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WHY LEAST SQUARES AND MAXIMUM ENTROPY?
AN AXIOMATIC APPROACH TO INFERENCE FOR
LINEAR INVERSE PROBLEMS'

By IMRE CsIszAR

Mathematical Institute of the Hungarian Academy of Sciences

An attempt is made to determine the logically consistent rules for
selecting a vector from any feasible set defined by linear constraints, when
either all n-vectors or those with positive components or the probability
vectors are permissible. Some basic postulates are satisfied if and only if the
selection rule is to minimize a certain function which, if a “prior guess’ is
available, is a measure of distance from the prior guess. Two further
natural postulates restrict the permissible distances to the author’s f-
divergences and Bregman’s divergences, respectively. As corollaries, ax-
iomatic characterizations of the methods of least squares and minimum
discrimination information are arrived at. Alternatively, the latter are also
characterized by a postulate of composition consistency. As a special case, a
derivation of the method of maximum entropy from a small set of natural
axioms is obtained.

1. Introduction. A frequently occurring problem in statistics and applied
mathematics is that a function has to be inferred from insufficient information
that specifies only a feasible set of functions. Problems of this kind are often
called inverse problems. Typical examples are the reconstruction of a signal or
image from the results of certain measurements, and the assignment of a
probability density or mass function subject to moment constraints, that is,
constraints that specify the expectations of certain functions of the underlying
random variable. Often the practical solution to such problems is to select an
element of the feasible set by a more or less ad hoc rule, usually by minimizing
some functional such as the L,-norm or negative entropy. If some function is
specified as a “prior guess,” it is natural to minimize a measure of distance
from the latter, most often the L,-distance, or, for probability density or mass
functions, Kullback’s I-divergence (also called information for discrimination
or cross-entropy).

In this paper we address the question of what selection rules are ‘“‘good’’ in
this framework and, in particular, whether the mentioned standard ones are
indeed the ““best.” Unfortunately, it is hard to give a mathematical meaning to
this question. It does not seem possible to define a general criterion by which
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the goodness of selection rules could be compared. Still, whereas people
apparently feel little need for any special justification of least squares (L,-norm
minimization), various reasons have been put forward to justify I-divergence
minimization [introduced into statistics by Kullback (1959) as the method of
minimum discrimination information] and entropy maximization. The recent
widespread applications of ‘“maximum entropy”’ have been pioneered to a
great extent by Jaynes [for his views cf. Jaynes (1982)]. The present author has
argued elsewhere [Csiszar (1985)] that the conditional limit theorems of Van
Campenhout and Cover (1981) and Csiszar (1984) suggest the interpretation
that the minimum I-divergence ‘“updating’ of a prior probability distribution
to meet moment constraints is a limiting form of Bayesian updating.

Here we adopt an axiomatic approach and consider those selection rules as
“good’’ that lead to a logically consistent method of inference, in the sense of
satisfying some natural postulates. The term inference is not meant in a
statistical sense. Indeed, our considerations will be nonprobabilistic, even
though the objects to be inferred may be probability distributions. The relation
of this work to previous axiomatic approaches will be discussed at the end of
this section.

As a typical example, we briefly sketch a model of the image reconstruction
problem that occurs in computerized tomography and in various other fields
[cf., e.g., Herman and Lent (1976) or Censor (1983)]. An image is represented
by a positive-valued function f defined on some domain. The available infor-
mation consists in the measured values of some linear functionals R;f,
i =1,...,k. In X-ray tomography, f is the unknown X-ray attenuation func-
tion and R, f is its integral along the path of the i’s ray. Now, the domain of f
is partitioned into a finite number of picture elements, called pixels, numbered
in some way from 1 to n. Assuming that f is nearly constant within each
pixel, we can write

(1.1) f= Z Ujfj,
j=1

where f; is the indicator function of the jth pixel. Then, setting a,; = R; f;
and b, = R, f, we have

n
(1.2) Ealjl]]:bl, i=1,...,k.
j=1 ’

Thus the unknown function f is represented by the vector v = (v,,...,v,)7%,
and the feasible set is identified with the set of those vectors v with positive
components that satisfy the linear constraints (1.2). The reconstruction prob-
lem is to select a “suitable” element of this feasible set (possibly depending on
a “prior guess”’ of f represented by a vector u).

In this paper, we concentrate on linear inverse problems of form (1.2). The
extension of our results to the continuous case, that is, to inferring functions
defined on some domain and not representable by finite-dimensional vectors,
should not be hard but will not be entered. The above example will be
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repeatedly used as an illustration, but it should be emphasized that our
axiomatic approach is by no means limited to image reconstruction. On the
other hand, since a general approach inevitably involves idealizations, the
solutions it leads to are not necessarily “best” for specific practical problems,
including image reconstruction.

Our goal is to determine the “logically consistent” rules for selecting an
element from any possible feasible set. We adopt the idealized assumption that
all conceivable linear constraints may occur; thus the possible feasible sets are
all those subsets of a basic set S of permissible vectors that can be defined by
constraints of form (1.2). Three cases will be considered in a parallel manner
namely when S consists of all n-vectors, or-of those with positive components
(as in image reconstruction) or of the probability vectors with positive compo-
nents. The choice of vectors with positive rather than nonnegative components
has been preferred in order to reduce technical difficulties; also, this ensures
that a nonnegative quantity is never inferred to be 0 when the available
information permits it to be positive, which is generally considered desirable.

Our postulates will be stated and intuitively justified in Section 2. The
results will be stated in Section 3 and proved in Section 5, using the lemmas in
Section 4. The key result is Theorem 1, namely that the basic postulates of
“regularity’”’ and ‘““locality” of a selection rule are satisfied if and only if the
selection is by minimizing a certain function. If a prior guess is available, this
function is a measure of distance (nonsymmetric in general) from the prior
guess. The subsequent theorems show how certain additional postulates re-
strict the class of functions that may be used. Perhaps the most striking result
in Theorem 5. It provides a parallel characterization of the methods of least
squares and minimum I-divergence as the only ones satisfying, in addition to
regularity and locality, a postulate of ‘‘composition consistency.”” The intuitive
meaning of this postulate is that if the object of inference is composed of two
components, and the available information says nothing about their interac-
tion, we should infer that no interaction is present.

It should be mentioned that in practice (1.2) is often relaxed to

(1.3) a;;v; +e; =b, i=1,...,k,

1

TM:

where e = (e, ..., e,)T is an error vector. For the reconstruction problem of
positron emission tomography, Vardi, Shepp and Kaufman (1985) described a
model equivalent to (1.3) with data b; that were Poisson random variables
(counts of detected emissions in “tubes” determined by pairs of detectors). A
vector e as in (1.3) did not explicitly enter their model, but, defining e; as the
difference of the actual and expected counts for the ith tube, (1.3) would hold.
The suggested reconstruction was the maximum likelihood estimate of v, and
for its computation the EM algorithm of Dempster, Laird and Rubin (1977)
was used. This reconstruction technique is sometimes considered as related to
“maximum entropy’’ [cf., e.g., Miller and Snyder (1987)], for the formal rather
than conceptual reason that the EM algorithm is equivalent to an alternating
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I-divergence minimization; Vardi, Shepp and Kaufman (1985) have shown that
the convergence of their algorithm is an instance of a result of Csiszar and
Tusnéady (1984) on alternating I-divergence minimization.

Maximum likelihood estimation is not a generally applicable method for
“solving” inverse problems of form (1.3) because (i) the “errors” e; may be
nonrandom or else their joint distribution may be unknown and (ii) even if the
“errors’ are random with known distribution, the maximum likelihood esti-
mate is typically nonunique if n > k. Vardi, Shepp and Kaufman (1985)
avoided the latter difficulty by partitioning the object into fewer pixels than the
number of “tubes” that was sufficiently large. If bounds on the magnitude of
the errors are known, it may be convenient to interpret (1.3) as a system of
inequalities of form

n
(1.4) b:S Zal‘lngbf, i=1,...,k,
j=1
or as an inequality of form
k n 2
(1.5) Z (Z aijvj—bi) SC-
i=1\j=1

Our axiomatic approach could be extended to the problem of selecting an
element from any set defined by inequality constraints such as (1.4) or (1.5) or,
more generally, from any convex subset of the basic set S. Alternatively, (1.3)
could be interpreted as determining a ‘““feasible set” of pairs (v,e), and a
selection from this set could be made by any method that has been deemed
“good” for the problem (1.2). Indeed, this is often done in practice, for
example, by minimizing some quadratic function of the pair (v, e) [cf. Herman
and Lent (1976) or Censor (1983)]. It remains to be seen whether “solutions”
of this kind to the problem (1.3) can be covered by an extension of our
axiomatic approach; one of the difficulties is that the possible linear con-
straints on pairs (v, e) are of the very special form (1.3).

The approach in this paper was strongly motivated by Shore and Johnson
(1980), where—for the problem of assigning a probability distribution subject
to moment constraints—an intuitively appealing axiomatic derivation of the
methods of maximum entropy and minimum I-divergence was provided.
Skilling (1988) gave a similar derivation for inferring arbitrary positive-valued
functions; because of the greater liberty, this case turned out to be consider-
ably simpler. Both Shore and Johnson (1980) and Skilling (1988) started from
the assumption that inference was based on minimizing some function or,
equivalently, on some transitive ranking that could be described by real
numbers. After having submitted this paper, the author learned that Paris and
Vencovska (1990) had arrived at ‘“the inevitability of maximum entropy’’ from
axioms that—like ours—did not a priori assume the minimization of some
function; in other respects, our approach appears quite different from theirs,
although similarities in the axioms do exist. The author is indebted to Profes-
sor Paris for sending him manuscripts of this and related works.
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Our results also provide axiomatic characterizations of measures of distance
whose minimization leads to ‘“good’’ methods of inference. Whereas there is an
extensive literature on axiomatic characterizations of entropy, I-divergence
and their generalizations [cf., e.g., Aczél and Daréczy (1975)], our characteriza-
tions substantially differ from the usual ones: Our postulates involve not the
measure to be characterized but rather the inference method it leads to. In
Theorem 2(ii), a class of distances introduced by Csiszar (1963) [and indepen-
dently by Ali and Silvey (1966)] is characterized; related results also appear in
Shore and Johnson (1980) and Skilling (1988). Theorem 3 characterizes a class
of distances introduced by Bregman (1967); since this paper had been submit-
ted, a different axiomatic characterization of this class (in the continuous case)
was given by Jones and Byrne (1990). Finally, we comment on the one-parame-
ter family of distances characterized in Theorem 4(ii). In the original version of
this paper, the previously not considered members of that family had been
mentioned as candidates for becoming practically useful. Recently, Jones and
Trutzer (1989) reported applications of (continuous versions of) these dis-
tances that seem to confirm that prediction.

2. Preliminaries, postulates. The real line and the positive half-line are
denoted by R and R _, respectively. We emphasize that R, does not contain 0.
The vectors in R™ whose components are all 0 or all 1 are denoted by 0 or 1.
All vectors are column vectors.

The set of n-dimensional vectors with positive components of sum 1 is
denoted by A, that is,

(2.1) A,={viveR?, 1"v=1}.

The family of affine subspaces of R”, that is, the family of nonvoid subsets
of R" defined by linear constraints, will be denoted by -#,. In other words
LeZ iff L+ Jand

(2.2) L ={v:veR" Av = b}

for some A € M, ., (k X n matrix) and b € R*. We denote by .2 the family
of all nonvoid subsets of R” of form (2.2), with v € R”" replaced by v € R".
The family of those L € #," which are subsets of A, will be denoted by
-Z,7(1). For any fixed dimension d < n, the set of d-dimensional elements of
-Z, (or £) is endowed with the natural topology, that is, the quotient
topology derived from the Euclidean topology of the set of those pairs (A, b) €
M, _qyxn X R*¢ that define a d-dimensional element of £, (or .£;").

Throughout this paper, our basic set S will be either of R”, R? and A,.
The set of components of vectors in S will be denoted by V, that is, V stands
for R, R, or the open interval (0,1), according to the choice of S. Unless
stated otherwise, u, v and w will always denote elements of V, whereas u, v
and w denote vectors in V. Further, we denote by - the family of nonvoid
subsets of S determined by linear constraints. Thus, according to the three
cases, -Z equals -Z,, £, or £, (1). For convenience, we will call the
elements of _# subspaces of S also if S # R™.
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Notice that S itself is an element of _#’; among the proper subsets of S the
maximal subspaces are those of dimension n — 1 (if S = R™ or R*) or n — 2
Gf S = A,). The subfamily of _# consisting of these maximal subspaces will be
denoted by .#. Thus .# consists of the (nonvoid) sets

B {(v:aTv=10},a+0, if S=R"or R,
{(v:aTv=0,1Tv=1},a#2Al, ifS=A,,.

As mentioned previously, the condition v € V" is implicit in the notation in
(2.3).

Having in mind inference problems as in Section 1, we are interested in
rules that specify for each L € _# (and ‘‘prior guess’’ u) an element of L, to be
selected if L is in the feasible set (and the prior guess was u). The vector
selected from L when a prior guess u was available is regarded as a nonlinear
projection on L of u, denoted by II(L|w).

(23) L

DEFINITION 1. A selection rule (with basic set S) is a mapping II: .Z#— S
such that TI(L) € L for every L € .Z. A projection rule is a family of selection
rules TI(- ju), u € S, such that u € L implies II(L|u) = u. A selection rule is
generated by a function F(v), v € S, if for every L € .7, II(L) is the unique
element of L where F(v) is minimized subject to v € L. A projection rule is
generated by a function F(viu), u € S, v € S, if its component selection rules
I1(- lu) are generated by the functions F(-|u).

REMARK. A necessary condition for F(v|u) to generate a projection rule is
that for any fixed u € S the unique global minimum of F on S be attained at
v = u. Attention may be restricted to functions F for which this minimum is 0
[because a projection rule generated by some F(vlu) is also generated by
F(vlu) = F(vlu) — F(ulu)]. A function F(vju),u € S, v € S, with the property
F(v|u) > 0, with equality iff v = u, will be called a measure of distance on S.

ExampPLE 1. In the case S = R", the Euclidean distance F(viu) = [lu — v]||
generates a projection rule that gives rise to the ordinary projection in
Euclidean geometry. It will be called the least squares projection rule and its
component selection rules will be called least squares selection rules. In
particular, the selection rule generated by F(v) = |lv|| is the standard least
squares selection rule. A projection rule generated by a weighted L,-distance
X ,a(v; — u;)»'? will be called a weighted least squares projection rule. Of
course, ‘‘least squares’ is a standard method of a very long history. Notice,
however, that it is not suitable in the cases S = R or A ,; then F(v) = ||lv — ul|
does not generate a selection rule for any u € S (neither does any weighted
L ,-distance) because it does not attain a minimum on some subspaces L € 7.

ExampLE 2. Let S = R% or A,,. The I-divergence of v € S fromu € S is
defined by

(2.4) I(v[n) = X [y, log;— —v; +u;.

i=1 i
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This generalization of Kullback’s formula
n U:
I(v|u) = Zvilogzl—, ueld,vel,,

i=1 i
retains the property I(v|lu) > 0, with equality if and only if u = v. Clearly,
F(vlu) = I(v|lu) generates a projection rule (for any fixed u € S, it attains a
unique minimum on any L € #, and if u € L, this minimum is attained at
v = u); this will be called the I-divergence projection rule, and either of its
component selection rules is an I-divergence selection rule. The selection rule
generated by the negative entropy F(v) = L7_,v;logv; will be called the
maximum entropy selection rule. This is a‘special case of I-divergence selection
rules corresponding tou = (1/n)1if S=A, andu=(1/e)1if S=R". Asa
comparison of the naturality of these choices of u indicates, the maximum
entropy selection rule plays a distinguished role mainly in the case S = A,,
that is, for inferring probability distributions.

We emphasize that we do not a priori restrict attention to selection rules
generated by some function. However, the postulates in Definitions 2 and 3
below will suffice to prove such generatedness.

Given a selection rule Il with basic set S, we will designate I1(S) by v°(II).
Then the component selection rules II(-|u) of a projection rule satisfy, by
Definition 1,

(2.5) vO(II(-u)) = u.

DerFiNITION 2. A selection rule II:.X— S is regular if it satisfies the
following axioms:

(i) (conmsistency) if L' ¢ L and II(L) € L', then TI(L') = II(L);
(ii) (distinctness) if L # L' are both in .#, then II(L) # II(L’) unless both
L and L’ contain v°(II);
(iii) (continuity) the restriction of II to the subspaces of any fixed dimen-
sion is continuous.

A projection rule is regular if its component selection rules are such.

The consistency axiom formalizes the intuitive idea that if v = II(L) se-
lected on the basis of constraints specifying L also satisfies the stronger
constraints specifying L', then the additional constraints provide no reason to
change the selection of v. The case for this axiom appears quite strong, for
example, in image reconstruction one would hardly want to use a selection rule
not satisfying it. Nevertheless, this axiom may be inappropriate for certain
problems. When the selected element ought to resemble the other elements of
the feasible set L as much as possible, it is reasonable to select the v € L that
minimizes—for some given measure of distance d—either sup,, . d(v,w)
[“barycenter method,” Perez (1984)] or the conditional expectation of d(v,w)
on the condition w € L (Bayesian rule, requires a prior distribution on S).
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These selection rules do not satisfy the consistency axiom and are outside the
scope of this paper.

The distinctness axiom says that different information, both consisting in a
single linear constraint, must lead to different conclusions, unless both are
consistent with the selection that would be made without any constraints. This
is a technical postulate and it would be desirable if it could be dispensed with.
Notice that the distinctness axiom is certainly satisfied for selection rules
generated by differentiable functions F.

Continuity is an obvious regularity hypothesis. Notice, however, that (for
projection rules) we did not postulate the continuous dependence of II(L|u)
on u. -

For any set of indices J ={j;,...,j,}, 1<j; < -+ <j, <n, and any

vector a € R", we denote by a; the vector in R* defined by
T
(2.6) aJ=(aj1,--.,ajk

For a selection rule II, we will denote (II(L)), briefly by I1 ,(L).

DEFINITION 3. A selection rule I1: .#— S is local if for every J c {1,..., n}
of arbitrary size %, and any L’ and L” in .Z of form

(2.7) L={wivyeLlyveel), L'={viv,eLyv,el),

where Ly 4, e £,_,, ["'e #,_, (f S=R™or Lye £}, [l e £,
L"e #, Gf S=R" or A,), we have

(2.8) M, (L) = ,(L").

A projection rule is local if its component selection rules II(- |[u) are local and,
in addition, for L' and L” as above we have

(2.9) I,(Lw) =T,(L') ifu), =,

Remark. If S=R", £=_7, or S =R", £=_7, thenany L' and L" of
form (2.7) necessarily belong to .. On the other hand, if S = A, -Z= Z*(1),
the sets L' and L” in (2.7) belong to £ iff the sum of components of each
vector in L, is equal to the same 0 < ¢ < 1, and the sum of components of
each vector in I’ and I’ is equal to 1 — c.

Locality means, in other words, that for L' € # as in (2.7), I1,(L’) depends
only on L, and II ;,(L'|u’) depends only on L, and u’;.

Intuitively, the locality axiom says that whenever the available information
consists of two pieces that involve complementary sets of components of the
vector to be inferred, each component of the vector selected on the basis of this
information will be determined by that piece of information which involves the
component in question. In the reconstruction problem of X-ray tomography,
this means that if two sets of ray paths covering disjoint sets of pixels were
used, then for each pixel the reconstruction would be determined by those rays
whose paths are in the set covering that pixel. This axiom appears very



2040 I. CSISZAR

natural, but strict adherence to it may perhaps be criticized in the tomography
example on the basis of smoothness properties of the unknown X-ray attenua-
tion function. For the case of inferring probability mass functions, Shore and
Johnson (1980) used a similar but stronger postulate called “subset indepen-
dence.”

In this paper, regularity and locality will be the basic postulates. The
selection and projection rules satisfying them will be characterized in Theorem
1. In the rest of this section we formulate some other desirable properties that
suggest themselves as additional postulates, if we want to arrive at methods of
practical interest.

An important role will be played by the-special subspaces

{viv, +v; =t} if S=R"or R",

(2.10)  Lyj(t) = {v:vi+vj=t, Y vl=1—t>, ifS=A,.

L+#i,j

Given a selection rule II, we will write v «<>,; v’ to designate that v and v’
equal the ith and jth components of II(L,;(¢)) for some ¢; of course, then
necessarily ¢ = v + v'. Similarly, given a local projection rule, we will write
(vlu) ©,; (V'|u’) to designate that v and v’ equal the ith and jth components
of TI(L, ;()lw) if the ith and jth component of u are u and «’ (and ¢ = v + v').

Clearly, v ©,; v means the same as v' <>;; v. Further, we will show
(corollary of Lemma 3) that if v <, ;U and V' o, v for a regular, local
selection rule II, then also v ©;, v”, provided in the case S = A, that v +
V' + V" < 1. Of course, similar statements hold for the relations (v|u) <,; (v'|u")
associated with a regular, local projection rule.

DerFNITION 4. (i) A local projection rule is semisymmetric if for every
L;;(#) as in (2.10), the ith and jth components of II(L;,(#)lu) are equal
whenever u; = u;, that is, (vlu) ©,; (V'|u) iff v = v’ (providing, in the case
S=A,,that v<1/2 u<1/2).

(ii) A projection rule with basic set R™ or A, is statistical if it is regular,
local, and the relation (v|u) «,; (v'|u’) is equivalent to v/u = v'/u/, with the
additional conditions v +v' < 1, u + v’ <1if S=A,.

The term “semisymmetric” refers to the fact that this weak and plausible
postulate often implies the apparently much stronger property of symmetry
(permutation invariance); see Theorem 2(i). It would not be unreasonable to
use symmetry as a postulate, as did Shore and Johnson (1980), but by not
doing so we will obtain stronger mathematical results with little additional
effort.

Also the stronger postulate in (ii), applicable when S = R” or A, appears
natural; it is particularly compelling in the latter case. Namely, if a prior guess
about a probability mass function has to be updated subject to a single
constraint that specifies the probability of a given set, it is standard to assign
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probabilities to the elements of this set proportionally to the prior ones.
Definition 4(ii) requires this for two-element sets only. The proportional
updating, in general for constraints specifying the probabilities of several
pairwise disjoint sets [“Jeffrey’s rule,”” cf. Diaconis and Zabell (1982)] appears
uncontroversial. It was also part of the axioms of Shore and Johnson (1980).

DeriniTION 5. (i) A projection rule with basic set S = R™ or R” is scale-
invariant if for every A > 0, L € .Z and u € S we have II(AL|Au) = AII(L|u).

(ii) A projection rule with basic set S = R" is translation-invariant if for
every Le Z,ue S and p € R, II(L + pllu + p1) = I[I(L|a) + pl.

Here AL and L + u1 denote the set of vectors Av and v + w1, respectively,
such that v € L.

The intuitive meaning of these invariance properties is obvious, and they
are clearly desirable. The characterization of all (regular and local) projection
rules satisfying either or both of these postulates is not difficult but will be
omitted because of its limited practical interest. Rather, these postulates will
be used in connection with the next one only.

DEeFINITION 6. (i) A projection rule is subspace-transitive if for arbitrary
L' cL in .Z and any u € S we have

(2.11) M(L|a) = (L|T(La)).

(ii) A projection rule is parallel-transitive if (2.11) holds for subspaces L
and L' that can be represented in the form {v: Av = b} [cf. (2.2)] with the
same matrix A.

Subspace transitivity means that if updating a ““prior guess” u based upon
information specifying the feasible set L results in v = II(L|u), and additional
information leads to L' as the actual feasible set, then updating the *present
guess” v on the basis of all available information leads to the same result as
would the direct updating of the “prior guess” u. For example, if an image

reconstruction has been obtained from measurements R, f,i = 1,..., k, using
some prior guess, and then further measurements R, f, i =k + 1,...,k + 1,
are made, the reconstruction from all the measurements R, f,i = 1,...,k + [,

will be the same no matter whether the original prior guess or the previous
reconstruction is used as “prior guess.” Parallel transitivity has a similar
intuitive meaning for the case when after having obtained the first reconstruc-
tion, the same measurements are repeated with results different from those
before; the second reconstruction is now based on the new results, the
previous contradicting ones being discarded.

Subspace transitivity is a highly desirable property also because it implies
(and is actually equivalent to) the commutativity of two-stage updatings.
Indeed, let us be given two sets of linear constraints determining subspaces L,
and L, with L, N L, # . Then (2.11) implies that updating a prior guess u
based upon the first set of constraints and then updating the result II(L,lu)
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based upon both sets of constraints, the result will be II(L, N L,|u); the same
result would be obtained if the first updating were based on the second set of
constraints. Of course, this commutativity holds for ‘‘proper”’ two-stage updat-
ings only, that is, when the constraints used in the first stage are not discarded
in the second stage.

For regular projection rules, parallel transitivity implies subspace transitiv-
ity, and more generally, also that (2.11) holds whenever L = {v: Av = b},
Ij = {v: A'v = b’}, where the matrix A contains all rows of A. In fact, then
L = {v: Av = Av*} c L, where v* = II(L|u), and thus II(L|u) = v* by the
consistency axiom. Then parallel transitivity implies that

(L'a) = (L|1(L[w)),

and (2.11) holds as claimed.

We will show that for regular, local projection rules the two kinds of
transitivity defined above are actually equivalent. The family of all regular,
local and transitive projection rules will be characterized in Theorem 3.

Combining results characterizing projection rules with properties stated in
Definitions 4-6 will lead us to the least squares and I-divergence projection
rules as the only ones that simultaneously satisfy some intuitively appealing
postulates. On the other hand, a single postulate (in addition to regularity and
locality) will also suffice to uniquely characterize these projection rules, as well
as the least squares and I-divergence selection rules. To formulate this
postulate (Definition 7 below), it is necessary to consider vectors indexed by
pairs of integers (7, j),1 <i <m, 1 <j < n, rather than by integers 1 <i < n.
This is the natural representation for vectors describing two-dimensional
objects, such as images.

The marginals of v={v,;: 1<i<m, 1<j<n}eR™ are the vectors
v=(@,...,0,)T€eR™", ¥ =(0,,...,0,)T € R", where
n m
(2.12) 5i = Z vij, 3, = Z Uij'
j=1 i=1

As before, we consider three choices of our basic set S, namely, S = R™" or
R} orA,,,.

For any v = {v;;} € S, we denote by L, the subspace of S consisting of
those vectors that have the same marginals as v, that is,

(2.13) L,={w:w=v;,w="¥}
We say that v = {v;;} is of sum or product form if
(2.14) v;=s;+tt; or v;;=s;t;
respectively.

DEFINITION 7. A selection rule II with basic set S as above
is composition-consistent, more precisely, sum- or product-consistent, if
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II(L,) = v whenever v € S is of sum or product form, respectively. A projec-
tion rule is composition-consistent (sum- or product-consistent) if its compo-
nent selection rules II(-|u) have this property whenever u itself is of sum or
product form, respectively.

Intuitively, the vectors v = {v;;, 1 <i <m, 1 <j < n} are interpreted as
compositions of two interacting components, the individual components being
represented by the marginals ¥ and v. Then L, being the feasible set means
that the available information specifies the individual components but nothing
else. The postulate of composition consistency formalizes the intuitive require-
ment that on the basis of such information we should infer ‘‘no interaction,’
unless a prior guess is available that implies interaction. Implicit in this
interpretation is that “no interaction” is represented by the sum or product
form of v. In particular, for inferring probability mass functions, product
consistency is a hardly avoidable postulate. It could be argued, though with
less weight, that product consistency is an appropriate axiom also for image
reconstruction, that is, that if the marginals of an image were known and
nothing else (an unlikely situation in practice), the ‘“best” reconstruction
would be of product form. In inverse problems without a positivity constraint,
the sum form of v appears to be the natural description of ‘‘no interaction,”
suggesting that in this case the postulate of sum consistency should be
adopted.

ReMARKs. (i) Product-consistent selection rules cannot exist for S = R™"
because in that case different elements of S, each of product form, can have
the same marginals. On the other hand, sum-consistent selection rules, satisfy-
ing the continuity axiom in Definition 2, cannot exist for S = R7"or S = A,,,.
To see this, consider a sequence v® of elements of S of sum form v{¥ =
s + 0, 5B >0, ¢0 > 0, such that s* —s;, ¥ - ¢;, where s, =¢, =0
and s, > 0 for i > 1, ¢;> 0 for j > 1. Then v® - v and L, — L,, where
v;; = s; + t;. Thus for a sum-consistent selection rule we should have

I(L,) = ’}i_r)r:oH(Lv(k)) = lim v®® = v,

koo

a contradiction because v & S.

(ii) In the case S = R™", every L, as in (2.13) contains an element of sum
form; hence for a sum-consistent selection rule II, II(L,) is always of sum
form. It follows, subject to regularity, that v® = v°(II) is of sum form, because
v® =TI(L,0) by the consistency axiom. Similarly, in the cases S = R™" or
A,.,, if II is a product-consistent (regular) selection rule, then v°(Il) is of
product form.

(iii) For the case S = A, ,, the postulate of product consistency is similar to
but weaker than Shore and Johnson’s (1980) ““system independence” postu-
late.
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3. Statement of results. Recall that our basic set S is either R"”, R’} or
A,,, the family of affine subspaces of S is denoted by ., and V denotes R, R
or the interval (0, 1), according to the choice of S. Throughout this section, we
assume that n > 3(Gf S=R" or R})orn >5@Gf S=A4)).

The following terminology will facilitate the statement of our results.

DEeFINITION 8. A n-tuple of functions f,,...,f, defined on V will be called

a standard n-tuple with 0 at v° = (v,...,v)7 € § if:

(1) f; is continuously differentiable and vanishes together with its deriva-
tiveat v?,i=1,...,n, -

(ii) in the cases S = R or A,, lim,_, f/(v) = —,i=1,...,n,

(iii) the function

n
(3.1) F(v) = X fi(v)
i=1

is nonnegative and strictly quasiconvex on S, that is, for any v and v’ in S
and any 0 < @ < 1 we have

(3.2) F(av + (1 — a)v') <max(F(v), F(v')).

ReEMARK. The functions f; in a standard n-tuple must be convex if S = R"
or R? but not necessarily if S = A,. The proof of this is omitted in order to
save space.

THEOREM 1. (i) For any regular, local selection rule II: .£— S, there exists
a standard n-tuple f, . ..,f, with 0 at v° = v°(Il) such that 1l is generated
by the function F in (3.1). Conversely, any F as in (3.1) generates a regular,
local selection rule I1 with v°(IT) = v°,

(ii) For any regular, local projection rule, there exist functions f(vlu),
u €V, veV, such that for every fixed u = (u,,...,u,)’ €8S, the functions
fi(vlu;) form a standard n-tuple with 0 at u and the given projection rule is
generated by

(3.3) F(va) = ilfi(vilui)‘

Conversely, any such F generates a regular, local projection rule.

(iii) Two functions F(v) = L', f(v), F(v) =X f(v) or F(vlu) =
i fivluy), Fvla) = 7, fi(v;lu;) as in () or (ii) generate the same selec-
tion or projection rule, respectively, if and only if f,=cf;,, i=1,...,n, for
some constant ¢ > 0.

REMARK. In part (iii), the assumption that F and F be of the stated form
is essential. Otherwise, F(v) and F = ®(F(v)) generate the same selection rule
for any strictly increasing function ®, and F(vlu) and F = ®(F(vlu),u)
generate the same projection rule whenever ®(-|u) is strictly increasing for
every fixedu € S.
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THEOREM 2. (i) A projection rule with basic set S = R™ or R is regular,
local and semisymmetric (Definition 4) if and only if it is generated by F(v|u)
as in Theorem 1(Gi) with f; not depending on i.

(ii) A projection rule with basic set S = R} or A, is statistical (Definition
4) if and only if it is generated by

(3.4) Feviw) = 2 o f( )

i=1 i
for some continuously differentiable, strictly convex function f on R, with
f(1)=f'(1) =0 and lim,_,, f'(t) = —.

Functions of probability distributions of form (3.4), as measures of distance
motivated by information theory, were introduced by Csiszar (1963) under the
name f-divergences [cf. also Csiszar (1967)] and independently by Ali and
Silvey (1966). For their applications in statistics, see, for example, Liese and
Vajda (1987). The conditions on the derivative of f are not part of the original
definition of f-divergences. Notice that the condition f'(1) = 0 is essential
only in the case S = R"} because if S = A,, then any f(¢) and f(¢) = f(¢) +
c(t — 1) define the same F in (3.4). The condition lim,_, f'(¢) = — is
necessary for F in (3.4) to generate a projection rule, that is, to ensure that its
minimum in v be attained on every L € 7.

THEOREM 3. (i) For any regular, local and subspace-transitive projection
rule (Definition 6), there exists a standard n-tuple ¢,,...,¢, such that
®d(v) = L7 0,(v;) is strictly convex on S and the given projection rule is
generated by

F(vlu) = ®(v) - ®(u) — (grad ®(u))" (v — u)

(3.5) n )
=) (¢:(v:) — @i(u;) — @i(u)(v; — u;)).

i=1

(ii) Any F as in part (i) generates a regular, local and parallel-transitive
projection rule.

On account of this theorem, in the sequel we need not distinguish between
the two kinds of transitivity.

CoRrOLLARY. The only transitive statistical projection rule (with S = R" or
A,) is the I-divergence projection rule (cf. Example 2).

The class of measures of distance associated as in Theorem 3 with strictly
convex functions ® (not necessarily of a sum form) was introduced by
Bregman (1967). He developed an iterative algorithm for minimizing ® under
linear (and, more generally, under linear inequality) constraints, whose steps
involved projections in the sense of the distance corresponding to ® [cf. also
Censor and Lent (1981)].
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Bregman’s divergences include squared Euclidean distance and I-diver-
gence, and share with these the property

(3.6) F(vju) + F(w|v) = F(wju) if II(Lju)=v, welL.

Notice that for squared Euclidean distance, (3.6) is just the Pythagorean
theorem. The fact that I-divergence also has this Pythagorean property plays a
key role in its applications in statistics [cf. Kullback (1959)].

A result related to but not directly comparable with Theorem 3 was recently
obtained by Jones and Byrne (1990), generalizing the previous results of Jones
(1989). They showed that among the continuous analogs of the distances of
form (3.3), only the analogs of those in Theorem 3 satisfied a postulate called
projectivity. That postulate is strongly motivated from the point of view of
inference, but it also involves the distance itself, as opposed to transitivity
which is a property of the projection rule alone. Jones and Byrne (1990)
pointed out that their distances satisfied (3.6), and, in fact, that (3.6) was
equivalent to the projectivity postulate.

TuEOREM 4. (i) A projection rule with basic set S = R" is regular, local,
transitive and both location and scale-invariant if and only if it is a weighted
least squares projection rule (cf. Example 1). The above properties and
semisymmetry uniquely characterize the least squares projection rule.

(ii) A projection rule with basic set S = R" is regular, local, transitive and
scale-invariant if and only if it is generated by F(vlu) = L?_,a;h (v;lu;),

where a,, ..., a, are positive constants, a < 1, and
v .
vlog— -v +u, ifa=1,
u
u v ]
(8.7)  h(v|u) = {log—+ 2 b ifa=0,
1
—(u*—v)+u*Y(v-u), if0<a<lora<0o.
a

A projection rule with the above properties is also semisymmetric if and only if
it is generated by

(3.8) F (va) = i h (vlu;), a<l.

i=1

REMARK. The one-parameter family (3.8) contains two well-known dis-
tances: I-divergence (a = 1) and Itakura and Saito (1968) distance (a = 0).
Recent results of Jones and Trutzer (1989) indicate that (continuous versions
of) the members of this family with @ = 1/m (m some integer) may be
preferable to the Itakura-Saito distance in spectrum reconstruction, a tradi-
tional field of application of the latter.
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Our last result provides a characterization of the least squares and I-diver-
gence selection and projection rules that, instead of invariance or transitivity,
rely on composition consistency (Definition 7). We emphasize that this charac-
terization also applies to individual selection rules, rather than to projection
rules only. On the other hand, we have to assume that the basic set S is as
described before Definition 7. Intuitively, the inference problem in question
should relate to objects with (at least) two components.

THEOREM 5. Let S be as in Definition 7, S = R™" or RT'" or A
m=>2,n>2andif S=A m+n>5.

with

mn’

mn»’

(i) In the case S = R™", the regular, local, sum-consistent selection and
projection rules are exactly those least squares selection rules for which v° is of
sum form, and the least squares projection rule, respectively (cf. Example 1).

(ii) In the cases S = R" or A,,,,, the regular, local and product-consistent
selection and projection rules are exactly those I-divergence selection rules for
which v° is of product form, and the I-divergence projection rule, respectively
(cf. Example 2).

CoroLLARY. (i) For S = R™", the standard least squares selection rule is
the unique regular, local, sum-consistent selection rule for which v°(Il) = 0

(ii) For S = A,,,, the maximum entropy selection rule is the unique regu-
lar, local, product-consistent selection rule for which v°(Il) is the “uniform
distribution” (1/mn)1. The same holds also for S = R'" if the last condition
is replaced by v°(I1) = (1/e)1.

4. Basic lemmas.

LEmMmA 1. For a regular selection rule II: S — £, for every L' € . of
dimension less than n — 1 (if S = R™ or R%) or less than n — 2 (if S = A)),
there exists L € A4 [cf. (2.3)] such that L' c L and TI(L') = TI(L).

CoroLLARY . For a regular 11 and L' € .Z, L € .#, the equality TI(L') =
II(L) implies L' C L unless TI(L') = v°(II).

Proor. Clearly, it suffices to prove that if dim L' =d with0 <d <n —1
(or 0 <d < n — 2), then there exists an L € . such that L oD L, dim L =
d + 1, II(L') = TI(L). Further, instead of the last equality, it suffices to show
that TI(L) € L' because this, by the consistency axiom in Definition 2, already
implies TI(L") = TI(L).

Now, pick any (d + 1)-dimensional L, D L' and suppose that H(Ll) L.
Then we will “rotate” L, to obtain a family {L,: 0 < ¢ < 2} and show that
II(L,) € L' for some ¢. To this end, pick any v, &€ L, in S, set v; = II(L,) and
let v, be such that some interior point of the segment [v,, v,] is in L'. Set
v,=Q-tvy+tv;if0<t<landv,=@Q-8v, + (¢t - Dv, if 1 <t <2
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and let L, denote the subspace of S spanned by L' and v,. Then L, = L, and
L,NL, =L if0<t¢ <t <2

By the continuity axiom, {II(L,): 0 <t < 2} is a continuous closed curve in
the subspace L spanned by L, and v, (¢ = 0 and ¢ = 2 representing the same
point). For ¢ > 0 sufficiently sma]l I(L,_,) and TI(L, , . )—which are arbitrar-
ily close to II(L,) = v,—are separated by L, within L; hence there exists
some ¢ with [t — 1| > ¢ for which H(L)EL Then I(L,)e L,NL, =L,
and the proof of Lemma 1 is complete.

The corollary is immediate, because for L € # containing L' such that
(L)) = TI(L), the distinctness axiom 1mp11es L=L o

LeEmMA 2. The restriction of a regular selectzon rule II: .£— S to / \Z°
is a homeomorphism onto S \ {v°}, where v® = v°(I1) and #° = {L: v® € L}.

Proor. Applying Lemma 1 to the zero-dimensional subspace L' = {v}, it
follows that for each v € S there exists L € .# such that II(L) = v. If v # v°,
then L ¢ _Z°, by the consistency axiom. Thus IT maps .Z\ .#° onto S \ {v°)}.
This mapping is one-to-one and continuous by the distinctness and continuity
axioms. It remains to prove the continuity of the inverse. In other words, we
have to show that II(L,) — II(L) # v° implies L, — L.

We do this by showing that every subsequence of {L,} contains a subse-
quence converging to L. Write

L - {v:alv =25}, ifS=R"orS=R",
P {vialv=b,;10v=1), ifS=A4,

{cf. (2.3)]. Here we may suppose that ||a,|l = 1 and in the case S = A, also
thata, 1 1.

Now, any subsequence of {L,} contains a subsequence {L,} such that
a, — a, say. Write II(L,) = v, II(L) = v*, a"v* = b. As v, > v* by as-
sumption, a, — a implies that b, = al v, a Tv* = b. This means that if

the set
io {v:al
{v:al

is in .#, we have L, — L. But L €.# holds because (i) L # & (namely,
v el by the definition of &) and (ii) lall=1and,if S=A,, alsoa L 1.

We have proved that every subsequence of {L,} conta.lns a convergent
subsequence L, — L.Bythe continuity axiom, here (L) = lim, _,, TI(L k) =
(L) # v° and hence necessarily L = L by the distinctness axiom. This
completes the proof of Lemma 2. O

[
S

}, if S=R"orR?,

v
v=51v=1}), ifS=A4,,

Il
S

We will need the following notation, for 2 < n: The vectors in R* whose
components are all 0 or all 1, will be denoted by 0, and 1,, respectively (thus
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0=0,, 1=1,). Two vectors in R* will be called equivalent, denoted by
a ~ a, iff for some A # 0,

_ [ Aa, if S=R"orS =R",
\Aa+pul,peR, ifS=A,.

Observe that in the representation

(4.1) L {{v: a’v = b}, if S=R"or R",

(v:alv=0,1"Tv=1}, ifS=A4,,

of a subspace L € .#, the vector a € R” is determined up to equivalence, and
it is not equivalent to 0.

LemMA 3. Let II: £~ S be a regular, local selection rule, and let <;; be
the relation introduced in the passage containing (2.10).

() Let L € #, II(L) = v* # v° = v°(I). Then v} <;; vf if and only if
a;,=a; in the representatwn (4.1) of L; further, in the cases S = R™ or
S R™, v¥ =v! if and only if a; = 0. 5

(i) Let L and L be both in # with TI(L) # v°, TI(L) # v°, and let
J c{l,...,n}. Then I (L) = I1,(L) implies a;~ a, for aand a represent-
ing L and L as in (4.1). In other words, a; is determined by TI (L) up to

equivalence.

CoroLLARY. Ifv; &,; v; and v; ©;;, v, for some {i, j, k} C{1,...,n}, then

also v; ©;, v,, provided in the case S A, thatv; +v; +v, <1

Proor. We will show that for L as in (i), arbitrary J = {j,...,j,} C
{1,...,n}, 4 € R*, and for

{v:aTv, = aTv}}, if S=R"or R?,
(42) L'={{v:alv,=a"v}, 1iv, = 1}v}, 17 _,v,. = 15_,vi},
ifS=A,,

the following holds: a J ~ 4 is a sufficient condition for

(43) I,(L) = IL,(L)

and this condition is also necessary unless a; ~ 0,.
To prove this, set

(4.4) L” = L’ N {V: VJc = vjc} .

Then, by locality, IT,(L') = IT ;(L"). Since, of course, I1,.(L") = vJ., it follows
that (4.3) holds if and only if TI(L") = v*.

Now, if a; ~ &, then L" c L. By the consistency axiom, the latter implies
II(L") = v*. Thus a; ~ & is sufficient for (4.3), as claimed.
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Conversely, if (4.3) and therefore II(L”) = v* hold, the corollary of Lemma
1 yields L”" c L. Companng (4.1), (4.3) and (4.4), L’ c L means that 47v, =
alvy 1mphes alv; = alv} (subject to the additional constraint ¥ _,v; =
Licgvf if S=A,). Clearly, this implication holds iff the two condltlons
represent the same constraint, except for the case a; ~ 0,. This proves that
a; ~ & is indeed necessary for (4.3) unless a; ~ 0,,.

To prove assertion (i) of the lemma, suppose first that S = R"” or S = R
and apply the result just proved to J = {i}, @ = 0. Then L’ in (4.2) equals S
and (4.3) means that v} = v?. Thus we obtain that a; = 0 implies v} = v? and
conversely, if a; # 0, then v} = v? cannot hold. Next, apply our result to

= {i j}, 4= (1,17 Then L’ in (4.2) equals the special subspace L; (@) (with
t =vF + v*) that defines the relatlon o . [ef. (2.10)]. Hence (4.3) i 1s equiva-

lent to vf o,; vf. Nowif a, » then aJ ~ &= (1,17, except when S = R"
or S = R" and a;=ga; = O Thus we have that a; = a; implies v} ©<,; v,

because the mentioned exceptiona.l case has already been covered.

Conversely, if a; # a;, then neither a; ~ 0, nor a; ~ 4; hence v} ©,; v}
cannot hold.

To prove assertion (ii), suppose that I1,(L) = J(L) = v¥ and consider L'
as in (4.2) with & = a ;. Then I (L) = I ;(L) = I (L"), by assumption and
the sufficient condition for (4.3). Thls implies, by the necessary condition, that
a, ~ a,, except perhaps when a; ~ 0,. Since the roles of L and L are
symmetric, we similarly have a; ~ a; when a; is not equivalent to 0,,
whereas the same trivially holds when botha; ~0, anda; ~ 0,.

To prove the corollary, pick any v* € S with v} = v;, v} =v;, vf = v,. If
v* # v°, the hypotheses v; ©,; v; and v; ©, v, imply by Lemmas 2 and 3(i)
that v* = II(L) for some L as in (4.1) with a; =a; = a,. this, in turn,
implies [again, by Lemma 3(i)] that v, «;, v,, whereas the latter is obvious (by
the consistency axiom) if v* = v° O

LEmMa 4. () Let F,(u,v), i #j, {i,j} c{1,...,n}, n > 3, be real-valued
functions defined for u € A;, v € A;, where A,,..., A, are arbitrary sets. If
these F,; satisfy the functional equations

(4'5) Fij(u’v)ij(v’w) = Fik(u’w)’ Fij(u’v)Fji(v’u) = ]-’

then there exist functions g; defined on A;, i = 1,...,n, such that for every i
and j, ,

&i(u)
g(v)’

(i) Let n >4 and let B;; CA; X A;, C;;, CA; X A; X A, be sets such that
(D (u,v) € B;; if and only if (v u) IS B i (2) (u v,w) CC; Jk implies that
(u,v) € By, (u, w) € By, (v,w) € Bj;; (3) for any distinct i, j, k,l and any
ueA, veA; weA, there exists s €A, with (u,s) € B, (v,s) € By,
(w,s) € B,;; and (4) for any distinct i,j,k,l and any u,v,s,s’ with
(u,s),(u,s") in B, and (v,s),(v,s') in Bj,, there exists w € A, with

(4.6) Fy(u,v) =
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(u,w,s),(u,w,s) in Cy,; and (s,w,v),(s’,w,v) in Cy, ;. Then if the functions
F;; are defined on the sets B;; and the equations (4.5) hold for (u,v,w) € C, ;,
the conclusion of part (i) still holds.

Proor. (i) Fix some k and W € A,, and write g;(u) = F;,(u, W) for i # k.
Then g,(u) # 0 by the second part of (4.5), and the first part of (4.5) gives (4.6)
if i, j are both different from k. In addition, (4.5) implies that

g) gi(u)
Fy(v,w)  Fy(u,w)’

for every i # k, j #k, u € A;, v € A;. Denoting the common value of these
quotients by g,(w), we obtain (4.6) also for j = k. Finally, the validity of (4.6)
for the remaining case i = k follows from the second equation in (4.5).

(ii) On account of (i) it suffices to prove that the functions F;; can be
extended from B;; to A; X A; so that the equations (4.5) remain valid. To this
end, given u € A;, v € A;, pick arbitrarily ! # k£ (both different from i, j) and
s and s’ in A; such as in hypothesis (4); choose w € A, according to that
hypothesis. Then, applying the first and then the second part of (4.5), we get

Fil(u7s)Flj(s’v) = Fik(u’w)Fkl(w’s)Flk(s’w)ij(w’v)
= ik(u’w)ij(w’v)
and similarly
F'il(u7s,)Flj(s”v) = Fik(u’w)ij(w7v)'
This means that
(4.7) Fj(u,v) = Fy(u,s)F,(s,v)

is well defined because the right-hand side does not depend on ! and s [subject
to (u, s) € By, (v, s) € By, the latter being equivalent to (s, v) € B;]. Clearly,
(4.7) defines an extension of F;; to A; X A;. To see that these extensions F;;
satisfy the functional equations (4.5) for every u € A;,, v € A;, w €A, let |
be different from i, j, k and pick s € A, according to hypothesis (3). Then by
(4.7) and the second part of (4.5)

Fj(u,v)Fy(v,w) = Fy(u, 8) F;(s,0) Fy(v, 8) Fu(s, w)
=Fy(u,s)F,(s,w) =Fik(u,w):
Fj(u,v)Fy(u,v) = Fy(u,s)F;(s,0)Fy(v, s) Fii(s, u)
=F,(u,s)F;(s,u) = 1. u
5. Proof of the main results.

ProoF oF THEOREM 1. (i) Let IT: .Z— S be a regular, local selection rule,
and let v0 = (0),...,v9)T = v°(I). By Lemma 2, for every v # v° there exists
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aunique L = L(v) € .# such that II(L) = v; moreover, L(v) depends continu-
ously on v. Write L = L(v) as

_ [{w:a"w = aTv}, if S=R"or R?,

51 L=
(5.1) {w:aTw =aTv;1Tw =1}, ifS=A,.

Here the vector a € R" is determined up to equivalence (cf. the passage before
Lemma 3).

Our first claim is that there exist continuous functions g,(v), v € V, with
g:(?)=0,i=1,...,n, such that in the representation (5.1) of L = L(v) (for
arbitrary v # v°) .

T
(52) an~ (gl(vl)’“"gn(vn)) .
For later reference, observe that (5.2) implies by Lemma 3() that

(5.3) v; <, v; ifandonlyif g,(v;) =g;(v;),

J 7J

providing in the case S = A, that v; + v; < L.

To prove our first claim, we start with the simpler cases S = R" or R} . By
Lemma 3(ii), applied to J = {i, j}, it follows that (a;, a j)T is determined up to
equivalence by v; and v;. Thus

a;
(5.4) Fij(vi’vj) = .
J

is a well-defined continuous function of v; and v; whenever v; # v} [which, by
Lemma 3(i), is necessary and sufficient for a ; # 0]. Clearly, the functions (5.4)
satisfy the functional equations

Fij(Ui’Uj)F}k(Uj’Uk) =F,;(v;,0;), Fij(vi’vj)Fji(vj’vi) =1

for v, e VN {v?},i=1,...,n (recall that V=R or R, according as S = R"
or R%). It follows by Lemma 4 that

&i(v;)
gj(vj)

if v; #v?, v; #v), for suitable functions defined and not equal to 0 on
V \ {v}. Letting g;(v?) = 0, (5.5) also holds for v; = v? whenever F,;(v;,v;) is
defined, that is, v; # v}. ‘

Comparing (5.4) and (5.5), we obtain (5.2). The functions g; are continuous
because the F;; are such.

Turning to the more difficult case S = A,,, apply Lemma 3(ii) with J =
{i, j, 1} to obtain for a € R in (5.1) that (a;,a;, a DT is uniquely determined,
up to equivalence, by v;, v;, v,. Hence

(5.5) Fj(v;,v)) =

a; —aq
(5.6) Ejl(vi’ Ujrvl) =

aj_al

is a well-defined continuous function of (v;, v}, v;) subject to v; + v; + v, < 1,
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except for v; ©;; v, [which is necessary and sufficient for a; = a,, by Lemma
3@].
Clearly, the functions (5.6) satisfy the functional equations

(5.7) F (0,05, 01) Fig (0,04, 01) = Fipy (03,0, 07)
if v, +v; + v, + v, <1, as well as

(5-8) Fijl(vi’vj’vl)Fjil(vj’vi’vl) =1,
(5.9) ‘ Fijl(vi’vj’vl)Fjli(vj’vl:vi)Flij(vl’vi’vj) = -1,
(5.10) F (v, v5,v) + Fyi(v,v,0;) =1

if v; + v; + v; < 1, assuming in each case that all functions are defined.

These functional equations can be solved applying Lemma 4(ii) three times.
First, we use (5.7) and (5.8) fixing ! and v, and restricting the domain of the
F;;’s—as functions of v; and v,—by excluding v; ©,; v,, that is, F,; = 0.
Then the hypotheses of Lemma 4(ii) are easily checked, taking into account for
hypotheses (3) and (4) that (for fixed v,) the relation v ©,; v, never holds if v
is sufficiently small; the latter follows from the continuity axiom in Definition
2. Lemma 4 gives

G (v;,v))
5.11 Foo(v;,v,,0,) = 220270

( ) ljl(vl vj vl) Gjl(vj,vl)
for suitable functions G;, defined (and nonzero) for v; + v; <1, unless
U, €4 Uy

Substituting (5.11) into (5.9), we obtain, after rearranging,

Gji(vj’vi) Glj(vl’vj) _ Gi(v,v;)
G;;(v;,v;) G (v;,v)) G, (v;,v)

Now we apply Lemma 4(ii) to the functions

G(v;,v;)
Hi vi, v L e ———
(08 = = G )
(defined for v; + v, < 1, unless v; <, v,), yielding
< hi(v)
H, (v;,v;) = s
l( l) hl(vl)

for suitable functions 4 ; defined (and nonzero) in V = (0, 1). This means that

the functions
~ G;i(v;,v))
l( l) hl( vl)

satisfy .
(5.12) Gil(vi’vl) = _Gji(vl’ V),
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and, by (5.11),

Gil(vwvl)
Gjl(v"vl)

At this point we remove the temporary exclusion of v; <, v, from the
definition of the domain of F;;;; defining G, (v;,v) = 0 if v; &, v, (5.13) will
always hold whenever F. ;, in (5.6) is defined.

Finally, substituting 5 13) into (5.10) gives, after rearranging, using also
(5.12),

(5.14) Gil(vi’ u) + élj(vlavj) = Gij(virvj)’

whenever v; + v; + v, < 1. More exactly, the given derivation of (5.14) is valid
unless v; <, v, and a similar derivation from (5.10), with the roles of i and j
interchanged, is valid unless v; «;; v;; if both v, &;; v, and v; & v,, then
also v; ©,; v; and (5.14) holds trivially.

(5.14) and (5.12) mean that Lemma 4(ii) is applicable to the functions
F;; = exp G,;. It follows that
(5.15) éij(vi’vj) =g;(v;) _gj(vj)1
for suitable functions g; defined on V = (0, 1).

Since G, (vl,vj) = 0if v; &,; v; and thus, in particular, if v; = v} v =
here g,(vo) is 1ndependent of i, “and we may assume that g,(vo) =0,i=
1,...,n.

Substituting (5.15) into (5.13), we obtain

&i(v;) — &(v))
gj(v') - &i(v) ’

whenever the left-hand side is defined. As the functions F;;, are continuous, so
are the g;’s, too.

Comparing (5.16) with (5.6), we obtain (5.2).

Having established our first claim, we define

(5.17) £ = [(ad,  F) = T f(w).
Ui i=1

(513) ljl(vl’ j’vl) =

(516) ljl(vl’ J’Ul) =

We will show that f,,..., f, form a standard n-tuple [notice that property (i)
in Definition 8 obviously holds] and that F(v) generates II.

With (5.17), (5.2) becomes a ~ grad F(v). As the vector a in (5.1) is deter-
mined up to equivalence only, it follows that (for arbitrary v # v°)L(v) is the
set of all w € S satisfying

(5.18) -~ (grad F(v))(w—v) = 0.

Observe next that for any L € .# we have by the consistency axiom and
Lemma 1 that II(L) = vif and only if v € L c L(v), providing v # v° whereas
if v° € L, then always I1(L) = v°. Thus we may assert without any restriction



AXIOMATIC APPROACH TO INFERENCE 2055

on v and for arbitrary L € ., that II(L) = v if and only if v € L and (5.18)
holds for every w € L (the latter being automatically fulfilled if v = v°).

For any distinct v and w in S satisfying (5.18), the result in the last
paragraph applied to the line L' through v and w gives that

(grad F(w))"(w — v) # 0;

here we used the fact that the difference of any two elements of L’ is a scalar
multiple of w — v.

By continuity, this nonzero inner product must be of constant sign for
w # v satisfying (5.18), when v € S is fixed. Further, again by continuity, this
sign cannot actually depend on v, either. Without restricting generality, we
may assume that this constant sign is positive. Indeed, the functions g; in
(5.17) may be multiplied by (— 1) if necessary, without changing their proper-
ties asserted in our first claim.

We have obtained that (5.18) with w # v always implies

(5.19) (grad F(w))"(w — v) > 0.

It follows that for any line L' in S, F(w) is strictly increasing as w moves
away from v = II(L’) in either direction. This immediately gives that F has
property (iii) in Definition 8.

Further, for any L € _#, the fact that F(w) is strictly increasing as w moves
away from v = [I(L) on any line L' c L proves that II(L) is the unique point
where F is minimized over L. Thus II is generated by F.

To prove that (ii) in Definition 8 also holds, notice first that as v = v°
trivially satisfies (5.18) for every w € S, (5.19) gives

(5.20) (grad F(w))"(w —v°) >0 forallw #v%in S.

IfS=R" orA,,let ¥ =(0,..., 0,)T be a boundary point of S such that
0, =0 and 0, # 0 if j # i, further, f/(0,) # f;(,) for some j and [ different
from i. (5.20) implies that

lim inf (grad F(w))" (¥ - v°) > 0;

hence f/(v) is bounded from above as v — 0. Thus, if the assertion
lim,_, f/(v) = —» were false, f; would have a finite limit on a suitable
sequence of positive numbers approaching 0. Then there would exist a se-
quence v, — Vv (with v, € S) such that grad F(v,) — a, say, where a is not
equivalent to 0. This provides the desired contradiction because the sequence

of subspaces
L, = {w: (grad F(v,))"(w-v,) =0, we S} €.l
converges to
L={w:al(w-¥)=0,we S} e,

and the sequence I1(L,) = v, does not converge to II(L), for it goes to ¥ & S.
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This completes the proof of the assertions made in the passage containing
(5.17).

Finally, let f,,..., f, be any standard n-tuple with 0 at v° = (v?,...,09),
and set F(v) = X7_, fi(v;). Notice first that in the cases S = R" or R%,
property (iii) in Definition 8 implies that f;(v) is strictly increasing (decreas-
ing) for v > v? (v < v?) and also that f,(v) » « as v — . To verify the latter,
suppose indirectly that f,(v) - ¢ < © as v - o, choose v; > v, v; > v} with
fiw) + fi(v;) = ¢, and apply (3.2) to v = (vy,...,v,)" with v, = v) for  # i, j
and v’ = (v}, ...,v,)T with v, = v for I # i. It follows that

(5.21) fi(av; + (1 = a)v}) + fi(av; + (T = @)v)) < fi(v;) + f;(v)),

for every v} > v? and 0 < a < 1. Letting first v\ - © and then a — 0, (5.21)
results in the contradiction ¢ < f;(v,). One verifies in the same way that in the
case S = R", f(v) > w alsoas v » —. If S=R7? or A,, F(v) has a limit
(finite or +x) as v converges to a boundary point of S, because property (ii) in
Definition 8 implies the monotonicity of each f; near 0. It follows that F,
extended by continuity to the closure of S if S=R" or A,, attains its
minimum on any L € £, more exactly, if S = R} or A,,, on the closure of L.
But property (ii) rules out the minimum being attained on the boundary. By
property (iii), the point where F attains its minimum over L must be unique;
hence F does generate a selection rule Il. Property (i) implies that this IT is
regular and it is obviously local.

(ii) Let us be given a regular, local projection rule with component projec-
tion rules II(-|u), u € S. For arbitrary v # u, let L(v|u) denote the unique
L € .# with TI(L|u) = v. We claim that the following modified version of our
first claim in the proof of part (i) is valid:

There exist functions g,(vlu), u,v € V, continuous in v and vanishing for

=u,i=1,...,n, such that in the representation (5.1) of L = L(v|u) we
have
T
(5.22) an~ (gi(viluy),..., 8, (v,lu,)) .

In the proof of part (i), the function F generating the selection rule IT was
constructed from functions g; with the property (5.2). If (5.22) is established,
the functions g;(vl|u;) there can be taken as functions g,(v) corresponding to
IT = TI(: [w). Then [cf. (5.17)] TI(- |u) will be generated by

(523)  F(vlw = ¥ fiulus),  fidu) = [eolu) do
i=1 u;

as a function of v. This means, by definition, that the given projection rule is
generated by F(v|u).
Thus it suffices to prove the claim about (5.22). This can be done along the
lines of part (i); hence we only sketch the proof, for the hard case S = A,,.
We need an obvious modification of Lemma 3, namely that for L as in (4.1)
with TI(Llu) = v # u, () (v;lu,) ©;; (v;lu;) iff a; = a; and (b) the vector a,
is determined by u,; and v, up to equivalence.
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Applying this to J = (i, j, I}, it follows that the functions

a* - al
(524) F'ijl(vi’ vlluuuj’ul) =

a _al

are well defined and continuous in v,, v;, v, subject to u; + ujtu; <luv+
v; + v; < 1, except when (v;lu;) & (vllul)

The functlons (5.24) satlsfy functional equations similar to (5.7)-(5.10),
each variable v; in the latter being replaced by a pair of variables v;, u;, where
with each constramt on sums of variables v; a similar constraint on sums of
variables u; is imposed. This system of functlonal equations can be solved
similarly to (5.7)—(5.10), again applying Lemma 4(ii) three times. It is conve-
nient that the variables of the functions in Lemma 4 were not required to be
reals; presently we have to let them stand for pairs of real numbers v, u.
Finally, we arrive at a representation of the functions (5.24) analogous to
(5.16), namely,

8i(vilu;) — &i(vlu,)
gj(vjluj) — &i(vylu,)
Comparing (5.24) and (5.25) proves the desired relation (5.22) and thereby part
(ii) of Theorem 1. 3

(iii) Suppose that F(v) = ©7_, f.(v;) and Fv)=Y7, fi(v,) generate the
same selection rule, where (f},..., f,) and (f,,..., f.) are standard n-tuples.

Clearly, it suffices to prove f, = cf for the case when (f,, ..., f,) is arbitrary,
with 0 at v° = (v9,...,

(5-25) Fijl(vi’ vj, vllui’ u;, ul) =

v, say, and (fi,..., f,) is constructed to the (regu-
lar, local) selection rule IT generated by F as in the proof of part (i) [cf. (5.17)].
Now, since F generates H its minimum on L = L(v) is achieved at the point
v. Hence for every v # v we have (grad F(v))T(w — v) = 0 for all w € L(v)
Since L(v) is the set of all w € S satisfying (5.18), it follows that for v # v°,

(5.26) grad F(v) = A(v)grad F(v) ifS=R"orR%,

(5.27) grad F(v) = A(v)grad F(v) + w(v)l if S=A;

the same holds trivially also for v = v°, with u(v®) = 0 in the case S = A,.
As the components of the gradient vectors depend only on the corresponding

components of v, the scalar functions A and p in (5.26) and (5.27) must be
constant and, in particular, u in (5.27) is identically 0. Thus we actually have

(5.28) grad F(v) = cgrad F(v).
Since fi,..., f, and fi,..., f. have the property (i) in Definition 8, (5.28)

implies that f; = cf;, as claimed. The proof of assertion (iii) for projection rules
is similar. O _

Proor or THEOREM 2. By the proof of Theorem 1(ii), any regular and local
projection rule is generated by a function as in (5.23), where g,(vlu) is a
continuous function of v that vanishes at v = u, i = 1,..., n; moreover, for
any u # v the subspace L defined by (5.1) with a; = g,(vllul) has the property
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that II(L|u) = v. By the modification of Lemma 3(i) used in that proof, it
follows that

(5.29) (vilu;) & (vjluj) ifand only if g;(v;lu;) = gj(vjluj),

provided in the case S = A, that u; + u; <1,v; +v; <1

Now, if S = R™ or R’} and the given projection rule is semisymmetric, that
is, (vlu) ©,; (vlu) for every u and v in V and every i,j €{1,...,n}, (6.29)
implies that the functions g; do not depend on i; hence, by (5.23), neither do
the functions f;.

Further, if S = R” or A, and the given-projection rule is statistical, that is,
(vlu) & ;;(V'[v') if and only if v/u = v'/u', (5.29) implies that

v; v

(5.30) g(ilu,) =gi(vlu;) if ol

i

e
u;’

provided in the case S = A, that u;, + u; <1, v; + v; < 1. Actually, the last
constraint can be dispensed with, because for any given u;, u; v;,v; [in
V = (0, 1)] there exist u,,v, such that u, + u, <1,v;+v, <1, u; +u, <1,
v; +v, <1 and v;/u; =v,/u,. (5.30) means that g(vlu) is a one-to-one
function of v/u, not depending on i, that is,

(5.31) gi(vlu) =g ).

The continuity of g; as a function of v and the one-to-one property of g
implies that g(¢) is a continuous, strictly monotonic function of ¢, and
g(1) = g,(ulu) = 0. Substituting (5.31) into (5.26) gives

(5.32)  fi(vlu;) =f"'g(ui)dv =u,-f(§ij), £(t) =f1tg(s) ds.

u, i i

This completes the proof of Theorem 2. O

Proor oF THEOREM 3. (i) First, we show that if a regular selection rule is
subspace-transitive, then for distinct elements u, v, w of S,

(5.33) L(vju) N L(w|v) c L(wu) ifw & L(v|u).

Here, as in the proof of Theorem 1(ii), L(v|u) denotes the unique L € .# with
I(Lla) = v.

Indeed, let L' = L(vlu) N L(w|v). Then TI(L'|v) = w by the consistency
axiom, and the transitivity postulate applied to L' ¢ L = L(v|u) gives

(L) =II(L|v) = w.

But II(L'|u) = w implies that L' c L(wl|ua), by the corollary of Lemma 1,
proving (5.33).
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Now let us be given a regular, local projection rule, generated by F(v|u) as
in (5.23). In particular,

a
(5.34) gi(vju) = - fi(vlu)

is a continuous function of v, vanishing at v = u. Then L(v|u) consists of
those w € S that satisfy

(5.35) f g:(vilu;)(w; —v;) = 0.
i=1

Hence, if the given projection rule is subspace-transitive, it follows from (5.33)
that for any distinct u,v,w in S satisfying (5.35), there exist scalars «, B, v,
possibly depending on u, v, w, with y = 0 unless S = A, such that

(5.36) agi(vilui) + ﬁgi(wilvi) + Y = gi(wilui), l = 1, “ee ,n.
We claim that actually

(5.37) gi(vlu) + g(wl) = g(wlu),
for every u,v,w in V and i = 1,...,n. Clearly, it suffices to prove this for
i=1

Consider first the simpler cases S = R™ or R". Then for any u,v,w in V,
there exist u, v, w in S satisfying (5.35) such that u, = u, v, = v, w; = w and,
in addition,

(5.38) Uy = Uy # Wy, Uy # Vg = Wj.

With these u, v, w, (5.38) implies that in (5.36), where now y = 0, we have
a = B = 1 [using that, by Lemma 3, g,(v|u) # 0 if v # u]. This proves (5.37)
for i = 1.

If S=A, then v # u does not necessarily imply g,(vlu) # 0. It follows,
however, from (iii) in Definition 8, that for at most one index i can u < 1/2
and an interval I c (0,1/2) be found such that f(vlu) is constant for v € I.
This implies (assuming, without any loss of generality, that the exceptional i,
if any, is different from 2 and 3) that for any 8 < 1/2, the numbers ¢
satisfying

(5.39) g4(£]6) #0, | g4(¢l8) # 0

are dense in the interval (0, 1 /2). Using this, it is easy to see that for any fixed
u, v and w sufficiently close to v, there exist u,v,w in S = A, satisfying
(5.85), such that u, = u, v; = v, w; = w and, with some ¢ and & satisfying
(5.39),

(5.40) Uy =Uy=1Uz=2F, Wy =Ug=W3z=¢
and
(5.41) Uy =Uy = Wy.

With these u, v, w, (5.41) implies that in (5.36) we have y = 0, then (5.40) and
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(5.39) imply that @ = 8 = 1. This proves (5.37) (for i = 1) if w is sufficiently
close to v.

Observe next that given any « and v in V = (0,1), the numbers w € V
satisfying (5.37) for i = 1 form an open set. Indeed, by the last paragraph, for
w' sufficiently close to w we have

gi(ww) + gy(wl) = g1 (w'lv), gu(wlw) + gy(wlu) = g(w'u);
it follows that if w satisfies (5.37) for i = 1, then so does w’'.
Since g,(wlu) and g,(wlv) are continuous functions of w, the (nonvoid) set
of those w € V that satisfy (5.37) for i = 1 can be open only if it equals the
whole V = (0, 1). This completes the proof of (5.37) in the case S = A,,.

The functional equations (5.37) imply that the functions g; can be repre-
sented as

(5.42) gi(vlu) = ¢;(v) — ¥y (u),

where it may be assumed that ,(s) =0, i =1,...,n, for some s € V [set
¥;(v) = g(slv), sayl. Since g,(vlu) is a continuous function of v, ¢, must be
continuous, too. Writing

(5.43) eiv) = [Cui(t) dt,

the functions ¢, ..., ¢, satisfy (i) in Definition 8, with v® = s - 1, and (in the
cases S = R" or A,) the validity of (i) in Definition 8 for the functions ¢,
follows from that for g,(-|u), by (5.42). Property (ii) for ¢,,..., ¢, will, of
course, follow from the strict convexity of ®(v) = L?_,¢,(v;) that we are going
to verify immediately.

From (5.34), (5.42) and (5.43) we get

(5.44)  fi(vlu) = [ gi(tlu) dt = ¢,(v) = ¢i(u) — bi(u)(v — u).
This proves that F(viu) = X7_, fi(v;lu;) has the claimed form
F(vu) = ®(v) - ®(u) — (grad ®(u))" (v - ).

Since F(v|u) > 0, with equality if and only if v = u, this result also proves the
strict convexity of ® on S.

(ii) Let ¢y,...,¢, be a standard r-tuple such that ®(v) = X7 ,¢,(v;) is
strictly convex on S, and let f(v|x) be defined by (5.43) where ,(u) = ¢(u).
Then for any fixed u € S, the functions f,(:|x;) form a standard r-tuple with
0 at u; hence by Theorem 1(i), F(vlu) = X7_; fi(v;lu;) generates a regular,
local projection rule. To prove that the latter is parallel-transitive, suppose
that v = II(L|u), w = II(L'|v), where L and L' are ‘“parallel”’ subspaces.
Then grad F(vlu) and grad F(w|v) are both orthogonal to these subspaces
(where the gradient refers to the first variable) and hence so is

grad F(wlu) = grad F(v|u) + grad F(w|v).

This means that II(L'|u) = w, as claimed.
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To prove the corollary, recall that by Theorem 2, every statistical projection
rule is generated by an f-divergence

F(vla) = Z v; f( )
i=1
where f(¢) is a continuously differentiable function with f(1) =f'(1) =0
Then the functions g;(v|z) in (5.34) do not depend on i and are equal to
g(v/u), where g(t) = f'(¢). If this projection rule is transitive, we must have

g(=) - v = v(w)

[cf. (5.42)] for some continuous function . This implies that g satisfies the
functional equation

(5.45) g(ts) = g(t) +g(s), t,seR,,

whose only continuous solutions are g(¢) = clog¢ [cf. Aczél (1966), Section
2.1.2]. Hence f(t) = [ig(t)dt = c(tlogt — t) and this means that F(viu) =
cl(vluw). O

Proor oF THEOREM 4. (i) First we show that a (regular, local) projection
rule with basic set S = R", generated by

(5.46) F(vlu) = an fi(vilu;)

as in Theorem 1(ii), is translation-invariant if and only if

(5.47) fi(v + mlu +p) =c(p) fi(vin),

for every u, v and p in R, where c(u) is a suitable positive-valued function.
Indeed, since v* = II(L + pllu + u1) minimizes F(v|u + p1) subject to v €
L + pl, v* — p1 minimizes F(vlu) = F(v + plju + p1) subject to v & L.
Hence the given projection rule is translation-invariant, that is, II(L|u) =
— u1, if and only if this projection rule is also generated by F,(vlu). The
latter is, by Theorem 1(iii), equivalent to (5.47), as claimed.
By Theorem 3, if (5.46) generates a transitive projection rule, then

(5.48) Fvlu) = ¢i(v) — @i(u) = ¢i(w)(v — ),

where (¢, ..., ®,) is a standard n-tuple. By the paragraph containing (5.43),
we may assume without any loss of generality that this standard n-tuple has 0
at v® = 0. Our next goal is to determine what functions f;(vlu) of form (5.48)
satisfy (5.47).

Observe that (5.47) implies c(u; + py) = c(u)e(u,) and that (5 47) and
(5.48) imply the continuity of c(u). It follows that

(5.49) c(n) =eP* forsome B €R
[cf. Aczél (1966), Section 2.1.2].
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From (5.47) (with u = —u) and (5.49), we obtain

(5.50) fi(v|u) = eP*f,(v — ul0);

this and (5.48)—where, by assumption, ¢,(0) = ¢}(0) = 0— result in
(5.51) Fi(vl) = oo (v — ).

Comparing (5.48) and (5.51) and differentiating by v, it follows that
(5.52) ¢i(v) — ¢i(u) = eProi(v — u).

This means, substituting v = u + ¢, that ¢ = ¢ satisfies the functional equa-
tion

(5.53) U(u +t) =d(u) +ePy(t).
This functional equation is solved easily. First,
(5.54) Y(t)=at ifB=0

[cf. Aczél (1966), Section 2.1.2]. For B # 0, observe that (5.53) implies by
symmetry

Y(u) + ePuy(t) = p(t) + ePy(u);

thus

p(t) ef -1

p(u) P -1
This gives
(5.55) U(t) =a(ef —1) ifB+0.

Thus ¢} must be either of form (5.54) or of form (5.55), where the constant
factor a (but not B) may depend on i. Clearly, the positivity or negativity of
these factors, according as B8 > 0 or B <0, is necessary and sufficient for
getting a standard n-tuple ¢,,..., ¢,.

Finally, just as (5.47) was necessary and sufficient for translation invari-
ance, one sees that the projection rule generated by (5.46) is scale-invariant if
and only if
(5.56) f:(Avjaw) = ¢(A) fi(v|w),
for every A > 0. Now, f,(vlu) defined by (5.48) with ¢ of form (5.55) does not
satisfy (5.56), whereas with ¢. of form (5.54) it does. In the latter case (5.46)
becomes
(5.57) F(vlu) = ¥ a;(v, —u;)’°, @;>0,i=1,...,n,

i=1
that is, only the weighted least squares projection rules are transitive as well
as location- and scale-invariant.

By Theorem 2(i), the additional postulate of semisymmetry implies that all
coefficients a; in (5.57) must be equal.
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(ii) Suppose now that S = R” and a projection rule generated by a function
as in (5.46) is transitive and scale-invariant. Then (5.48) and (5.56) hold; in the
former we now suppose that the standard n-tuple (¢,,...,¢,) has 0 at v® = 1.

As (5.56) implies that c(A;A;) = c(A;)c(A,y) and (5.48) and (5.56) imply the
continuity of c¢(A), we have c(A) = A* for some a € R [Aczél (1966), Section
2.1.2]. Hence from (5.56) (with A = 1/u) and (5.48) [where now ¢,(1) =
¢(1) = 0], we obtain

v v
5.58) : = uof| = (1] = up,[—|.
(5.58) o) = wh( —|t) = we =)
Comparing (5.48) and (5.58) and differentidting by v, it follows that
v
#i(v) = ¢iu) = u gl =
or, substituting v = tu,
(5.59) ei(tu) = gi(u) + ug(¢).
Since (5.59) means that ¢(¢) = ¢}(e’) satisfies the functional equation (5.53)

(with 8 = @ — 1), we obtain from (5.54) and (5.55)

5 60 a,;logt, ifa=1,
. W(t) =
( ) ei(t) a,(t* " '-1), ifa=+l.

Clearly, (5.60) with ¢,(1) = O defines a standard n-tuple for S = R iff
a <1 and, in addition, a; > 0 in the case @ = 1 or a; < 0 in the case a < 1.
With this choice of ¢;, (5.48) becomes f,(v|u) = la;lh (v|w), with h_, defined
by (3.7). On the other hand, (5.46) with these functions f;, does generate a
transitive and scale-invariant projection rule. If this projection rule is also
semisymmetric, it follows by Theorem 2(i) that it is generated by (3.8). The
proof is complete. O

Proor oF THEOREM 5. Suppose that S = R™", R7*" or A,,,, the elements
of S being represented as v={v;;}, i=1,...,m, j=1,...,n. Let II be a
regular, local selection rule with basic set S.

By Theorem 1, I is generated by a function

(5:61) Fw) = XX filn),

where the functions f;; form a standard mn-tuple with 0 at v° = {v)} =
v°(ID). In particular, the functions g, ;(t) = (d/d?)f; ;(¢) are continuous and

(562 £ (42) = £(08) = 0.
Consider the subspaces L, defined by (2.13), that is, L, = {w: W =¥;

W = V). Then if II(L,) = v for some v € S, that is, if the minimum of (5.61)
on L, is attained at v, we have

(5.63) g,(v)=A+p;, i=1,...,m,j=1,...,n,
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for suitable ‘“Lagrange multipliers” A;, u;. It follows from (5.63) that
(5.64) gij(vij) + 8ri(Vr) = 8i(vir) +gkj(vkj)’

for every i, j, k, 1.

Now we proceed to prove part (i) of Theorem 5. If II is sum-consistent, then
by Definition 7, I[I(L,) = v always holds if v is of sum form, v;; = s; + ¢;. Thus
(5.64) gives the system of functional equations

(5.65) g (s;+¢t;) +gu(sr+1,)=2gu(s;+1t) +g(s,t+¢t;).

Observe first that (5.65) implies the differentiability of the (continuous)
functions g, ;; this can be seen, for example, by integrating both sides of (5.65)
with respect to s,.

Differentiating both sides of (5.64) by ¢; on the one hand and by s, on the
other, we obtain

8ij(si+t;) =&ri(sk +t;) = &ulsk + ).
This means that g;; equals the same constant ¢ for every i, j; hence

(5.66) g”(v) =cv + dij'
Recalling (5.62), it follows that

c 2
(5.67) 8:(v) = c(v -v), fij(v) = E(v -v)).

This proves that if II is sum-consistent, it must be a least squares selection
rule. Recall that, as remarked after Definition 7, v® must be of sum form.
Conversely, it is easy to see that the least squares selection rules with v° of
sum form are sum-consistent.

The result just proved easily implies that the only (regular, local) sum-con-
sistent projection rule is the least squares projection rule. In fact, let this
projection rule be generated by

m n
F(vlu) = DY ﬁj(vij|uij)’

i=1j=1
where the functions f;,(-|u;;) form a standard n-tuple with 0 at u for every
fixed u = {u; j} € S. Then (5.67) gives that if u is of sum form, the terms of
this standard mn-tuple must be constant multiples of (v — u; j)z. Since for any
fixed u there exists u = {u;;} of sum form with u,; = u, it follows that
fi;(vlw) always equals a constant times (v — u)>?.

The proof of part (i) is similar. If II generated by (5.61) is product-con-

sistent, then by Definition 8, II(L,) = v always holds if v is of product form,
v;; = s;t;. Thus (5.64) gives

(5.68) 8:(8:t;) + &u(sit;) = 8u(s:t;) + 8 (sat)).

Notice that whereas in the case S = A, the condition X v;; = 1 represents
a constraint on the permissible s; and ¢; in (5.68), the equation must certainly
be valid—for any fixed i, j, k,I—if s, + s, <1,¢; + ¢, < 1.
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The system of functional equations (5.68) can be transformed to (5.65).
Namely, if the functions g;;(v) satisfy (5.68), then £, ;(v) = g;;(e”) satisfy
(5.65). Hence, from (5.66),

(5.69) gij(v) =gij(logv) =clogv +dij
Recalling (5.62), it follows that

ij ij

, v v
(5.70) g(v) = clogvo , fi;(v) = c[vlogv—o - v+l

This proves that a product-consistent selection rule must be an I-divergence
selection rule (cf. Example 2) with v° of product form. Conversely, it is easy to
see that these I-divergence selection rules are product-consistent. The asser-
tion that the only product-consistent projection rule is the I-divergence projec-
tion rule follows in the same way as did its analog in part (i). The corollary is
immediate. O
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