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OVERWEIGHT TAILS ARE INEFFICIENT"

By R. A. LOCKHART

Simon Fraser University

Test statistics which are almost determined by o(n) tail order statistics
are shown to provide tests of asymptotic relative efficiency 0 against the
usual type of contiguous alternative. The result is applied to several
goodness-of-fit tests: the variance weighted Kolmogorov—Smirnov statistic,

" the Kolmogorov-Smirnov statistic in the stabilized probability plot and the
correlation coefficient in a @-@ plot for a variety of distributions with
exponential tails. :

Basic results. Suppose U; < --- < U, are the order statistics for a
sample of size n from a continuous distribution on the unit interval. Good-
ness-of-fit tests of the hypothesis that this distribution is the uniform distribu-
tion, F(¢) =t¢, are often based on a comparison of the U’s with values
predicted by the null hypothesis. Examples include tests based on the empiri-
cal process, n'/?(F (t) — F(t)), where F, is the empirical distribution of the
U’s, and tests based on the linearity of a @—-@Q plot of the U'’s.

Tail order statistics, U;, with i/n near 0 or 1 are less variable than central
order statistics with i /n near 1/2. A number of goodness-of-fit tests compen-
sate for this reduced variability by putting extra weight on the tails. This tactic
often produces more powerful tests. For example, in a wide range of Monte
Carlo studies, Stephens (1986a) has shown that the Cramér-von Mises test is
generally less powerful than the Anderson—Darling test (though there are, of
course, many specific alternatives for which this is not true). It is possible to
apply too much weight to the tails, however. In this article we establish that
any statistic which is essentially determined by too few (smaller order than n)
tail order statistics has 0 asymptotic efficiency relative to standard tests
against any sequence of contiguous alternatives of the usual type. We show
that our results apply to the variance weighted Kolmogorov—-Smirnov statistic
and to a number of tests based on the correlation coefficient in the @-@Q plot.
We begin in the context of the simple null hypothesis given above and then
indicate that the result applies rather broadly.

A sequence of events of the form (U,,...,U,,U,_;,...,U,) € C is a tail
sequence if the sequence & = k(n) satisfies 2/n — 0. (Throughout this article
quantities designated by Roman letters depend on n and the dependence is
suppressed. Quantities designated by Greek letters do not depend on n.) Let G
be a sequence of alternatives contiguous to F. Let r = dG/dF be the likeli-
hood ratio, that is, the Radon-Nikodym derivative of G relative to F which
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we assume to exist. Set h = n'/%(r — 1). Let P; denote the distribution of
w,,...,U,U0,_,...,U,) under G and similarly for F.

THEOREM 1. Assume that the sequence h converges to some m in Ly[0,1]. If
C is a tail sequence, then

|P4(C) — Po(C)| - 0.

Suppose T = T(U,,...,U,) is some sequence of statistics converging in
distribution under the null hypothesis to some random variable, say 7.

COROLLARY 1. Assume that the sequernce h converges to some n in L,[0,1].
If there is a sequence of statistics T*(Uy,...,U,, U, _ Rooeos U,) with k = o(n)
and |T — T*| — 0 in probability under F, then T — 7 in distribution under G.

The proofs rely on the following modification of Le Cam’s third lemma; see
Hajek and Sidak (1967), page 208ff.

LEMMA. Suppose Q is a sequence of measures contiguous to P. If T is a
sequence of statistics such that (log dQ /dP, T) converges in distribution under
P to (A, 7) with A and 7 independent, then T converges in distribution to 7
under Q.

The theorem says that the power of any sequence of tests whose critical
regions are a tail sequence will converge to the level of that test. The corollary
says that T does not provide a good test of the hypothesis. Typically, such
tests as the Kolmogorov—Smirnov, Cramér-von Mises or Anderson-Darling
will have limiting power greater than their level along the sequence of alterna-
tives described; this limiting power tends to 1 as the norm of n tends to «.

The conclusion may be rephrased to say that the asymptotic efficiency of
tests based on T is 0 relative to the likelihood ratio test, or to any other test
with nonzero asymptotic efficiency relative to the likelihood test.

REMARK. The hypothesis that A~ > n in L, may be replaced in both the
theorem and corollary by the requirement that all but finitely many of the h
belong to some fixed compact subset ¢ of L,. Any counterexample sequence to
this apparently stronger conclusion would contain an L,-convergent subse-
quence which would provide a counterexample to the theorem or corollary.
Similarly, for any fixed sequence k = k(n), the theorem implies sup¢|Pg(C) —
Pi(C)| — 0.

REMARK. The hypothesis that the sequence T converges in distribution
may be replaced in the corollary by the requirement that T' be tight under F.
The conclusion must then be stated in terms of distance between the distribu-
tions of T under G and F, where distance is measured by any complete metric
for convergence in distribution. T may take values in any separable metric
space so that the result applies to functional central limit theorems.
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ExampLE. One version of the variance weighted Kolmogorov-Smirnov
statistic is Dy = sup{|F(x) — ul/(u(1 — u))/2, 0 < u < 1}, where F is the
empirical distribution function of (Uj,...,U,). Jaeschke (1979) shows that
b,Dy, — c, converges in distribution to the standard extreme value distribu-
tion exp(—exp(—¢)), where b2 = 2nloglogn and c, = 2loglog n +
2 'logloglogn — 27 'log(w/4). Standard weak convergence results show
that for each fixed e > 0 we have b,Dy(e) — ¢, &> —, where Dy(e) =
sup{lF(x) — ul/(u@ — u)/?, e <u <1 —e). It follows that there is a se-
quence e = e(n) decreasing to 0 for which this convergence holds. For this
sequence we find P(Dy, = sup{|F(x) — ul/(u(1 — u)%,0 <u <eorl—e <
u < 1}) — 1. The conditions of the corollary can now be verified.

The result extends to several modifications of D ; see Shorack and Wellner
(1986), pages 597-603. It also extends to a statistic, Dgp, due to Michael
(1983), namely, the Kolmogorov—Smirnov statistic in the stabilized probability
plot. Here

i 1/2
arcsin(U;'/?) — arcsin(( —] ) )

”TDSP=maX{ ;ilsiSn};
see Lockhart and Stephens (1991) for a discussion of tests based on these
plots.

Composite null hypotheses. The theorem applies to the case of compos-
ite null hypotheses. Suppose the data are Y; < --+ <Y, the order statistics
for a sample of size n from a continuous distribution. Suppose that the null
hypothesis is a family of distributions #. We want to calculate the approxi-
mate power along a sequence of alternatives G contiguous to a sequence F of
members of #. Define h as above. Since the order statistics Y, may be
constructed as Y; = F~1(U,), the theorem and corollary may be applied. Note
that the conditions on % in the theorem and corollary become conditions on
h o F~! here. Often F is some fixed member of % and the condition that
h o F~! converge in L,[0, 1] becomes the condition that h converge in L,(F).

ExaMpLE. When & is the location-scale family {F(x) = ®(x — @)/B), a €
R, B > 0} tests may be based on the linearity of a @-Q plot, that is, a plot of Y
against a measure of the centre of the distribution of Y; under the standard
member of % such as ® (i /(n + 1)); see Stephens (1986b) for an extensive
discussion. One natural statistic is the correlation coefficient in this plot. When
® is the standard normal cumulative, the resulting test is very powerful; it is
asymptotically equivalent to the Shapiro-Wilk test [see Leslie, Stephens and
Fotopolous (1986)]. ‘

For distributions with somewhat heavier tails such as the exponential,
extreme value and logistic distributions, the situation is dramatically different.
McLaren and Lockhart (1986) noted that the correlation coefficient satisfies
the hypotheses of the theorem and used their observation to show that the
correlation coefficient has zero ARE for a variety of contiguous alternatives.
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The present result simplifies their Proposition 2 and may be applied in every
case they studied. Again the conclusion is that the power and level of the test
have the same limit and the ARE of the test is 0.

Proor oF THEOREM 1. We compute under the null hypothesis. There is no
loss in assuming that P.(C) is a convergent sequence. The log-likelihood ratio
statistic is L = ¥ ;log(1 + h(U,)/n'/?). Uniform order statistics can be con-
structed as U; = (V, + --- +V))/(V; + --- +V, ), where V,,...,V, ., are in-
dependent standard exponentials. Guttorp and Lockhart (1988), pages 435 and
444, show that

n+1

L= Z‘, h(V.—1)—]n2/2+oP(1)

where h; = (n + )1/2[h(x)1(z — 1< (n + Dx < i) dx. Implicit in their argu-
ment is the fact that Lok - [2n*(x) dx for each 0 < a < b < 1. A variance

calculation then shows that

L= Z‘, hi(Vi = 1) = [n%/2 + 0p(1).
k+1

Now (U; - U,_)/WU,_, — Uy = V,/ (Vi + --- +V,_,). Since (V,,, +
* +V,_,)/n — 1 in probability and X h; = [¢h = 0, we have
n—k U U

L=n1'Y hjmm—""> U — [n2/2 + 0p(1) = Ly + 0p(1).
k+1 n—k
The conditional distribution of (U,,,,...,U,_,_;) given (U,,..., U,
U,_4---,U,) is that of order statistics for a sample of size n — 2k — 1 from
the uniform distribution on the interval (U,,U,_,). Letting W. = (U, ,; —
U)/WU,_, - U)fori=1,...,n — 2k — 1, we see that the conditional law of
Ww,... _ox_1 is that of the order statistics for a sample of size n — 2k — 1

from the umform distribution on the unit interval. Since this is free of
Wy,...,U0,,U,_,,...,U,) and since L, is a function of W,,..., W _,, ,, we
see that L, is independent of C. Hence (1., L) converge jointly in distribution
to a distribution with independent marginals, the marginal limiting distribu-
tion of L being N(-02/2,02), where 0% = [n%(x)dx. The theorem now
follows from the lemma. O

ProorF oF THE LEMMA. Fix x a continuity point of 7. Let R be the
probability (P + @)/2 which dominates P and @. We have

Q(T <x) = Eg %I(T sx))

g (22, ¢ P o )
= —_—— — = <
#\ p ar | S"))+Q(¢m =X

de dP
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The assumed contiguity shows that the second term converges to 0 since
P(dP/dR = 0) = 0. Joint convergence in distribution shows that for each
fixed ¢, a continuity point of the distribution of |A[, we have

Ep(exp(log dQ/dP)1(T < x)1(—c < logdQ/dP < c))
— Prob(7 <x)E(exp(A)1(-c <A <c)) - 0.

There is then a sequence c, of continuity points of A, converging to « so slowly
that this difference still converges to 0. For this sequence ¢ we see that

Ep(exp(log dQ/dP)1(T < x)1(llog dQ/dP| > ¢)) < Q(llog dQ/dP| > c).
On the one hand, Q(log d@/dP < —c) < exp(—c) — 0. On the other hand,
P(log dQ/dP > c) = P(logdP/d@Q < —c) < exp(—c) = 0

so that by contiguity @(|log d@/dP| > ¢) — 0. Recall that contiguity guaran-
tees E(exp(A)) = 1 to finish the proof. O
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