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A SIMPLE LEMMA ON GREEDY APPROXIMATION IN
HILBERT SPACE AND CONVERGENCE RATES FOR
PROJECTION PURSUIT REGRESSION AND
NEURAL NETWORK TRAINING!

By LeE K. JONES
University of Massachusetts, Lowell

A general convergence criterion for certain iterative sequences in
Hilbert space is presented. For an important subclass of these sequences,
estimates of the rate of convergence are given. Under very mild assump-
tions these results establish an O(1/ yn ) nonsampling convergence rate for
projection pursuit regression and neural network training; where n repre-
sents the number of ridge functions, neurons or coefficients in a greedy
basis expansion.

1. Introduction. We consider an iterative sequence f, in a real Hilbert

space H, approximating some f where the iterations involve computations
with restrictive subsets of H.

ExampLE. Let f= E(Y|X) be a standard regression function with Y a
one-dimensional random variable, let P be the probability measure for the
d-dimensional random variable X and let || ||p be the norm in H = L,(P).
Assuming finite | fllp and sufficient regularity for minima to exist,
Friedman-Stuetzle projection pursuit regression (PPR) starts with f, = 0 and
at stage n + 1 chooses a unit vector ¢, and a function g, such that

(D) farr=Fat 8ura(@hax) and [ £y = Fp is minimum.

It is shown in [2] that, in fact, g,,(2) = E(Y —f,la’,,,X = 2). In the
practical sampling form, one has noisy values of f (values of Y) on a finite set.
At stage n + 1 (using a given statistical routine for each a and a numerical
minimization algorithm over a) one finds the best fit of the form of a ridge
function, g, (a’x), to the noisy values of f — f, at these points. In [3lthis is
done with a sophisticated nonlinear smoothing routine. For this and other
examples see [3] and [5]. We discuss only the nonsampling theory in which f is
known and convenient approximations are sought.

Norm convergence of the Friedman-Stuetzle procedure was shown in [6].
But examination of the proof indicates that the convergence may be very slow.
We show that this convergence can be accelerated by changing f,,; in (1) to
be an optimal convex combination of f, and a ridge function. (Since this only
increases by 1 the dimension of the optimization space, all algorithms treated
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henceforth will optimize over such convex combinations.) Also, one may
impose restrictions on the choice of ridge functions available at each iteration
and discuss how these affect convergence.

For instance, only ridge functions with g, of the form g,(s) = c,h(s — t,)
may be used as in the case of neural networks with a single hidden layer and
fixed activation function k. Or, at each stage, the approximation increments
may be restricted to a given set of basis functions. Our results will then
provide convergence rates in terms of the number of coefficients in an iterative
basis expansion.

The emphasis throughout is on improving the approximation in a single
step using members of a restricted class in a greedy fashion. This is important
in high-dimensional applications where it is computationally prohibitive to
optimize simultaneously over several ridge directions. For convergence rates
we also make regularity assumptions on f (which are reasonable for applica-
tions). There are more extensive results on rates in [2] for d = 2, P = standard
Gaussian and simultaneous optimization over equispaced ridge directions.

To examine these issues, we state and prove an abstract lemma about the
convergence of f, (to f) when the degree of approximation of f,,; (to f) is
related to the degree of approximation of f, in terms of a set of elements &,
which plays the abstract role of the ridge functions. For a variety of cases
including projection pursuit regression under very mild assumptions, results
on the rate of convergence will also be derived.

2. Preliminaries. Let H be a real Hilbert space with norm II'Il. Let
f., f € H. We are further given a sequence of subsets of H, &,, which we call
the projectors at stage n. Set e, = || f, — f|l and finally let

(2) ro= inf [(1-a)f, +a—F.
42,

DEFINITION.  f, is called relaxed with respect to f if e,,, <7,. f, is
called asymptotically relaxed with respect to f if lim sup(e,,, — r,) < 0.

Clearly any convergent sequence is asymptotically relaxed. A relaxed variant
of PPR (an algorithm leading to a relaxed sequence) is to minimize (assuming
sufficient regularity conditions) I|(1 — &) f, + ag(a’x) — fllp over 0 <a <1
and a, g as before. The (n + 1)st estimate is then

(3) fn+1 = (l_an)fn+angn+1(atn+1x)'

Here &, is the set of all ridge functions and the sequence f, is clearly
relaxed. Since the ridge functions are closed under scalar multiplication, in the
practical algorithm, one finds the best fit of form g(a’x) to noisy values of
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f— (1 - a)f, for given a, a« and then optimizes over a, a. Note again that this
procedure increases the dimension of the optimization domain by only 1 but
will have the convergence rates given below. Note also that the sequence will
be relaxed if we use a full linear version, that is, f,,; is an optimal linear
combination of f,,..., f, and a ridge function. Hence our convergence results
will apply to this situation. Finally, for an arbitrary sequence %,, the analo-
gous version of (3) will be called a relaxed algorithm.

3. Convergence results.

LEMMA. Suppose f is in the closure of US _, convex hull (N, . ,%,).
Then f, is asymptotically relaxed with respect to fif and only if f, > f.

Before proving the lemma we note that, in the relaxed PPR case, f may be
approximated to within ¢ by a finite linear combination of elements which are
in every &, (using Fourier analysis). Since the &, are closed under scalar
multiplication, this combination may be assumed to be convex. Hence the
hypothesis of the lemma is satisfied in this case.

PrOOF OF LEMMA. It is enough to show convergence under the assumption

of asymptotic relaxation: Suppose f, + f; then limsupl| f,, —fll=p > 0. Also
p < @ since r,, e, and hence | f,|l are bounded. Choose a subsequence n; such
that || f,. — f Il — p and consider the subsequence m; = n; — 1. Now

limsup | £, — f | < limsup || £, = F[| =
Also
timsup (|| £, = 7 | = fin, = F[|) = timsup (| fner = F || = || £, = F )

< lim‘sup(emﬂL1 —r,) <0
13

by asymptotic relaxation. This implies lim inf;|| f,,. — fIl > p. Hence, | f,,, — fll
— p. The rest of the proof follows by the followmg argument: There is an N
such that we can choose ¢,,...,¢, € N, yP, with [E{B,(¢; -Pll<p/2
for some convex weights B;,...,B,. Let M = max; |l¢; — fll. Clearly M > p,
for otherwise if M < p, we have limsupr, <M and lim supe,,; <M contra-
dicting e, — p. Now, given i, there ex1sts a ¢; such that (¢; — f,u D <p/2,
where u, is a unit vector in the direction of fm f; for otherwise IZ{B;(¢; —

Al = ZLB,(¢, fiu) =p/2.
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Using asymptotic relaxation and convex weights @, 1 — a we have:

lim sup | .. = 7] = lim sup | Frer = 7
< lim.sup“'(l" - a)(fm,. - f) + “(d’ji - f)”
= lim sup ((1 - a)2|| s "f”z + a2" b, — f"2

+2a(1 — a)(d)ji - f’ fm,. - f))l/z

< lim sup ((1 - a)2|| fm, = F ||2 + a2M?
; .

va(1-ap| o, F])

=((1-a)p®+ a2M2)1/2.
By minimizing over 0 < @ < 1, this bound can be made (set a = p%2/2M?)
equal to p(1 — (p2/4M?))'/2 which is less than p, a clear contradiction. O

Using the idea of the proof, we may get bounds on the rate of convergence
in the relaxed case under the additional assumption that f lies in the closure
of the convex hull of some collection ¢ of elements of H, where ||g|l < M’ for
all g € & and F< &, for every n. As we show in Section 4, this is the case

for relaxed PPR under mild assumptions on f and P. We now derive the
bounds:

THEOREM. Under the assumptions of the preceding paragraph, the approx-
imation error is O(1/ Vn).

Proor. First for any & > 0, since we may approximate f arbitrarily closely
by a convex combinations of elements of -, we may find ¢,,...,¢, € & such
that

fn—l_f7zai¢i—f‘ <9d

1

with «; > 0, X{a; = 1. This we rewrite as
s
Zai(fn—l—f7¢i_f) <é.
1

Clearly at least one of the inner products in this sum is less than 8. Therefore,
for any 6 > 0, we have shown the existence of g € ¢ such that (f,_; —f,
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g — f) < 6. Hence
et=,inf (1= a)(fus = F) +ale - )

gesd
=1\ 2
inf ((1-a)’e2_, + % (M + .
< of ((1-a)e2, +a?(M +|F]))
Setting
2
M=M+|f]| and a=—21
el |+ M?
we get after some calculation
_ M2\
(4) e <M?*1+ — ,
€n-1
which yields
1 1 1 2 1 n 1
— > == + > == + > 2=+ —
e2 " M? el , T M2 e2, M? e
so that
_ M2\
(5) e2<M?*n+ —2))
€o

which demonstrates that the approximation error after n iterations is

0(1/vVn). O

Note that in the asymptotically relaxed case, the O(1/ Vn ) rate will hold if
e,+1 — I, converges to O sufficiently fast. Also it is immediate that, in the
relaxed PPR case, this rate holds when f is itself a finite ridge expansion.

4. Applications to regression and neural networks. Suppose that in
the relaxed PPR example, both f and its d-dimensional Fourier transform f,
have finite L,(R?) norm, | |l;. Then, if P is absolutely continuous with
respect to Lebesgue measure, f can be represented (via the Fourier inversion
theorem) in L,(P) as

a &
- w w
- Fl, o)
rFL T em fw)
Hence we may apply (5) where ¢ consists of those ridge functions which are
the real part expressions in the above integral. We see immediately that
M = (Iflli/@m)*) + Ifllp and ey = || fllp, both of which could be estimated
from data in practical applications. Alternatively, making &, = 4 yields a
greedy trigonometric expansion with n coefficients for which (5) holds.
A similar argument holds if f is periodic with period 27 in each variable

and has absolutely summable discrete Fourier transform. In particular, con-
sider the family of f; = L%, _,(1/m(n m)*)cos(Ba’,x); B = 1,2,... for which

ol
le“"x do.

;
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the a,, have positive integral components and are nonparallel. Let P be the
uniform measure on a cube with sides of length 27r. Now if we let 8 — , then
the first ridge direction of PPR approaches a,. Iterating this argument we
may, by making B sufficiently large, force the approximation error after n
stages of relaxed PPR to be arbitrarily close to

® e 1
[ i ol
n+1 m*(Inm) Vn (Inn)

Since the M and e, in (5) are the same for all f'B, (5) is a best possible
bound based on the number n of ridge functions in relaxed PPR (t6 within a
logarithmic factor).

Finally we give some applications to neural networks: A neural network
with a single hidden layer with n neurons provides approximation to f of the
form (#)Z7_,c;h(a’x —t;) as output when x is the network input. The
activation function A is fixed and the network is trained by selecting the
parameters c;, a,,¢;, n. Setting &, = {ch(a’x — 1); ¢, a, t}, we may train with
the relaxed algorithm. If the forms (*) are dense in L,(P) (which has been
demonstrated for squashing 4 in [4] and continuous sigmoidal % in [1]), then
by the lemma the network outputs converge to f. Also, if f is of the form (*)
(with n possibly infinite and ~» bounded) and the |c;| are summable, then the
theorem implies that this convergence is O(1/ Vn ). (This was noted by A. R.
Barron.)
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