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ASYMPTOTIC SUPREMA OF AVERAGED
RANDOM FUNCTIONS

By AsAD ZAMAN
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Suppose X; are ii.d. random variables taking values in &, © is a
parameter space and y: 2X©® —» R is a map. Define the averages
S,(3,0) =(Q/n)L? ,y(X;,0) and the truncated expectations T,(y,0) =
E max(y(X;,6),— m). Under the hypothesis of global dominance [i.e.,
E supg y(X;, 8) < =] and some regularity conditions, the main result of the
paper characterizes the asymptotic suprema of S, as follows. For any
subset G of O, with probability 1,

lim sup S,(y,0) = hm sup (3,0).

no®eeq

This has immediate application to consistency of M-estimators. In
particular, under global dominance, maxima of S, must converge to the
same limit as the maxima of T,(y,6) almost surely. We also obtain
necessary and sufficient conditions for consistency resembling Huber’s in
the case of local dominance [i.e., each # € © has a neighborhood N(6) such
that Esup, ¢ ye)¥(X;, ¥) < »]. In this case there must exist a function
b(6) > 1 such that y/b is globally dominated and maxima of T,(y/b,6)
converge.

1. Introduction. Let (Q, Z(Q), P) be a probability space, (2, #(2)) a
measure space and X;: O - Z for i = 1,2, ... an independent and identically
distributed (i.i.d.) sequence of random variables. We will also use P to denote
the common measure induced on £~ by the X;; in particular, null subsets of 2~
are with reference to this measure. Given a parameter set ® and a function y:
2'xX ©® - R, define the averages S,(y,0) = (1/n)X?_,y(X;, 6). Our object in
this paper is to characterize the asymptotic supremum of S, on subsets of ©.
These results are directly applicable to the problem of consistency of M-esti-
mators. To avoid trivialities and degenerate cases, we will assume throughout,
without explicit reference, that for each 6 € 0, Ey*(X,, 6) < »; here, y*=
max(y, 0) as usual. Thus Ey(X,, 6) is well defined, possibly — . Furthermore,
we will assume that for some 6* € 0, Ey(X,, 6*) > —», so that
supyc o Ey(X;,0) > —c.

We will say that y is globally domlnated if Eg(X,) < « for some measurable
function g such that sup,.qy*(X;,0) < g(X,). Perlman (1972) proved the
following result about asymptotic suprema of S, under the hypothesis of
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global dominance:

(1) supEy(X;,0) < limsup supS,(y,0) < | lim E sup S.(y,0).

G n—ox #eG n—e®
He also showed that the second inequality is actually an equality under mild
regularity conditions. Our main result provides a new characterization of the
limiting value of the supremum of S, over subsets of ®. We show that for
discrete random variables X; with probability 1, for any G C 0,

lim supS,(y,0) = hm supEmax(y(Xl,O) m).

no© geq
This result also extends to a larger class of variables which can be suitably
approximated by discrete ones. Under these hypotheses, it follows that the
maxima of the functions S,(y, 8) converge to the same limit as maxima of the
truncated expectations T,(y, ) = E max(y(X,, 8),— m). Although our result
requires stronger hypotheses than Perlman’s, the quantity T,(y, 6) is usually
easier to compute than E sup, . S,(y, 8) and hence the corresponding condi-
tions for consistency are easier to verify.

When global dominance fails, but local dominance holds, we show that for
the class of variables which can be approximated by discrete ones, a condition
similar to Huber’s (1967) is actually necessary and sufficient. This condition
involves finding a suitable function 5(6) such that y/b becomes globally
dominated. Our results clarify both the choice of b and the range of applicabil-
ity of this type of result.

2. Asymptotic suprema for the discrete case. In this section we will
assume that 2°= {1,2,3,...}, so that the X, are integer valued. In this case,
any function y(X;, 6) can be written as

X,0) = L 10X, =) (6).

Define p; = P(X; =j) and p,; = p,;(w) = (1/n)L]_KX; =j}. We wish to
explore asymptotic suprema of the sums S,(y, #). We will assume that global
dominance holds so that

Esupy*(X,,0) = ¥ p;supf; < .
06 j=1 (C]

Our main result for the discrete case can now be stated as follows.
THEOREM 1. Assume that y(X,,0) is globally dominated and the X; are

i.i.d. discrete variables. Then there exist a null subset N of Q such that for all
w & N and for any subset G of 0,

lim sup—l— Y y(X(),0) = hm sup Z p; max( f;(6),— m).

n-o® geg M j_q * 0€@G j=1
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ProoF. The condition of the following lemma is actually necessary and
sufficient [see, e.g., Chatterji (1976)]. However, we will only need the implica-
tion stated below.

Lemma 1. If £5_,p;IM;| < », then for almost all w € Q,
lim ) |p,;(w) —p;||M;|=0.
n—o j=1

Proor. In the separable Banach space I, of absolutely summable se-
quences, consider the random elements

X = (MI(X; =1}, M,]{X;=2},...).
These are i.i.d. and satisfy

E| X=X leMj| < .
j=1

It follows from Mourier’s (1953) law of large numbers that

converges to zero almost surely, where EX, = (p,M,, p,M,,...) is the
Bochner integral of X;. The lemma states this conclusion in a more explicit
form.

Let M; =1 + supe f; and let Q; C Q be the probability 1 subset of Q for
which the conclusion of the lemma holds. We will first show that for all
w € (), and any subset G of O,

limsup sup S,(y,0) < lim supT,(y,0).

n—ox 0€G

We have

sup 2 ﬁn]f](o) < sup Z ﬁnj max( f](a)a_ m)
0eqG j=1 0eG j=1

sup { Y. (n; - p;)max(£,(0),~ m)

0eG | j=1

+ i p; max( f;(6),— m)}

j=1

IA

Y |Baj — Pi|(M; + m) + supT,(y,06).
Jj=1 0eCG

Taking limits and noting that the sum converges to zero by the previous
lemma yields the desired result. O
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To complete the proof of our theorem, we must show that with probability
1, the reverse inequality also holds. The following lemma establishes this
inequality without limitation to the discrete case.

LEmMMA 2. Suppose X, are i.i.d. random variables taking values in sample
space " and y: X ® - R, is a measurable map for each fixed 0 € O.
Suppose there exists measurable function g(x) such that sup,.qy*(x,0) <
g(x) and Eg(X) < . For any subset G of ® with probability 1,

liminf sup S,(y,0) > lim sup Emax(y(X;,0),— m).
m-®geq

n—o® ge@

Proor. Choose 6,, € O such that
lim Emax(y(X,,0,,),— m) = lim supEmax(y(X,,0),— m)=a> —=.

m— e m-®ge@
Define y,(x) = max(y(x,6,),— k) and y'(x) = limsup,_,y,(x). Let p, =
P(y(X,,0,) < —k). Since a > —», we must have lim,_,_ p, = 0. For each
integer n, we can choose integer k(n) large enough so that 1 — (1 — p,,))" <
27", This ensures that the probability of the event y(X;, 8,,,) > —k(n) for all
j=1,2,...,n is at least 1 — 27". By the Borel-Cantelli lemma, whenever
k'(n) > k(n), with probability 1, S,(y, 0,,) = S,(y') for almost all n:

S,(¥5 0pny) = )> Y(X;, Ony)
i=1

= ¥ max(y(X;, 0p(ny)> = £’ (1)) = Su(Jiny)-
i=1

Thus we have

liminf sup S,(y, 6) > liminf limsupS,(y, 6,)
no® by

n—% 9e@

> liminfS,(¥i(n))
n—o

= liminflimsupS,(y,) = Ey'.

no® b

Applying Fatou’s lemma, we conclude that

Ey = Elimsupmax(y(X,,0,),— k) > limsupE max(y(X,,60,),— k) = a.

k—>o k—>o

This proves the lemma and our theorem. O

3. Approximable sets of functions. We plan to use discrete approxima-
tions to generalize our main Theorem 1 of the previous section. It is conve-
nient to assume O is a separable metric space. Let d = d(0,6’) denote the
distance function on O. For any 0 € 0, let S(0, r) be the sphere of radius r
around 6: S(8,r) = {¢' € ©: d(9,0') < r}.

To permit approximation by discrete random variables, it is necessary to
introduce an appropriate analog of separability in the function space
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Fgz(O,R,), the set of all functions from ® to R, = R U {—x} which are
bounded above. Let %, be a countable basis for the topology of ®. Our
definition of approximability will be relative to this basis, which will remain
fixed throughout this paper.

Given an ¢ > 0 and a subset & of %, which forms a locally finite open
cover of ®, we will say that fe F(O,R,) is a (&, ¢) approximation to
g€ FO,R,)ifforall 9 € ® and B € & such that § € B,

(2) : max(g(0),~ 1/¢) < f(6),

(3) sup f(6') < sup max(g(0'),— 1/¢) +&.
0B 6B

Note that ¢ is used in two different ways in the above definition. It would be

equivalent and clearer, though clumsier, to use two numbers: one for the

truncation level and one for the closeness of the approximation.

A subset S of Fz(O,R,) will be called approximable if there exists a
countable set D = {d,,d,,...} of functions in Fz(®,R,) such that for every
s €S, € > 0, and locally finite cover & C %, there exists d € D which is a
(4, €) approximation to s. It is useful to note that we can always choose the
functions in D to be upper semicontinuous without loss of generality. We
assume functions in D to be upper semicontinuous in the sequel.

It is obvious that separability in the uniform topology is a sufficient condi-
tion for approximability. To show that approximability is considerably weaker
than separability in the uniform topology, we prove below that Fz(®,R,) is
itself an approximable set when ® is compact.

THEOREM 2. If © is compact, then Fg(®,R ) is approximable.

Proor. It is easily checked that a locally finite cover & c %, of a compact
set must actually be finite: & = {Bl, ..., B,}). For each 6 € O, let N(6) be a
neighborhood such that for all j for whlch 6 € B;, we also have N(6) C B,.
Let Ny,..., N, be a finite subcover of the cover’ formed by the N(0). Let
[/ /5 be a partition of unity subordinate to the cover N,,..., N,. Parti-
tions of unity exist because metric spaces are normal. We will show that every
function f € Fgz(0,R,) can be (£, €) approximated, by a continuous function.
Define

; l
c(0) = X ¢;(9) sup max( f(8'),— 1/¢).
j=1 gEN;

Then it is easily verified that max(f(6),— 1/¢) < c(9). Note that c(8) is a
weighted average of the quantities sup, . 5, max(f(6'),— 1/¢), where 6 € N, C
B;. Since supy, ¢ = supp max(f,— 1/¢), it follows that for any ¢ > 0,

sup max( f(0),— 1/¢) + & > sup c(0).
6€B,; 6EB;

Thus the continuous function ¢ (4, ¢) approximates f. The proof is completed
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using the fact that the continuous functions are separable in the uniform
topology. O

4. Asymptotic suprema for the approximately discrete case. We
now introduce the assumptions needed to approximate general functions
y(x,0) by discrete ones. We will need to assume that y is locally upper
semicontinuous; that is, for all § € O, there exists a null set N(8) ¢ £ such
that for all x & N(6),

(4) lim sup y(x,¢) =y(x,0).
r=0 y,e8(0,r)

If N(6) can be chosen independently of 6, then y is globally upper semicontin-
uous.

We will say that y is approximately discrete if there exists an approximable
set S ¢ F(O,R,) such that y(x,-) € S for almost all x € Z".

We will say that y is supremely measurable if there exists a countable basis
%#, for the topology of ® such that for each B € &%,, the function
sup, ¢ g ¥(X{(w), 0) (mapping Q to R,) is measurable. This is the usual
measurability assumption needed for results of this type; see, for example,
. Perlman (1972). We remark that when y is supremely measurable, we can set

g(X)) = sup,c oy (X;, 0) in the definition of global dominance for y, since
this must be measurable.

We now formulate the fundamental approximation result which permits the
extension of our results for discrete variables to more general cases. Suppose
S c F(®) is approximable and D is a countable set which can be used to
approximate functions in S. Arrange the elements of D in a sequence so that
D ={d,d,, ...}. Given ¢ > 0 and a locally finite cover & C %, let J(s) be
the first element of the sequence d; which is a (&, ¢) approximation to s.
Fixing x, y(x,- ) is an element of S and the notation J(y(x,-)) represents a
well defined element of D.

LemMMma 3 (Discrete approximation lemma). Suppose y is supremely mea-
surable and approximately discrete. The function J(y(x,0)) is measurable.
More precisely, there exist measurable sets E; C 2" forming a partition of 2
such that

J(y(x,0)) = ill{x € E;}d;(6).
j=

ProoF. It suffices to show that the set E, of all x such that J(y(x,-)) =d,
is measurable. This is because the set E; consists of intersections and unions
of a finite number of sets of this type. To prove E, measurable, note that for
any B € #,, the set Fg = {x: sup, . g max(y(x, 0),— 1/¢) + &€ > sup,  gd,(0)}
is measurable because y is supremely measurable. Then J(y(x,- )) satisfies (3)
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for all B € #:

supdJ(y(x,0)) <e + supmax(y(x 0),— 1/¢),

0€B
if and only if x € N g 4Fp. This set is measurable since & is at most
countable, so the intersection is at most countable. To complete the proof, we
must show that the set G = {x: max(y(x,- ),— 1/¢) < d,} is also measurable.
Define Gz = {x: sup,cp ¥(x, 0) < sup,c 5 d{(6)}. We claim that G =
N pc 4Gp. It is clear that if x € G, then x € Gy for all B € &%, so that
GCNpeg, GB Now if max(y(x, 8*),— 1/¢) > d(6*) for some 6* € O, then,
because d, is upper semicontinuous, the same inequality must hold for some
nelghborhood of 6* and hence for some basis element B € %,,. Thus if x ¢ G,
then x € N g 4Gp5. This proves the lemma. O

Using the maps J to provide discrete approximations, we can generalize our
results for the discrete case.

THEOREM 3. Suppose y(x, 0) is approximately discrete, locally upper semi-
continuous, supremely measurable and globally dominated. Then for almost
all w € Q,

(5) lim sup%Z y(X(w),0) = 11m supEmax(y(Xl,O) m).

n-o® g _

Proor. Since the reverse inequality has already been established in Lemma
2, to prove the theorem it suffices to show that

limsup sup S,(y,0) < lim sup Emax(y(X,,0),— m).
n—oo 0eqG m-9 ge@
For each 0 € O, find a neighborhood N,(0) € %, of diameter less then 1/k
such that
E sup y(X,,9) <Ey(X,,0) +1/k.
0 EN,(6)
Let %, c %, be alocally finite refinement of the open cover of ® consisting of
the balls N,(6). Construct measurable maps <J,: S —» D such that J,(s) is a
(%,,1/k) approximation to s. Since J,(y) is globally dominated when y is, it
follows from our results in the discrete case that
lim supS (Jx(y)) = lim sup Emax(J,(y(X;,0)),— m)

n— o m-o® g

supEJ,(y(X,,0)).
6eqG

The second equality follows from that fact that J,(y) > —k. Since S, (y) <
S, (J,(y)) for all k, to prove (5) it suffices to show that lim, _,, supg EJ,(y) <
lim,, _,., supg E max(y,— m). To prove this inequality, note that if B(9) € %,
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is such that 8 € B(6) c N,(8), then we have

sup EJ,(y(X;,0)) < supE sup J,(y(X,,0))
0eG 0€G y<B()

1
< supE sup max(y(Xy,¢),— k) + —
606G  yeB(o) k

IA

supE sup max(y(X,,0),— k) +
060G ¢ <N,(0)

E I

IA

1 1
sup Emax(y(X,,0),— k) + — + —.
0eqG k k

Taking limits as k& increases to infinity yields the desired result. O

5. Consistency of M-estimators with global dominance. We first
consider consistency with global dominance: E sup,c ¢ ¥y (X}, 8) < . The sim-
plest case is when O is a compact parameter space. In this case our result is
equivalent to the results of Wald (1949) and Bahadur (1967). The equivalence
follows from the following lemma.

LEmMA 4. Suppose © is compact and y is globally dominated and locally
upper semicontinuous. Then y is approximately discrete and for all closed
subsets G of O,

lim sup Emax(y(X,,0),— m) = supEy(X,,0).
m=-%° geq@ 0eG

Proor. By Theorem 2, we know that y is approximately discrete. It is
trivial that lim,, supg T,,(y, 8) > sup; Ey(X], 6). To prove the lemma, we will
prove the reverse inequality. Choose 6,, € G such that T,(y,9,,) >
supg T, (y,0) — 1/m. Let 6* be a cluster point of 6,, in G. Then local upper
semicontinuity of y at 6* ensures that Ey(X,, 6*) > limsup,, . T,(y,6,,)
which implies the desired result.

The results of Wald (1949), Bahadur (1967) and Kiefer—Wolfowitz (1956)
are all based on finding a suitable compactification of the original parameter
space, and applying (an equivalent of) the result that if G is a closed set not
including 6, the maximizing argument of Ey(X,, 6), then

lim supS,(y,0) = supEy(X,,0) <Ey(X,,6,).
no® geq@ 0eG
None of these results can be used when the parameter space is not locally
compact. In the locally compact case, it is unclear whether or not a suitable
compactification always exists and how to find one even if it exists.
For the case where suitable compactifications of the parameter space cannot
be found (in particular, when local compactness fails), the only available result
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is that of Perlman (1972). If

limsupE sup S,(y,0) <Ey(X,,6,),
n—o 0 EL(6,)

then by (1), consistency of maxima of S, for 6, follows. Our results show that
if y is approximately discrete (a condition not required by Perlman), then
Perlman’s condition for consistency can be replaced by the following:

lim -sup Emax(y(X,,0),—m)< lim supEmax(y(X,8),—m).

m— oo 0€E,(8,) —2® 9@

The expressions used in our consistency result are typically easier to
compute than the ones needed to apply Perlman’s result. However, we do use
the extra hypothesis of approximate discreteness for y. We present an example
where approximate discreteness fails, to show that Perlman’s result is valid in
greater generality than ours.

Let B;; for i=1,2,... and j=1,2,... be an array of iid. Bernoulli
random variables and define random variables X; taking values in the space of
sequences of reals by: X; =(B,;, B,y,...). Let ® ={1,2,...} and define
y(X;,8) = B,,. It can be verified that y(X;, 6) is not approximately discrete. It
is easily checked that lim, .sup,ce S, (y,0) =1. It is also true that
lim, . Esupyce S,(y,8) = 1 verifying Perlman’s result. However,
sup, < ¢ E max(y(X,,0) — m) = 1/2 so that our result does not give the right
value for the asymptotic supremum of S,. O

6. Consistency with local dominance. We will say that y is locally
dominated if every 8 € ® has a neighborhood N(6) such that
E sup, c no) ¥(X;,¥) < . For the case that y is not globally dominated,
Huber (1967) developed a new technique for proving consistency. His argu-
ment is based on an appropriate choice of a function b(8) such that y/b is
globally dominated. The scope of this condition and the appropriate choice for
b remained unclear. We will now show that a modification of Huber’s tech-
nique provides a necessary and sufficient condition for consistency whenever
local dominance and approximate discreteness holds.

We will say that y is normalized if

lim sup E max(y(X,,0),— m) =0.

m-° 9@ ‘
One can always normalize a given y by adding or subtracting a constant. The
following lemma shows that dividing by certain positive functions preserves
normalization.

LEMMA 5. If y is normalized and b: ® — [1,©) is an arbitrary function,
then y /b is normalized.

Proor. If y is normalized, then given ¢ > 0 we can find m, such that
for all m >m, and all § € ®, Emax(y(X,,0),— m) <e. Now note that
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max(a,— m) = [a + m]*— m. Thus we have for all 6,
Emax(y/b,— m) = (1/6)E([y + bm]" — bm)
<eg/b<e.

This shows that limsup,, _,,sup,ce Emax(y/b,— m) < 0. For the reverse
inequality, given £ > 0, choose 6,, such that Emax(y(X,,0,,),— m) > —¢. Let
b,, = b(8,,) > 1. Then we have

sup E max(y(X,,0) /b,— m) > E(1/b,,)max(y(X,,6,,),— mb,,)
0O

= (1/bm)Emax(y(X1’ m) )
> —¢/b,, = —
This completes the proof. O

A sufficient condition for consistency of M-estimators for some fixed 6, € ®
is the following.

THEOREM 4. Suppose y is normalized and b(6) > 1 is a function satisfying
the following conditions:

(a) y/b is globally dominated; that is, Esup, g y*(0)/b(6) < c.
(b) y/b is locally upper semicontinuous and approximately discrete.
(c) For all closed subsets G of ® which do not include 6, € O,

lim supT,(y/b,0) <O.

m-—®© gy

Then all sequences of approximate maxima of S,(y, 8) converge to 6,,.

REMARK. We define approximate maxima as in Perlman (1972): These are
sequences, not necessarily measurable, of 6, (w) satisfying

lim sup S,(y,0) — S,(y,0,) = 0 almost surely.

n—o

Proor. For any closed set G not including 6,, since y/b is globally
dominated, we must have

lim supS,(y/b,0) = hm sup w(y/0,0) <0.

Since b(0) > 1, it follows that
(6) lim sup sup S,,(y,6) < 0.

n—oo G

On the other hand, we must have

lim supS,,(y/b 0) = hm sup w(¥/b,8) = 0.

n—o
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This implies that
(7 liminf sup S, (y,0) = 0.

n—o® ge@

Together (6) and (7) imply the consistency result of the theorem. O

The following converse shows that the conditions of Theorem 4 are neces-
sary and sufficient.

THEOREM 5. Suppose y is locally dominated, approximately discrete and
all sequences of approximate maxima of S,(y, 0) converge to 6,. Lety' =y + ¢
be the normalization of y. We can find a function b such that (a), (b) and (c) of
Theorem 4 hold (for y'/b).

Proor. Let {N,} for a € A an index set, be a locally finite open cover of ©
such that y is dominated on each of the sets N,. Let ¢,: ® —[0,1] be a
partition of unity subordinate to the cover {N,}. Let b, = Esupycy, ¥ (X;,0)
and define b(0) =1 + ¥, 4b,¥,(0). We claim that E supg y*/b < 1. Denote
by v(dx) the common measure induced on the sample space 2" by the X;.
For any measurable subset B of 2, we must have for any index a € A such
that 6 € N,

/By+(x,0)v(dx) < /B ;zgay‘f(x,e')v(dx)

sf sup y*(x,0)v(dx) = E sup y*(X,,0') = b,.
go'eNa ASICA

It follows that for all measurable sets B,

[y (x,0)v(dx) < T ,(6)b, < b(6).
B acA
This is because the weights are zero for those a € A for which 8 ¢ N,, so the
sum is a weighted average of values b, each of which is larger than the
left-hand side. This implies that E sup,. oy (X;, 6)/b(0) < 1, as desired.

To verify (b), note that b is continuous by construction. Thus, y/b is locally
upper semicontinuous. If S is an approximately discrete set of functions, then
sois S/b. Forif s <d and b > 1, then s/b < d/b. Also if supg d < supg s + ¢,
then supgp d/b < supgp s/b + ¢/b < supg s/b + €. This proves that y/b is
approximately discrete.

We now verify that condition (c) also holds for this choice of the function
b(8). Let G be a closed subset of ® which does not include 8,. Suppose,
towards contradiction, that lim,, . sup,cq T,(y' /b,0) = 0. Since y'/b is
globally dominated, it follows that lim, ., sup,cq S,(3'/b,60) > 0. Since ¥’
and hence y’/b is normalized, it is also true that lim, _, . supyce S,(y/b,6) =
0. From this we conclude that the supremum of S,(y, 8) is asymptotically the
same on the set G and on 0. It follows that we can find approximate maxima
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of S, in the set G asymptotically. Such sequences cannot converge to 6,
contradicting the hypothesis of our theorem. O

7. Application to location-scale problems. We will demonstrate the
power of our results by proving the consistency of maximum likelihood esti-
mates for location-scale parameters. Let the parameter space be the half-plane
0 ={(0,,0,): 8, € R, 6, > 0}. Assume that X, for i = 1,2,... are ii.d. real
valued random variables with common density f*(x) with respect to some
measure v(dx). We wish to explore whether maxima of the log-likelihood

n 1 (X, -6,
1(6) = Elog[fozf( i )]

=1 02

converge to the true value 8, = (0, 1). After normalizing ! by subtracting off
its value at 6, we define y(x, 6) as

1 (X, -6,
y(x,0)=log[-0;f( 0 )}—log f(x).

To state the result it is useful to define the set
S(6,,05,k) = {x € R: (1/6,) f((x — 0,)/8;) <E}.

THEOREM 6. Suppose X is a random variable with density f(x) such that:

@) f(-) is bounded and upper semicontinuous.
(i) E — log f(X) < co.
(iii) For some a > 0,

lim inf P(X € S(6,,0,,6%)) > 0.
Jim inf P(X & §(6,,02,65))

Then the maximum likelihood estimates of 0 in the location-scale family
1/0,f((x — 6,)/05) converge almost surely to the true values (0, 1).

ReEMARK. The assumption (iii) is not transparent, but some version of it
appears necessary for the result. Note that for fixed &k, S(6,, 6,, k) expands to
R as 0, goes to zero and hence P(X €' S) converges to 1. On the other hand,
when k& goes to zero, S shrinks to the null set. When % is set equal to 6¢,
these two tendencies go in opposite directions. The smaller the @, the more
slowly 6 goes to zero, thus making (iii) more likely to hold. It is easily checked
that (iii) does hold for all of the commonly used densities. .

Proor. 1t is easily verified that y is locally but not globally dominated. The
problem arises for small values of 6,. In fact for any ¢ > 0, y is globally
dominated on the set ©, = {6 € 0: 0, > ¢} and consistency is easily established
by standard methods. Fix ¢ > 0 and define G, to be the complement of O,.
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The hard part of proving consistency on ® is to show that
(8) limsup sup S, (y,6) <0.

n-oo 0eq,
A natural candidate for the function b(8) on the set G, is b() =

max(—log 6,,1). With this b, it is easily checked that y/b is globally domi-
nated:

Esupy®(Xy,0)/b(0) < .
6O

Applying Theorem 4 to prove (8), it is enough to show

(y(Xl,o) )

<0. m
b(o) ’

(9) lim sup E max

m-x gegq,

To apply our results, we must first verify that the set of all function
y(x,0)/b(0): G. —» R indexed by x € R is approximable.
LEMMA 6. The set S of functions of 0 defined for each fixed x € R by

y(x,0) —14 log f((x — 8,)/65) _ log f(x)
b(8) —log 6, —log 6,

h.(0) =
is approximable.

Proor. It is enough to note that the functions 4 ,(6) extend continuously
to the one-point compactification of the set G. and apply Theorem 2 to
conclude that the set of functions is separable.

Continuing our proof of the theorem, we now show that (9) holds for some
€ > 0. It suffices to show that
(10) lim sup Emax(y/b,— m) < 0.

02—>0 OIER
Note that since f is bounded and 0, < ¢, if ¢ is small enough and m large
enough, then

o e f®)

—log 6,
It follows that /
log(63/f(x))
Emax(y/b,— m) < /;xesa)Tgoz——f(x) dx
log(M/f(x))
+/{x¢sa> Tog 6, f(x) dx.

Under assumption (iii), the integral over S(6,, 0,, 65) approaches —aP(X €
S,) < 0. Assumption (ii) ensures that the integral over S¢ converges to 0. This
proves (10) and our theorem. O
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Huber’s (1967) original technique for proving consistency requires that for ¢
small enough,

E sup y(x,0)
0eq, b(0)

This is a crude sufficient condition which ensures (8). It fails to hold in the
present case, so that Huber’s result is inadequate for proving consistency.
Perlman (1972), generalizing the work of Kiefer and Wolfowitz (1956) and
others, showed that a necessary and sufficient condition for (8) is that there
must exist an integer k& such that

k
y(X;,0)
E su — < O.
oegsi§1 b(0)

This condition was labelled semidominance by 0 by Perlman. For certain
special densities, such as the normal, it is possible to verify this condition and
hence prove consistency. In our case, with a general density f, it does not seem
possible to verify, even though it must hold since it is necessary and sufficient.
Because y is approximately discrete, our condition is also necessary and
sufficient, and hence equivalent to Perlman’s, but is easier to verify.

8. Concluding remarks. In the case that the function y(X,8) can be
discretely approximated, a modification of Huber’s (1967) conditions provides
necessary and sufficient conditions for consistency when local dominance
holds. Our conditions are typically easier to check than Perlman’s (1972);
however, Perlman’s results hold even when discrete approximation fails. Our
conditions are also readily applicable to parameter spaces which are not locally
compact. These results do not seem to be applicable to the case where local
dominance fails. For some results in this case, see Wang (1985).

The main limitation on our result is of course the discrete approximation
hypothesis. It is worth noting therefore that it is possible to weaken the
requirements for approximation by discrete random elements. Given a y(X;, 6)
which is locally dominated, let r,(#) be a radius such that

E sup  y(X,0) <Ey(X;,0) +1/k.
{0': d(6',0)<r,(6)} ‘

The collection of spheres S(0, r,(6)) = {6": d(8',0) < r,(0)} forms a cover of ®
which is not locally finite. Let &, be some locally finite refinement of this
cover. In order to be able to prove Theorem 3, it is enough that there exist a
countable set of functions D such that for almost all x € 2" and all integers %,
there exist d € D such that max(y(x, 8),— k) < d(0) and for all B € 4,

supd(8) < 1/k + sup y(x,0).
6B 6B

Approximately discrete sets of functions as we have defined them originally
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must be approximable relative to all locally finite covers. Requiring approxima-
tion relative to a particular fixed sequence of locally finite covers only in-
crease the approximable sets and enlarges the scope of applications of Theorem
3 and 4.
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