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AN E-ANCILLARITY PROJECTION PROPERTY OF COX’S
PARTIAL SCORE FUNCTION!

By I.-SHOU CHAN‘G AND CHAO A. HsrunG
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This paper shows that Cox’s partial score function is the projection of
the score function on the (locally) E-ancillary subspace for the nuisance
parameter (Small and McLeish). This is done by adapting the concepts of
(locally) E-ancillarity and (locally) E-sufficiency for inference functions
(McLeish and Small) to an extended Cox’s regression model, where the
baseline function is allowed to be a predictable process.

1. Introduction. In Small and McLeish (1988a) and McLeish and Small
(1988), the concepts of ancillarity, sufficiency and completeness of statistics
were extended to cover estimating functions or inference functions, which are
applicable in a wider context than the standard notions. These generalized
concepts were then used in Small and McLeish (1988b) to study problems
involving the inferential separation of the data into informative and noninfor-
mative components. In particular, they explored a projection method for
eliminating the nuisance parameter, which reduces to conditioning on the
complete sufficient statistic for this parameter if the complete sufficient statis-
tic exists.

We recapitulate here some of their basic ideas. Consider a two parameter
inference function ¢(6, A; x) which is unbiased in the sense that
E4 ,(0,A;x) = 0. Fix 6 for the moment. In the resulting one-parameter
model we can decompose the function ¢ into its sufficient and ancillary
components with respect to the parameter A: ¢ = ¢, + ¢,. When A is a
nuisance parameter, the appropriate inference function for the problem should
be insensitive to A. Thus attention naturally turns toward ¢,,. It is to be hoped
that if ¢ is chosen so as to be sensitive to the parameter of interest 6, then the
resulting ¢, will possess this property and in addition be insensitive to the
nuisance parameter. Roughly speaking, the mapping from ¢ to ¢, is
the projection under study.

Among many interesting ideas and examples, Small and McLeish (1988b)
discussed Cox’s proportional hazards model in order to explain this projection
method as a technique to reduce sensitivity of an inference function with
respect to nuisance parameters. More precisely, with some spade work, it is
conjectured there that Cox’s partial score function is the projection of the
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score function on the E-ancillary subspace for the nuisance parameter. The
purpose of this paper is to establish the validity of this conjecture in modified
forms, which provides a new motivation for the use of maximum partial
likelihood estimation in Cox’s regression model [cf. Chang and Hsiung (1990)].

The plan of this paper is as follows. Section 2 fixes the notation and the
model assumptions. In fact, we consider a more general Cox’s regression model
for counting processes, where we allow the baseline function to be a pre-
dictable process, instead of only a deterministic function. Section 3 adapts the
extended concepts of ancillarity, sufficiency and completeness to this model.
Section 4 gives the main theorems and their proofs, which contains two
subsections dealing with a local version and a global version of this projection
property, respectively. Although this paper is self-contained, we refer the
readers to Small and McLeish (1988b, 1989) for more background and related
concepts.

Finally, we would like to remark that Small and McLeish (1988b) found that
the locally E-ancillary projection of the score function for Cox’s model with
deterministic baseline function is similar to but not equal to the partial score
function. In some sense, the success of our work hinges on the enlargement of
the nuisance parameter space, which is crucial in obtaining (4.4) in the local
case and in obtaining Lemma 4.1 in the global case. This enlargement of the
nuisance parameter space to include predictable processes is also desirable
from practical considerations. More detailed discussions with an example in
industrial context is given in Section 2.

2. Notation and the model. This section fixes the notation and the
model for the discussion in this paper. It also contains a likelihood ratio
formula to be used later.

Let N(t) = (Ny(?),..., N(t)), t = 0, be a K-variate counting process. As-
sume that, relative to a filtration F,, N(¢) has intensity A(z) = (A(2), ..., Ag(2))
of the form

(2.1) A(2) = M) YR () r(6Z,(2)),

where r(-) > 0 is a known twice differentiable function, # € ® c R%, Y,(:) > 0
is a bounded predictable process and Z,(-) is a R%valued bounded predictable
process. When A(:) > 0 is an unknown deterministic function, (2.1) describes
the Cox regression model for counting processes, which were studied by
Andersen and Gill (1982), Prentice and Self (1983) and many others.

In this paper, we shall consider (2.1) with relaxed condition on the baseline
function A. For a nonnegative process A, we call {¢ > 0|A(¢) > 0 a.e.} the proper
support of A. Let A be the set of all nonnegative predictable processes bounded
on every compact subset of [0, ©) with proper support a given set C. The model
(2.1) to be considered in this paper assumes that A € A.

The statistical problem we have is to estimate 6 based on the data

(NL.(8),Y,(8), Z,(t)k=1,...,K,0<t < T}

at some stopping time T, treating A € A as a nuisance parameter. In the
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model for survival data, N,(¢) and Y,(¢) together indicate the status of the kth
subject at time ¢ and Z,(¢) denotes the covariate of the kth subject at time ¢.

It may seem a little unorthodox to use a predictable process as a parameter
in a statistical problem. However, we would like to point out that multivariate
failure time data with nondeterministic baseline function A(-) did appear from
practical considerations [see, e.g., pages 373-375 of Prentice, Williams and
Petersen (1981)]. A simple example of a (nondeterministic) predictable baseline
process is

A(t) = Z hl(t - Ti)l(fi,fi+1](t)’
i=0

where 7; = inf{z > 0|T f=1Nk(t) =i} and h; is a deterministic function. In
industrial context, this is the situation that components of a machine share a
common hazard rate function A ;, which depends on the total number of events
experienced by the machine.

On the theoretical side, we know from the direct and converse
Radon-Nikodym derivative theorems for multivariate point processes [see,
e.g., Brémaud (1981), pages 166, 168, 187, 242; Gill (1980), page 14] that
nonnegative predictable processes provide a very effective way to parametrize
the probability measures on the sample path space. It is based on these
theorems that we are able to give some properties of the likelihood function on
model (2.1).

It follows from the direct Radon-Nikodym derivative theorem that every
parameter value (6,A) € ® X A specifies a probability measure P®* on the
sample path space. Denote by P{¥* the restriction of P®* to Fj, where Fj
is the o-field of events up to a stopping time T'. We will use E ,, to denote the
expectation corresponding to the probability measure P,

Suppose 0 € O, r(0) = 1. Let Ay(#) = I(2). Let T\(n) = inf{t > O|N,(¢) >
n}. Then, the Radon-Nikodym derivative with respect to the dominating
measure specified by (0, A,) is

2.2) dPgY K
) dPP o =L(T,0,A) = kUILk(T,H, A),
where

L=<}

L,(T,0,2) = ( H )‘(Tk(n))r(o,zk(Tk(n)))I[T,,(n)sT]

n=1

X exp fOT(l = A(8)r(0Z,(5)))Y,(8)Ao(8) ds.
It is clear that

log L,(T,0,1) = foTlog(A(s)r(O’Zk(s))) dN,(s)
(2.3)
+/0T(1 — M(8)r(0Z,(5)))Yi(8)Ao(s) ds.
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Let A and a be two predictable processes. Assume that both A and A + e«
belong to A for all small enough positive ¢. Let

My(2) = Ny(#) = [24(s) ds

be the basic martingale. Let M(¢) = £ X_, M,(¢). Then, using (2.2) and (2.3),
we get by straightforward calculations that
L(T,6,A +ea) ra(s) 9

T on - 1 +s[0 mdM(s) + 0(&?).
We note that a(s)/A(s) is interpretated as 0 whenever A(s) is 0.

We obtain also from (2.2) and (2.3) that the score function in 6 with fixed A
is

(2.4)

2 g L(T.0.0) = 3 [Trm(o'z"(s))

" Z. ), Toz(sy) 204 o)

(2.5) .
- kgl’/;) r(0Z,(s))Zy, (s)Yi(s)A(s) ds,

where r®(-) is the derivative of r, Z, , is the /th component of Z,.

3. E-ancillarity and E-sufficiency. Motivated by the classical Basu’s
theorem on ancillarity and sufficiency, Small and McLeish (1988a, b) define the
concepts of E-ancillarity and E-sufficiency for inference functions and some
local versions of them. In this section, we shall adapt these concepts to the
Cox’s regression model of Section 2, which enables us to describe the projec-
tion method that desensitizes the score function with respect to the nuisance
parameter.

The class ¥ of inference functions we shall consider consists of functions of
the form

K
(3.1) ¥(T,8,)) = kz‘, fOTfk(t, 8,1) dM,(2),
=1

where f,(¢, 6, A) is a predictable process so that (¢, 6, A) is a square-integrable
martingale for every (6, ) € ® X A. Intuitively speaking, we make the natural
requirement that the inference function has mean zero for every stopping
time. Chang and Hsiung (1990) contains some discussion in this regard. Small
and McLeish (1988b) also considers inference functions of this form.

An element ¢ € V¥ is called an E-ancillary function in A if

(3.2) Egy ¢(T,0,A) =0
for every § € ®, n, A € A. In fact, we will assume in this paper that

\ L(T,0,m) |*
(3.3) E(G,A)( L(T,O,:) )
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for every 8 € ©, , A € A when (global) E-ancillarity and related concepts are
in consideration.
An element ¢ € V¥ is called a locally E-ancillary function in A if

(3.4) E(O,A+ea)¢(‘T’ 6,1) = o(e)
as € |0, whenever § € ®, A\, A + e € A and

E, \ expe OTZ—E:—; dM,(s) < o,
(3.5) a(s)

A(s)

for every small enough positive ¢, every (8,1) € ® X'A, every k=1,..., K.
Here vy is the function satisfying log(1 + ax) — ax = a?y(x). The moment
condition (3.5) will be used in the derivation of (3.9).

Let A(A!) denote the set of all (locally) E-ancillary functions in A. Let

T
E(,,,A)expsj(; y( )de(s) <

A(Al') =(¢ € ¥|Eq ,(6(T,6,1) — 6,(T,0,1))" goes to 0

(3.6)
for every (8,1) € ® X A for some sequence ¢, € A( A}

We will call A'(Al’) the space of (locally) E-ancillary fﬁnctions in A.
With A'(Al’), we are able to define the corresponding concepts of (locally)
E-sufficiency and completeness as follows."

A subset S(SI) of ¥ is called (locally) E-sufficient in A if ¢ € ¥ together
with
E(O,/\)¢(T, 0, A)'ﬁ(T, 0’ A) = 0

for every ¢ € S(SI), every (0,A) € ® X A implies ¢ € A'(Al'). It is called
complete (locally) E-sufficient in A if the condition ¢ € A'(Al’) is also suffi-
cient.

Let
Sg ={.l[l|l/}( T, 9, )) is a finite linear combination of elements
3.7 L L(T,e,
(3.7) in\Poftheformﬁ—l,neA}.

Let Sc be the closure of Sg in the sense that A’ is the closure of A.
It follows from the identity

L(T,6,7n)
Ep &(T,0,1) = E4 (T, 0,1) (T 00 1

for every ¢ € ¥, that Sg is E-sufficient in A. A little calculation using the
definition of Se¢, Schwarz inequality and (3.3) gives the following proposition.
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ProPOSITION 3.1. Sc is the complete E-sufficient space in A.

The rest of this section attempts to characterize the elements of the
complete locally E-sufficient space in A.
Using (2.4), we get
E(O,A+ea)¢(T’ 0’ A)
L(T,0,A + €a)

E(O,A)(b(T’ 0’ /\)

(3.8) L(T,0,A)
a(s) 5
= Eq ,6(T, 6, /\)(1 +efT/\( 5y M(s) + °R(T, e))
where

R(T,¢) = e_z(L(T,G,)t + ca)

ra(s)
L(T,68,%) _ef A(s )dM( ))

It follows from (3.5) that every term in (3.8) has second moment. Using (3.5),
we can also get the uniform integrability of ¢(T 0 A)R(T, €), which implies

(89) Egpvea®(T:0,3) = B (T, [ '3 A dM(s) +0(e?),
if ¢ € V. Hence (3.4) holds if and only if
Eo,n$(T,0,2) [ (a(s) /A(s)) dM(s) = 0.

Therefore, we have proved the following proposition.

ProPOSITION 3.2. The complete locally E-sufficient set Slc in A is the space
of integrals in ¥V that take the form [Fg(s)dM(s), with A,a = g\ satisfying
(3.5).

4. The projection property of Cox’s partial score function. We are
ready to show that Cox’s partial score function is the projection of the score
function (2.5) into the space A'(Al') of (locally) E-ancillary functions in A,
which desensitizes the score function with respect to the nuisance parameter A
as described in Small and McLeish (1988b).

After a few preliminaries, we will present the local version and the global
version of this projection property in Section 4.1 and 4.2, respectively.

Let

£E rO(8Z,(5))Ya(5) Zau(5)
LR (0Z4(5))Y,(s)
[ r0(0Z,(5))
r(6'Z,(s))

: K
(4.3) U(T,8,)) = El f()TJ,(s) dM,(s).

(4.1) Ji(s) =

(42) G(T,0,)) = Z f Zp,(8) — di(s) | dMy(s),
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We note that G/(T, 0, ) = G/(T, 6) is, in fact, independent of A and is the
Ith component of Cox’s partial score function [cf. Andersen and Gill (1982),
Prentice and Self (1983)].

Assume that both G,(-,6,1) and U,(-, 6, A) are square-integrable martin-
gales. These are mainly moment conditions, since both of them are stochastic
integrals with martingale integrators and predictable integrands [cf. Chang
and Hsiung (1990), (4.1) and (4.2)]. Thus both G/(T,6) and U(T,6, 1) are
in V.

4.1. Local version. With a little condition on r, Y,, Z,, it follows immedi-
ately from Proposition 3.2 that

(44) U(T,6,1) € Slc.
THEOREM 4.1.
Ii]
(4.5) %0 log L(T,0,A) = G,(T,0) + U(T,0,1)
l

with G, € Al', U, € Slc.

Proor. It is obvious from (2.5) that (4.5) holds. By (4.4), it remains to
show G, € Al or E, ,\G (T, 0)¢(T, 6, A) = 0 for every ¢ € Slc,(6,1) € ® X A.
This is obtained by calculating the predictable mutual variation of the square-
integrable martingales G,(t) and ¢(¢,0,1) = L K_, [ig(s) dM,(s).

Observe

<Gl(')’¢("0’)‘)>t

r(0Z4(s))

r(0Z,(s))
{ r(0Z,(s))

t

@ 'Z
2_:< (S a0 - J,(s))de(s)fg(s)de(s)>
figts

K
Z_Z Zya(s) - Jz(S)}T(O'Zk(S))Yk(S)A(S) ds

This completes the proof. In fact, similar arguments imply
Ey ,Gi(T,0,2) =0,

which gives an alternative proof. O

4.2. Global version. Although the global version takes the same form as
its local counterpart, its proof is more involved. We shall assume some
conditions in order to ease the presentation. These conditions are by no means
necessary. There are other sets of sufficient conditions, although we treat here
one of the most important cases.
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Assume the covariates Z,’s have nonnegative components. Assume J, > 0 is
bounded. Assume

(4.6) S Ms)ds < G,
0
for some constant C,. Then we have the following theorem.

THEOREM 4.2.
0
(4.7 50—10&.' L(T,0,A) =G,(T,6) + U(T,6,A),
l

with G, € A, U, € Sc.

Since (4.7) is obvious from (2.5) and G, € A can be shown bjr straightfor-
ward calculation, we need only to show U, € Sc¢, which follows from Lemma
4.1 and Proposition 3.1.

LemMmA 4.1. U(T, 0, 1) € Sg, defined in (3.7).

Proor. It suffices to exhibit an element n € A so that

L(T,6,n)

(48) L(T,0,1)

- 1=U(T,0,2r).
According to (2.2), (2.3) and the exponential formula for martingales [see,
e.g., Brémaud (1981), page 166, (2.4)],

L(t,O,"I) _ K tL(s - )0;77)

1= fom(#(s) = 1) dM,(s),

(4.9) L(t,6,)) Py

where u = 1 /A. Therefore, it suffices to find a nonnegative predictable process
u satisfying
L (t ) 0’ "7)

where J; is defined in (4.1); or equivalently, by the likelihood ratio formula
(2.2) and (2.3),

K
{exp{z fo log u(s) dN,(s)
(4.10) ol

K
- w))| £ Malo)|ds} o) - 1) = ().
0 k=1
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Since (4.10) is a first order ordinary differential equation on each stochastic
interval (7, 7;,,], where 7; = inf{t > 0|Z £_; N},(¢) = j}, we will only indicate
its solution and omit details.

(1) On [0, 7,), set

Ji(2)
Co — Jodi(s)(EE-1Ma(s)) ds”

where C, is a large constant such that the denominator in (4.11) is positive.
(ii) At 7,, set

Ty K
(4.12) u(r) =1+ {expf0 (u(s) - 1)(3: Ak(s)) ds}J,(rl).
=1

(4.11) u(t) =1+

(iii) Suppose we have defined bounded predictable process x > 1 on [0, 7;]
satisfying (4.10). On (7}, 7, ,), set

Ji(2)
C; — A7 di(s)(Zi-1Ak(s)) ds

(4.13) () =1+A;"1
for some suitably large constant C;, where

J . K
A= T u(nem [ (1 - u(S))( ) Ak(s)) ds.
h=1 0 k=1

The definition of x at 7;,, can be done similarly as that at 7, in Gi).
Thus, with the predictable process u satisfying (4.10), the proof of this
lemma is complete. O
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