim supnb2**+M*1 < o,

and K® is the kernel function, which is assumed to be the vth derivative of a
function K with compact support [—1, 1]. Other kernel estimators like the one
proposed by Priestley and Chao (1972) could be used as well. Observe that K’
is a two-sided kernel with symmetric support.

For purposes of boundary modification [Rice (1984b); Gasser, Miiller and
Mammitzsch (1985); Miiller (1991)], kernels with asymmetric supports were
considered which correspond to smoothing windows which are asymmetric
with respect to the point ¢. For the nonparametric estimation of regression
functions when change-points or discontinuities are present, an algorithm
which is based on local least squares fits and which also uses asymmetric
smoothing windows was proposed by McDonald and Owen (1986); related
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results on a.s. convergence of change-point estimators, also using one-sided
moving averages in a smooth function model with white noise, were obtained
by Yin (1988).

Let K¢ and K® be one-sided kernel functions with support(K{’) =
[—1,0] and support(K®) = [0, 1], and define one-sided regression estimates
for the vth derivative g7@):

(22) 29(t) - bm %" x9(=

Si-1

‘) .

The idea is to base inference for change-points on differences of right- and
left-sided estimates:

(2.3) A»(t) = gO(t) — 8(t).

Intuitively, the location of the maximum of these differences will be a
reasonable estimator for the location of the change-point. Let @ < (0,1) be a
closed interval such that 7 € @. Define the estimators

(2.4) 5= inf{p € @: A¥(p) = sup AM(x)}
x€Q
for the location of the change-point = and
(2.5) A(3) = gP(7) - 89(%)
for the jump size in the vth derivative. Defining 7 as maximizer over @
instead of over [0, 1] serves the sole purpose of excluding change-points located

arbitrarily close to the boundary.
Assume that for some integer u > 0,

Ke¢"([-1,1]) n #, ,([-1,1]),

K1 . ;
(K1) KY(-1) = KY(1) =0, O0<j<v+u,

where % as before is an even integer k > 2, v < k and

%,l([avazl) = fe g([al’aZ]): support(f) = [01,02],

=(- 1) v!, j=v,
ff(x)x’dx =0, 0<j<l,j#v,,.
# 0, j=1,

It then follows by integration by parts that

K e ex([-1,1]) N % .., ([-1,1]),

2.6 : i
( ) K(v+1)(_1) — K(V+J)(1) = 0, 0 Sj < M.
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The integer u > 0 is a measure for the overall smoothness of K®, which is
inherited by the curve estimate. According to (2.6), the kernel K is (u — 1)
times differentiable on R and K®~P is absolutely continuous.

Analogously, assume for kernels K, and K _,

K,€ ¢"([~1,0]) N %, «([~1,0]),
KP(-1) =KP(0) =0, 0<j<v+p,

(K2) v+
K_e ¢"++([0,1]) N %, ,([0,1]),
K90)=KY(1) =0, O0<j<v+uy,
which again implies that
(2.75) KY€ ¢4([~1,0]) N % 4., ([-1,0)),
Ta . .
K¢ (-1) = K¢*)(0) =0, 0<j<u,
K® e ¢*([0,1]) N %, ,..([0,1]),
@) (10.1]) N 7,4.,(10,1])

K@) =K (1) =0, 0<j<up.

Observe that K, (respectively K_) acts on the r.h.s. (respectively Lh.s.) of ¢
according to the convolution property in definition (2.1), so that application of
these kernels corresponds to employing smoothing windows [¢, ¢ + b] (respec-
tively [¢ — b,¢]). For an example of kernels satisfying (2.7b), set ,K_(x) =
x*(1 — x)*(ay + a;x) on [0, 1]. From (2.5) and (2.7) one obtains the solutions
ag = Qg/(a1;09 — @1505) and a; = —a15/(a1,85, — @15@5), where a,; =
W2/ + 1, ap=ay =plp + DI/@p +2)! and ay = plp + 2)l/
(2u + 3)!. Special cases are the following kernel functions K_ on the
one-sided interval [0,1]: u =0: (K (x) =22 —-3x), p=1 ;K (x)=
12x(1 — xX3 — 5x) and u = 2: ,K_(x) = 80x%(1 — x)*(3 — 5x).

Another possibility of interest is to prescribe a zero in the kernel function
only at one endpoint of its support to render the estimated function smoother.
If, for instance, a zero is required at 1, the approach K_(x) = (1 — x)(a, + a;%)
leads to the quadratic kernel polynomial o, K_(x) = 6(1 — x )1 — 2x).

Observe that it follows from (K2) that if K’ satisfies (2.7b), then a kernel
K defined by

(K3) KP(x) = (-1)'KP(—x)
satisfies (2.7a). An additional assumption we make is
(K4) K@*» e Lip([0,1]), K¥**(0) >0, (v + n)isoddand p > 1.

Analogous conditions follow for K ¢+ assuming (K3).

These considerations can be extended to cover kernel functions with more
general asymmetric supports [—g, 1]. Such kernels will be used to estimate
near an estimated change-point in Sections 4 and 5. In the right boundary
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interval [1 — b, 1], choose kernels satisfying
K®(x,q) € €*([—q,1]) N K, 4., ([-4,1]),
K®*(-q,q) =K*(1,q) =0, 0<j<p,0<gx<1,
where ¢ = (1 — x)/b. Analogously, for the left boundary interval [0, b],
K(x,9) € €4([-1,9]) N X 4..([-1,4]),
K¢*)(-1,q) =K¢*(q,q) =0, 0<j<pu,0<g<l,

(2.8)

(2.9)

where g = x/b.

These kernels can be constructed analogously as for the special case ¢ = 0
above. Special kernels K®)(-, ¢) minimize the functional [K®**(x)? dx, sub-
ject to (2.8), for 0 < g < 1; see Miiller (1991). These solutions are polynomials
of degree (k + v + 2u — 1) with the following properties:

support K®(-,q) = [-q,1];
K¢*)(-q,q) =K®*(1,9q) =0, 0<j<p;
sup| K®(x,q)| < C < =;
(K5) ©q
Sl;P|K(-")(x1» q) — K9(x,, Q)l < Cley — x5

sup|K(_")(x,q1) - K®(x, ¢I2)| < Clg, — q2l;
x

and analogously for K{(-, q), where
(K6) K®(x,q9) = (-1)"K®(x,q).

3. Weak convergence of local deviation processes and asymptotic
distributions of change-point estimators. In this section a functional
limit theorem for a process operating on increments of one-sided function
estimates near 7 is derived. The functional mapping theorem is then applied to
obtain the limit distributions for change-point estimators 7. A similar device
was used by Eddy (1980, 1982) in the context of estimating the mode of a
probability density.

Let

8,(y) = A(7 + yb) = V(7 + yb) — 8¥(7 + 3b),

and define for some 0 <M < o, —M < z < M, the sequence of stochastic
processes

. vt 1y (v +D/@u )| 2 2 2
(3:1) Lu(2) = (mp> 1) ET (3»((nbzv+1)1/<zm+v») '6”(0))'

The scaling is chosen in such a way that processes {, converge weakly.
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Observe that {, € €((—M, M]). Denoting weak convergence by =, the
following functional limit theorem holds.

THEOREM 3.1. Assume that (M1), (M2), (B1) and (K1)-(K4) hold. Then

(3.2) [,={ on€([-M,M)),

where { is a continuous Gaussian process with moment structure
(3.3) E({(2)) = —A z*"PLKE0) /(e + v + 1)),
(3.4) cov({(21),4(22)) = 221220'2fK(_”+1)(v)2 dv.

Since the Gaussian limit process ¢ is determined by its first and second
moments, according to (3.3) and (3.4), it can be written equivalently as

(3.5) {(2) = —A,z¢PLEEE(0) /(n + v + 1)1+ Xz,

where X ~ #1(0,20%K“*(v)? dv).
The proof of Theorem 3.1 follows from a sequence of lemmas in Section 6.
Asymptotic distributions of estimated change-points (2.4) can now be ob-
tained as a consequence of this functional limit theorem. Under (K4), the limit
process ¢ of (3.5) is seen to have a unique maximum at

(3.6) Z* = [X(u +v)l/8,KE(0)] 4.
Let Z, be the location of the maximum of {,. By construction,
(3.7) =1+ an/(nb2v+l)1/(2(y+”».

Observing Whitt (1970) and the global properties of ¢, following Eddy
(1980), the convergence ¢, = { can be extended to €(—x,x), equipped with
Whitt’s metric, and the functional mapping theorem then implies
Z, -4 Z*, where Z, is now the global maximizer of ¢, on (—,®).

COROLLARY 3.1. Under the assumptions of Theorem 3.1,

A\ mty
(mb 57
b
(3.8)
(R0 LI P e
v+
—)g./f/ 0,2(ZV—K(_”_+W) g fK_ (U) dvl.
Note that the corresponding rate of convergence exceeds n~!/2 in most

cases. Consider for instance the important case u = 1, » = 0, & = 2. If the
usual bandwidth choice b = dn~'/5 is made, d > 0, then (3.8) becomes
n3/5(4 — 1) >4 N0,2 da YK D(v)? dv /(A, KD(0))?).
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Another application of the functional mapping theorem shows that
((Z,) =4 {(Z*) and therefore

(nb> ") {£,(2,) /(b )T EE) 0,

This implies (nb?*1)/2(A®)X(3) — A®X7)} -, 0, where A®X-) is defined in
(2.3). According to Lemma 6.6,

(nbz"“)l/z{ﬁ(”)(f) - AV) >4 ./I/(O,Zcrsz(_")(v)2 dv),

and combining these results one obtains for the jump size estimator A®(#):

COROLLARY 3.2.
(3.9) (nb>* 1) 2(A0(2) — A} > /1/(0,202 [EO(v)® dv).
If the construction of asymptotic confidence intervals is desired, one needs

to substitute consistent estimators 62 for o-2. Such estimators were proposed
by Rice (1984a) and Silverman (1985). A general class of quadratic estimators,

(3.10) 5? - "'Z'"2 ( %2 )2
. g = @Di¥itvi| »
n-— (ml + m2) i=mi+1\j=-m, e

where m,, m, > 0 are given fixed integers with m, + m, > 1, was considered
in Miiller and Stadtmiiller (1987) and more recently in Hall, Kay and
Titterington (1990). The law of large numbers implies & —, o, if the regres-
sion2 function g is Lipschitz continuous, and if the weights w; satisfy X »; = 0,
Yo?=1

1{ single discontinuity as in change-point model (M2) does not disturb the .
asymptotic consistency, but for practical purposes it is preferable to exclude a
neighborhood around # when calculating &2 (3.10). Calculating 62 separately
on the left- and on the right-hand side of 7 can also serve as a crude check
whether o is subject to change as well at 7. The results remain essentially
valid for a model (M1), M2) with var(e; ,) = 0, ,), where o(-) is a
Lipschitz continuous function with a possible change-point at .

Let ® denote the Gaussian distribution function. With consistent estima-
tors (3.10), one obtains asymptotic 100(1 — a)% confidence intervals

T+ b[d)_l(l - a/z)(” + V)!&/A(")(f-)K(_u+v)(0)]1/(M+v)
(3.11)

1/(2u +2v)

X [ZfK(_"“)(v)2 dv/( nb2"+1)]
for 7 and 100(1 — a)% upper /lower confidence bounds

1/2
(312)  A0(#) £ @71 - a){(z‘”f K®(v)° dv)/ (nb2v+1)}

for the jump size A,.
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A test whether change-points with jump sizes exceeding a given value exist
can be based on inverting lower/upper confidence bounds (3.12). If say this
lower bound is A,, then for any A with 0 < A < A,, the hypothesis H,:
0 <A, < A would be rejected at level a. If A, > A, this test obviously has
asymptotic power 1. Analogously, if A is the upper bound, for any A > A
the hypothesis H,: A, > A would be reJected at level a.

4. Global L” consistency with unknown change-point and two-step
procedures. Consider the problem of uniform consistency of kernel estima-
tors in the L” sense when a change-point is present. Owing to boundary
effects, unmodified kernel estimators (2.1) will not be uniformly consistent,

(4.1) sup [8¥(¢) — g(t)| = 0,(1),
tefo0,1]

even if a change-point is not present. The endpoints at 0 and 1 can be viewed
as change-points with known location. Assume now in addition the existence of
a change-point with unknown location 7, 0 < 7 < 1. We investigate kernel
estimators which are adjusted to known endpoints and an estimated change-
point 7 (2.4), employing kernels K®)(-,q) and K-, q), as defined in (K5)
and (K6). Let

1 n s; t—u
(4.2) 80(9) = o L K‘;’( ,q) du
b i=1 "Si-1 b

and define

8(¢t), fort>b,t<1-0,t — 7 >b[see(2.1)];

8%9(t,q), for0 <t <b withq=1t/band

(4.3) &V, %) = for # <t <# + b with ¢ = (¢ — #) /b;

8%(¢t,q), forl-b<t<1lwithqg=(1-1¢)/band
for 7 — b <t <7 with q = (7 — t) /b.

Even for adjusted estimators §*(-, #), sup norm convergence (4.1) does not
hold, due to asymptotically nonvanishing biases when estimating at points
between 7 and 7. However, rates of uniform consistency with respect to L,
norms might be of interest since the convergence # — 7 is relatively fast for
change-point estimators 7 (2.4).

To obtain direct global rates of convergence, consider the following addi-
tional assumptions on the errors in model (M1) and on the bandwidths:

(M3) There exists s > 2 such that E(le; ,I°) < «.
liminfnd**1*% >0, (nb%*!)/logn — o,
(B2) n—oo
(nbv+1)/(n1/(s—8) log n) — oo,

as n — o, where s is as in (M3) and § is any positive number 0 < § < s.
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LEmMa 4.1. Under (M1)-(M3), (B1), (B2) and (K1)-(K4), it holds that
(4.4) 1$ — 7| = Op([bzy—l/n]1/2(#+u)).

The proof is in Section 7. For v =0, p =1, |# — 7l = 0,(b/n]"/?) and
observing (B1) and (B2), assuming (M3) for s > s, > 2 and choosing b ~
(log n/n)n'/%, the rate becomes n~[n!/*0log n]/2. If all moments of the
errors exist, this rate gets arbitrarily close to n~'log n]'/2.

THEOREM 4.1. Assume (M1)-(M3), (B1) and (B2) for bandwidths by, b.

(a) Assume the boundary kernels K¢(-, q) in (4.2) satisfy (K5) and (K6),
and the kernels K¢(-,0) = K satisfy (K1)-(K4). If b, is used for the
estimation of 7 by % (2.4) and b is used for g®(-,%) (4.3), b, < b, then it holds
forp > 1:

[129(x,#) - g*X(x)f dx
0

(4.5) _0 b%l»‘-—l 1/2(pn+v)) b%p,—l p/@p+v) ].Og n p/2
—Vp n + nb2(u+ IXu+v) nb2u+1
+ O([6*7]).

B Ifv=0,u=11<p<2+1/k, s>s,=max{(k +1/2)/Qk + 1 —
kp), 2} and the bandwidths are chosen according to b, ~ (log n/n)n'/*0, b ~
[log n/n]t/@*+D then

(4.6) follg(x, 7) — g(x)|‘" dx = Op([log n/n]kp/(2k+1)).

A key step in the proof is:
LEMMA 4.2,
1 R P
[18° (%) — g”(x)l d
(4.7) = - r0,(1) + I8 = 710,(677Y)]”

logn 1772 _
0[] | + ottmr )

Auxiliary results and proofs for this lemma and for Theorem 4.1 are in
Section 7. It is of interest to compare the modified estimator g(-,#) with
estimated change-point with the modified estimator Z(-, ) when the location
of the change-point is known. Let » = 0, u = 1. If the change-point location is
known, minimizing the resulting terms in (4.7) corresponds exactly to the
same minimization problem as the one leading to (4.6), so that under the
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assumptions of Theorem 4.1(b),
1 ~
(4.8) j;) |§(x,7) —g(x)f dx = OP([log n/n]kp/(2k+1));

that is, the rate is the same as for 2(-, 7).

Another interesting comparison can be made between modified estimators
&(-,7), g(-,7) (or without change-point) and unmodified estimators £(-) (2.1).
For the latter, one can show by the same arguments as in the proof of Lemma
4.2, that

49)  [18(x) - &(x)[ dx = O,([log n/nb]*"?) + O(b),

yielding the optimizing bandwidth sequence b ~ [log n/n1?/?*2, and under
s>p+ 2,

(4.10) [12(z) - 8(x)F dx = O,([log n/n ] *?).

This rate is poor as compared to (4.6) since in (4.9) the usual bias expansion
cannot be carried out.

The practical procedure of estimating = by 7 (2.4) with bandwidth b, in a
first step, followed by applying the accordingly modified kernel estimator
&(x,7), with bandwidth b, provides an efficient two-step procedure for the
estimation of curves with discontinuities in the sense that the resulting rate of
convergence remains the same as when 7 is known.

5. Application and discussion. This section serves to illustrate the
methods with data on the annual volume of the Nile river from 1871 to 1970.
These data and a discussion of various approaches to parametric change-point
modelling are given in Cobb (1978). The question is whether and when there
occurred an abrupt change in rainfall activity near the turn of the last century.
Cobb suggests that a change occurs in the year 1898. The data are displayed in
Figure 1.

Assume that the model (M1), (M2) applies to these data. The unmodified
kernel estimate 2(-) (2.1) (choosing » = 0 and modifications at the boundaries,
however not at a possible change-point) is shown in Figure 2. The bandwidth
was determined visually and chosen as b = 10 years. The kernel used was
K(x) = 3(1 — x2)/4, a kernel corresponding to parameters v = 0,k = 2, o = 1
and ¢ = 1 [compare Epanechnikov (1969)].

There is a hint of a relatively strong decline near 1900, but if there was a
change-point, it is smoothed out. The evidence gets a little stronger by looking
at the first derivative 2(-), estimated also with unmodified kernels (Figure
3), b =10 and K®(x) = 15(x — x3)/4. This derivative estimate seems to
corroborate that a change occurs shortly before 1900.

Auxiliary one-sided curve estimates 2,, §_ as defined in (2.2), employing
one-sided kernels K_(x) = 6(1 — x)(1 — 2x), 0 < x < 1, are shown in Figure
4, also with bandwidth 4 = 10.
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Fic. 1. Annual volume of the Nile river (108 m®) between 1871 and 1970.
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Fi6. 2. Unmodified kernel estimate for the Nile data with bandwidth b = 10.
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. The estimator 7 for 7 (2.4) is found as the minimizer of the function
A(t) = g,(x) — g_(x), since in this case the jump is from higher to lower
levels. This function is shown in Figure 5. In practice, the set @ introduced in
the definition (2.4) of 7 can be chosen as the interval from the left endpoint of
the data plus bandwidth to the right endpoint of the data minus bandwidth.
For the current example, this interval is [1881, 1960].

A clear minimizer stands out at 7 = 1898, with the associated jump size
A = —351. For a = 0.05, one obtains the approximate 100(1 — a)% confidence
intervals 1898 + 1.04, for 7 using & = 110.5, and —351 + 212 for A. Finally,
the modified curve estimator & (4.3), which is adapted to the estimated
change-point 7, is displayed in Figure 6.

A critical issue for applications is the choice of an appropriate bandwidth.
While this problem in its bearing on change-point estimators (2.4) is not
investigated here, the following points should be considered: Choice of a too
small bandwidth will lead to spurious change-point locations, while choice of a
too large bandwidth will be conservative in the sense that change-points with
relatively small jump sizes will not be picked up. According to Theorem 4.1, it
is advisable to choose a relatively small bandwidth for estimating change-point
and jump size as compared to the bandwidth chosen for estimating the curve
with adapted estimators g. One possibility is to adopt for v =0, u =1, £ = 2
and s, = o the ratio b,/b ~ (log n/n)*® according to Theorem 4.1(b) as a
guideline.

In order to obtain bandwidths for the “smooth” parts of the curve by global
criteria like cross-validation or pilot estimation methods [compare Miiller
(1988), Chapter 7], one should either cut out the region [7 — b, 7 + b], where 7
is a preliminary change-point estimator, or adjust to the preliminary change-
point 7 according to (4.3), when calculating the global error estimate, the
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Fi6. 6. Modified kernel estimator g, adapted to the estimated change-point.

minimizer of which is the chosen bandwidth. Failure to carry out these
adjustments can lead to severely undersmoothing bandwidth choices as has
been demonstrated for the case of known endpoints (Miiller, 1991). It is also
possible and indeed might be advisable to carry out separate bandwidth choices
for the intervals separated by change-points.

There exist various applications of the proposed change-point estimators to
nonparametric curve estimation. One is the segmentation of curves according
to the locations of change-points in the curve itself or in higher derivatives.
Often one might be able to approximate the curve in between change-points by
a polynomial. Consider, for instance, polynomials of degree & between change-
points of the kth derivative which might be assumed at all points = where

A,(7) > A, A, being a constant provided by the user. If these polynomials are
fitted by least squares, subject to the constraint that they join at the change-
point locations for the kth derivative in such a way that (¢ — 1) continuous
derivatives exist, then this provides a method for choosing the number and
location of knots for curve fitting by variable knot regression splines.

In many finite sample situations it is not clear whether a change-point
model (M2) with a discontinuity (model I) applies or whether the change-point
is rather a very rapid but smooth transition; that is, corresponds to a point of
most rapid change (model II). Consider v = 0, & = 1. In model II the change-
point corresponds to § = inf{x € [0, 1]: Ig‘l)(x)l = sup,|g™(y)l} and it can be
estimated by 6 = inf{x € [0, 1]: [8P(x)| = sup,|2(y)l}. In analogy to results
of Miiller and Wang (1990), one can show that 16— 6l =0 ,(1/nb®), which is
slower than the rate |7 — 7| = 0,(b/n) obtained for model I Compare Figures
3 and 5 for these two approaches
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6. Auxiliary results and proofs for Section 3. The following sequence
of lemmas leads to the proof of Theorem 3.1.

LEMMA 6.1. “
(6.1) E({(2))=—-A z"*"“K(*‘*”)(O)/(p, + v+ 1)+ 0(1).

ProoF. Observe that, by approximating sums through integrals, analogous
to formula (4.7) in Miiller (1988),

1
E(8Y(7 + b)) = ?ng’)(v)g(ﬂr + yb — vb) dv + O([nb"]—l).
Therefore, defining
1
5,(y) = ﬁj‘ (K®(v) — K(v))g(r + yb — vb) dv,
-1

we obtain
(6.2) E(5,() = 8,(y) + O([nb*]7").

Observing (M2), (2.7), evenness of k£ and (K3), employing a Taylor expansion
and mean values &, = 7 + £(y — V)b, &y, = T + £(y — V)b,

1
8,(3) = 3 [(KP(0) = K(0))[8(7 + (¥ = )8) (1> + Luzy)] &

k+v— _ J
K IL}.l_)_bJ (J)(‘T)
J!

- = (K@) - K“’(v))[

(y — v)k+v k+v (k+v)
(k + V)' b g (gln) l(vsy)
kE+v—1 (y_ )J (y_v)k+u
~ Ty (J) W 7 pktvg(kty) 1
+( _,20 .]~ b ( )+ (k+V)! b 8- (§2n) {v>y} dl)

- Vl!A".[(KSfV)(v) - K(—V)(U))(y - v)vl(vsy) dv + Q.(y),
where
[l’ (K(")(v) K(v)(v))(y _ U)k+v
X (g(k +u)( fln) g(k+V)(T))1(vsy) dU

+ (BP(@) - EO@)(r - 0)*"

@n(y) = (k+ ),

X (84 (E3n) — £(7)) Lm0
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Observe that
(6.3) R, (y) =|Q.(y) — Q.(0)| = o(d*y),

since, for instance, for the difference of the first terms on the r.h.s. of @,, for
y>0,

ffl(Kﬁ”’(v) — K(0))(—0)* (¥ (7 + £,(—v)b) — g¢+(7)) dv

= [ (K@ =) - K9 =)y - )"

X (g¢+ " (£1n) — (7)) dv,
and analogous calculations for y < 0 and for the difference of the second terms
on the r.h.s. of @, yield (6.3). Observing, for y > 0, under (K3),

1 koLt , vt -v)’
V—![O‘VK@(U)(y —v) dv = [Oy L K00 + K0 Ly—v!ldv
yu+v+1
= m(xww(m +0(y)), asy >0,
and analogously, for y < 0,
1 0 , _y[L+V+1
S OO =0 do = g (KET(0) + 07), asy =0,

one obtains, noting that K®***X0) = (—1)***K{***(0) and that (u + v) is
odd,

—A K(_p’+”) 0 p+rv+1
(64) 8,(9) = 3.0) = — V(+)f)!

as y — 0. The result follows. O

(1+0(y)) + o(b%),

LEMMA 6.2.
cov(L,(21), 4a(22))

6.5
¢ = 22,2,0% [K@*D(0)* dv + O(1/(nb®*1) /).

PrOOF. Abbreviate a=2v +1, B=(u +v+ 1)/(2u +v)) and y=
1/(2(n + v)). Observe

{n(2) — E(£,(2))
(nb*)? Zn‘. f [(K(:)( T+ (2b)/(nb%)” — v ) _ K(:)(T - ))

v+1
b i=1"8i-1 b

(S

(6.6)

) T+ (2b)/(nb%)” — v ,
—(K<_>( ) )—K<_>( - ))]dvsi.

XY
<
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This implies
cov(Z£,(21), ¢n(22))
_()*

b2 o

XY [f [KSD(T * zlb/(b”ba)y v ) - K<:>(” . )] dv
i=1]"Si-1

a\Y _ _
KS_V)(T +zzb/(bnb ) v) B KS:)(T . v)] o

Si
xJ

Si-1

a\? _ 0 _
_fs.» KSJ”(T + 2,b/(nb®) v) _KY)(T v)] o
Si-1 b b

«y? _ _
K(_"’(T+zzb/(bnb ) v) —K(_”)(Tbv)]dv

(67) xfsi

Si-1

_j.s,. [KS:)(T + 2,b/(nb%)” — v) B KS:)(T ; v )} o

85 b
a\?Y _ _
y s; K T+ 2,b/(nb%) v _K(V)(T v) o
8;_1 B b B b
s; T+ 2,b/(nb%) —v T—UV
) — K™
K ( 5 K ( b ) w
a\?Y
s; o T+ 25b/(nb*)" —v B (V)(*r—v)
x[SH K¢ p KO\ ——||dv|.

By the assumptions, observing the compactness of supports,

) T+ 2b/(nb*) —v ATV
K(*)( b _K(i)( b )
‘T—v) z
b ] (nb%)”

(68) = Kg“)(

1

+o ( (nb"‘)27 ) l(K(;:'+l)((T—v)/b)$ 0} UK D((r+2b/(nb*)?—v)/b)+ 0}

 Inserting this into (6.7) and observing

(6~9) Z l(KQ“)«r—v)/b)seO)U(Ks:“)((f+zb/(nb“)7—u)/b)ae0) = 0( nb),
i=1
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all the O(-) terms combined result in a summary O(-) term of O(1/(nb*)").
Observing 28 — 2y = 1 and combining

n S; T—U 8; T—Uu
£ [ R o e

i=1"%i-1 ‘ i-1 b
b 1
= ;st_:“)(v)zdv + O(F),
noos; C+Dr— gy s; T—u
6.1 (%) duf” o (Z=%) 0
( ) iz=:1 j;i—li b u/;i—l N b “

b 1
= ;[KS_"+1)(U)K(_V+1)(U) dv + 0(;5)

o[

with (6.7), where the differences are substituted by the leading terms of (6.8),
completes the proof. O

LeEmMMA 6.3. For fixed z, z € [-M, M],
{n(2) — E(L(2)) =5 ./V(O,Zz%sz(_”“)(v)z dv).

Proor. Since {,(2) — E({,(2)) = L?_,W,,¢;, with

in%i

(nb*)? s, [T+ (20)/(nb*)T — v STV
‘m=7ﬁrf[ﬁ9( b )_Kp(b))

, ~r+(zb)/(nb"‘)7—v AT—V
—(K(_)( b )—K(_’( 5 )”dv,

it follows from the Lindeberg condition for the central limit theorem that
asymptotic normality is implied by max, _; _,|W,,,|/(EW;2)"2 > 0 as n —» =,
The result follows by combining (6.5), (6.6) and (6.8). O

LEMMA 6.4. For fixed 2, 2,,...,2;, 2; €[—-M, M],
(6.11) ({u(21) — E(Ln(21))s-- -5 Ga(21) — E(Ln(21))) 2o #(0, A),
where A = (a;;),.; j -, and a;; = 22;2,0 K (v)* dv.

LEMMA 6.5. The sequence {,(-) = {,(-) — E({,(+)) is tight.

PROOF. We show that there exists a constant ¢ > 0 such that

- - 2
(6.12) E({(z1) = {u(22)) < (21— 25)°
for n sufficiently large. According to Billingsley (1968), the moment condition
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(6.12) implies tightness of {,. Using the same notation as in the proof of
Lemma 6.2 and defining

A,(2) = {u < [0,1]: K(:L”(T + zb/(:b“)‘f - u) . O},

the Lipschitz continuity of K implies
- - 2
E(fn(zl) - n(ZZ))
(nb)™ & [ [|zl 2|

2
= b2v+2 Z b"‘)y ( AL (21)U A (29) + lA_(zl)UA_(22)) du]

<clz - zz|

since 28 — 2y = 1 and
s

ProOF OF THEOREM 3.1. Weak convergence of processes {, follows now
from Theorems 8.1 and 12.3 of Billingsley, applying Lemmas 6.4 and 6.5. The
moment structure of the limit process { is a consequence of Lemmas 6.1 and
6.2. O

2
b
(]-A +(ZDUAL(2)UA_(z)UA_| (zz)) du] = 0(;) o

The following lemma is used in the proof of Corollary 3.2.
LEMMA 6.6.

(nb2v+1)1/2(A(V)(T) — Av) -4 ./V(O, 20’2/K(_V)(U)2 dv)

Proor. From (4.15) and (4.16) in Miiller (1988),
(b1 (89(r) - E(89(7))) ~o ///(0,02 J Kgp(v)zdu),
and from (6.1) it follows by Taylor expansions that

(nb> 1) X (E(89(7)) - E(89(7))) =5 0
Therefore, the independence of 2¢(7), £*’(7) implies the result. O

7. Auxiliary results and proofs for Section 4.

. Proor oF LEMMA 4.1. The proof uses similar arguments as Parzen (1962)
and Miiller (1985) for the estimation of modes (respectively peaks). The
assumptions imply, according to Lemma 5.2, Theorem 5.1 and Remark (ii) of
Miiller and Stadtmiiller (1987) [respectively, Theorem 11.2 and Corollary 11.2



CHANGE-POINTS IN NONPARAMETRIC REGRESSION 757

in Miiller (1988)] that
sup |A”(x) — E(A¥(x))| = 0,(1),
Q

where @ is defined in (2.4). Further,
sup |E([&"”(x))| =0(1)

Q\[r—b,7+b]

and
sup |E(A(")(x))| ->A,>0
[r—b,7+b]
imply that
(7.1) # — 7| = 0,(b).
It is therefore sufficient to consider estimators 7 = 7 + $b, with
(7.2) 9 = argsup|5,(y)|,
-1l<y<1

where §,, 6, are defined in Section 3.
Analogous to Lemma 6.6, observing (6.2), one can show

(7.3) (b *1)*(89(0) — 85)(0)) = 0,(1),
for 0 <j <pu + v + 1. Observe
3D(0) — 5P(0) = 5D(9) — 8P(0)

p+rv—1
= X [89*D(0) — 89*D(0)]57 /4!
j=1
p+rv—1
+ )Y, 8YTD(0)9 /i + 8FTID(E)IH T/ ( + v) L
Jj=1

Observe now 8Y*"(0) —» 0 according to (64), 0 <j<u +v—1, and
s Hv+I(¢) - ¢ # 0, which follows from §****1(0) - ¢ +# 0 and the uniform

convergences
sup |<§,(,"+"+1)(y) - E(5§“+"+1)(y))| =0,(1)
lyl<1

and ,
sup | E(8%+* () - 84+ *)()| = o(1),
lyl<1

where the former follows from the above mentioned results in Miiller and
Stadtmiiller (1987) with some minor modifications. Combining these consider-
ations, one obtains (nb? *1)!/29#** = 0 (1), whence the result follows. O

Considering now the proofs of Theorem 4.1 and of Lemma 4.2, let A =
[0, min(7, #)] U [max(7, %), 1], let b,,b be as in Theorem 4.1 and Lemma 4.2
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and define weight functions W, implicitly by
n n
g‘(l’)(t’ 7) = Eyi“’i(t’T)’ g-(V)(t’$) = Zyivvi(a:‘:)'
i=1 i=1
Decompose the deviation between *’ and g as follows:

sup|g®(¢, %) — g(¢)|
teA
< sup|L W,(¢,7)e;| + sup|Z(W;(¢,%) — Wi(¢,7))e;]
teA teA
(7.4) + sup|Z(W(2,7) — Wi(¢,7))&(2,)]
teA

+ f:£|z(m(t,f))g(t,~) - &)

=I+1II+1II+1V.
The following sequence of lemmas provides bounds for these terms.

LEMMA 7.1.
(7.5) sup | Wi(t,#) — Wi(t,7)| = I# — rlO([n**2] ).
teA

Proor. Consider the case 0 < # < min(7, 7). The other case is analogous.
Observing (K5) and that for min|? — 7| < b, ¢ < min(7, #), ¢ + b > min(r, 7),
the employed kernel for both W(¢,7) and W(¢,7) can be represented as
K®)X(-, q) for possibly different q(¢,7), q(¢,7), 0 < ¢ < 1, one obtains

sup  |W(¢,7) — Wi(¢,7)]
0<t¢<min(t, )
< sup |in(t»$) - Wi(t>“')|1(|+—f|>b)
0<t<min(7, %)
+ sup |Wi(t’$) - Wi(t”")ll(ﬁ-—ﬂsb)

0<t<min(r, %)

A
T

-7 |# = 7|
l(l(‘f"")/b|>1) b

b
K(")t_u . é"—tl
— b ,nun(_—z__’

1 s
K(”)t_u [Tt 1
"( b ’m‘“( b )

<0([no"**17)

+ sup

0<t<min(r,#) Si-1

bv+1

du,

whence (7.5) follows. O

LEMMA 7.2

(16)  sup | X Wit,7)e(t) — g(t)| = O(b* + [n6"]7Y).

0<t<l|;=1
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Proor. First obtain corresponding pointwise results for fixed ¢ by means
of the usual integral approximation and Taylor expansion. These involve
bounds on the Lipschitz continuity of K¢X(+,q), ¢ fixed, and on |K Ox, ),
|[K$(x, ¢)x* dx|. According to (K5), these bounds are uniform in ¢. Since
g***)(-) is also uniformly bounded,(7.6) follows. O

LEMMA 7.3.

¥ W(t, p)e;| = Oy([tog n/nb**']"").

i=1

(7.7) sup sup
0<p<10x<t<1

Proor. One checks that the assumptions of appropriate extensions of
Theorem 5.1A in Miiller and Stadtmiiller (1987) for derivatives are satisfied.
Following through the proof, one finds that bounds on & W2(¢, 1), IW(¢, )| are
used which remain unaltered due to (K5). The bound on the r.h.s. is uniform
in p, again due to (K5), which implies (7.7). O

ProoF oF LEMMA 4.2. Observe

sup |g¥(t,#)| <O(1) + sup sup |ZW(Z p)el,

0<t<1 0<p<10<t<1

and therefore, by Lemma 7.3, sup, ., 11, #)| = 0,(1). This implies
(1.8) max(f,‘f')lg-.(V)(x, #) — g®(x) |" dx = 0,(1)I% — .
min(r, %)

Let H(r,#)={t;, 1<i<n: |t;—7l<b or |t;— 7 <b}. Observe that
the cardinality of H(r,#) is O(nb), uniformly in 7,7. Then according to
Lemma 7.1,

supZ| Wi(¢,7) — Wi(t,7)[[&(%)]

teA
(79) < 1# = 710([nb***1)E|£(2) [, e e o
= I# - 7lo([6"*117).
Observing
sup|E (Wi(t,#) = Wi(t,7))e;| < 2 sup sup [EWi(¢,p)eil,
teA 0<p<l0st<1
the result (4.7) follows from (7.8), the c, inequality, (7.4), (7.9), (7.7) and (7.6).

(]

ProoF oF THEOREM 4.1. (a) Observing [nb”]~! = O(llog n/nb®*''/?) and
combining Lemmas 4.2 and 4.5, we obtain (4.5).
(b) is a direct consequence. O
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