The Annals of Statistics
1991, Vol. 19, No. 3, 1547-1569

ON TAIL INDEX ESTIMATION USING DEPENDENT DATA!

By TaiLEN HSING

Texas A & M University

Let X;, X,,... be possibly dependent random variables having the
same marginal distribution. Consider the situation where F(x) = P[X; >
x] is regularly varying at « with an unknown index —a < 0 which is to be
estimated. In the ii.d. setting, it is well known that Hill’s estimator is
consistent for @™, and is asymptotically normally distributed. It is the
purpose of this paper to demonstrate that such properties of Hill’s estima-
tor extend considerably beyond the independent setting. In addition to
some basic results derived under very general conditions, the case where
the observations are strictly stationary and satisfy a certain mixing condi-
tion is considered in detail. Also a finite moving average sequence is studied
to illustrate the results.

1. Introduction. Suppose {X;} is a sequence of random variables having

the same marginal distribution function F, where F:=1 — F is regularly
varying at o, namely there exists an a > 0, such that

(1.1a) F(tx)/F(x) > ¢t™® asx > wforall > 0,
or equivalently
(1.1b) F(x) =x7°L(x), x>0 for some slowly varying function L.

This will be denoted by F € RV_,. —a is called the regular variation index of
F, and more conveniently in this context, the tail index of F. The class of
distributions having the tail behavior (1.1) is infinitely large, and is known to
coincide with the maximum domain of attraction of the extreme value distri-
bution exp(—x~%), x > 0. See Bingham, Goldie and Teugels (1987), de Haan
(1970), Feller (1971) and Seneta (1976) for details on the notion of regular
variation and its applications in statistics and probability.

We are interested in the estimation of @ when observing X,..., X,. It is
intuitively clear that if little or no additional structural information on F is
available, which we assume to be the case, any inference on a should be made
with the tail portion of the empirical distribution of the sample. Thus we can
assume without any loss of generality that F is supported on (0, «). Define

F~(y) = inf{x: F(x) 2y}, 0<y<lL.
Assume that F(x)/F(x —)—> 1 as x — ® [cf. Leadbetter, Lindgren and
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Rootzén (1983), Theorem 1.7.13]. Under this, it is easily seen that
(1.2) F(b(t)) ~¢t7! ast—> o,
where

b(t) =F-Y1-¢Y, ¢>1.

Later in the paper, regularity conditions on the slowly varying component L
in (1.1b) will be introduced to control the rate of approximation in (1.2). For
1<j<n, write X;, =X,. ;, for the jth largest value of Xj,..., X,. For
x > 0, x* denotes log x, and for x € R, x, denotes max(x,0) and x_ denotes
max(—x, 0).

Papers that discuss the estimation of « in the i.i.d. setting include Beirlant
and Teugels (1989), Csorgd, Deheuvels and Mason (1985), Davis and Resnick
(1984), Haeusler and Teugels (1985), Hall (1982), Hall and Welsh (1984), Hill
(1975), Mason (1982) and Smith (1987), to mention a few. One ingredient
common to these papers is the consideration of the so-called Hill’s estimator

m
(1.3) H,=m" ZIX("}) = Xin+ 1y
/2

which was first proposed by Hill (1975) in a slightly different manner. Asymp-
totic properties of H,, including consistency and asymptotic normality, were
studied by letting m vary with n such that

(14) m-oo and m/n—->0 asn — o,

The idea behind Hill’s estimator is easily understood. By dominated conver-
gence and Potter’s theorem [cf. Bingham, Goldie and Teugels (1987)], the kth
moment of (X} — b*(n/m)),, the excess of log X; above log b(n/m), is
evaluated as

&(Xt - b*(n/m))s = [ P[(X} = b*(n/m))* > u] du
0

= fwf(e"wb(n/m)) du
(1.5) 0 3
=F(b(n/m))[0 F(e**b(n/m))/F(b(n/m)) du

m e m k!
nJo na

In particular, £(X} — b*(n/m)), ~ (m/n)a"'. If {X,} is iid., clearly X7,
estimates b*(n/m) and hence

n n
(16) H,= m~! Z (Xz* - X(:‘;n+1))+ ~m~! Z (Xz* - b*(n/m))+,
i=1 i=1

showing that H, is essentially a method of moments estimator of o™
A powerful tool for studying the asymptotics of Hill’s estimator H,, in the
iid. setting is representing the order statistics X, as weighted sums of i.i.d.
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random variables. The technique is known as Rényi’s representation [cf. Davis
and Resnick (1984)]. Unfortunately, the representation does not work when
dependence is present. The goal of this paper is to generalize certain results on
H, in the i.i.d. case by dropping independence. Specifically, Section 2 shows
that, by formalizing the idea of approximation in (1.6), the consistency and
asymptotic normality of H, can be extended considerably beyond the indepen-
dent setting. Section 3 specializes the results in Section 2 to sequences {X;}
which are strictly stationary and which satisfy a certain mixing condition. To
give a more concrete demonstration of the results in Sections 2 and 3, the
finite moving average sequence is considered in Section 4.

Without repeated reference, the assumptions and notation introduced in
this section, including the ones in (1.1), (1.2), (1.3), (1.4) and (1.6), are used
throughout this paper. The dependence of m on n in (1.4) is suppressed
except in Section 3.

2. General results. In this section, we study some asymptotics of Hill’s
estimator H, without requiring {X;} to be ii.d. At the outset we make no
assumptions on the X;’s other than that they have the common marginal
distribution as described in Section 1.

Define two quantities H, and H} by

H =m! ; (X(’S-) - b*(n/m)),

Jj=1

Hi=m-1Y, (Xf - b"(n/m)),.
i=1

Clearly, H,, H, and H; are intimately related. The following lemma de-
scribes the relationship as n — .

Lemma 2.1, If X{, .y — b*(n/pm) —>p O for all p in I, some neighborhood
of 1, then

IHn_FIn'+|Hn'H;|+Iﬁn—H;|_)P 0.

If, in addition, the collection of probability distributions of Vm (Xneny —
b*(n/m)), n = 1, is tight, then

\/’;(ﬁn - H;:) _)P 0.

Proor. We first prove the second claim which is the more difficult of the
two. Let ¢ be a fixed small positive constant such that (1 —¢,1 + ¢) cI. We
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can write
1 [A-&)m]

Vm (H;-H,) = T ng (X&) — b*(n/m))_

L]

1 m

+t— X (X - b*(n/m))_
m j=[(1—e)m]+1( o )
1 [(I-E)m]

+— X* —b*(n/m
‘/m j=m+1( ) ( ))+

1 n
Vm j=l+e)ml+1 . ! "
= A® + B + C¥ + DY .

Clearly, P[A® > 0] < P[X}, _,)n) < b*(n/m)]. Since X, _,),.; — b*(n/(1 -
e)m) »p 0 and liminf, , {6*(n/(1 — &)m) — b*(n/m)} > 0, P[AY > 0] -
0. The same argument shows that P[D{ > 0] — 0. Further it can be seen
that B < eVm (X, ,,, — b*(n/m))_, and hence for 7 > 0,

lim limsupP[BSf) > n]

e-0 o0

< lim lim sup P[Vm (X, .1y — b*(n/m))_>e"'n] = 0
[ and n—-o
by virtue of the assumption that Vm (X%, ., — b*(n/m)), n > 1, is tight.
Essentially the same argument can be applied to C{ to get
lin%) limsup P[C{ > n] =0, 1>0.
Fohmd

n—oo
Thus for n > 0,
lim P[Vm (H;- H,) > 7]

n—o

< lim (P[AY > n/4] + P[D® > 7 /4])
n—o
+ lim lim sup (P[ BY > n/4] + P[C® > n/4])=0.
L n—0

This proves the second claim of the lemma. To prove the first claim of the
lemma, it suffices to show H, — H -, 0 and H, — H, >, 0. The first
convergence can be established through steps that are quite similar to the ones
in the previous part and we therefore omit its proof. The second convergence
follows from the identity.

Hn - }'In = _(X(”;n-i-l) - b*(n/m))’

where the right-hand side can easily be seen to converge to 0 under the
conditions specified. O
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Since H, is basically a moment estimator of a~?, as explained in Section 1,
one should be able to show its consistency by showing certain “laws of large
numbers.” The next result does just that.

*

THEOREM 2.2. Suppose
n
(2.1) m=* Y (T, — €T,;) »p 0
i=1

for T,; = (X} — b*(n/m)), and I(X} — b*(n/pm) > ¢) for every ¢ € R and
p in some neighborhood I of 1. Then H,, H, and H; all converge to a™' in
probability.

ProoF. Since (n/m)&(X} — b*(n/m)),— a1, that (2.1) holds for T,; =
(X — b*(n/m)), implies that H, converges to a™! in probability. To show
that H, and H, converge in probability to the same limit, it suffices to show,
by Lemma 2.1, that

n

X(?Pm])_b*(m) -p 0, pel.

In other words, it suffices to show that

n
P[X(?pm]) - b*(p_m) >8:l -0

and

-0, e>0,pel.

n
P[Xfpm]) - b*(;,,_z) < €

Since the two convergence statements have virtually the same proof, we only
show the first one. Writing I,,;, = I(X}* — b*(n/pm) > ¢), we have

n
P[X(fpml) - b*(m) > 5]
n
- 7| X 12 [om)
i=1
= P[m_l Y, (I, = €1,;) 2m™([pm] - n&L,;)|.
i=1

Since m~'X?_(I,;, — &I,,) >p 0 and m~(pm] — n&l,;) > p(1 — e~**) >
0, the above probability tends to 0. This concludes the proof. O

To consider the asymptotic distribution of H,, it is necessary to model the
tail behavior of F more closely. For that we make use of the notion of slow
variation with remainder introduced by Goldie and Smith (1987). The present
treatment is also heavily influenced by Haeusler and Teugels (1985).
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The condition (SR1) is said to hold for the slowly varying function L if
there exists a positive measurable function g on (0, ) such that
(SR1) forallA >1, L(Ax)/L(x)-1=26(g(x)) asx — c.
The condition (SR2) is said to hold for L if there exists a function % and a
positive measurable function g on (0, ©) such that
(SR2) forallA >1, L(Ax)/L(x)—-1~k(A)g(x) asx — .

To make these conditions meaningful, we also assume that the function g in
(SR1) and (SR2) tends to 0 as x — x. g is said to have bounded increase if
there exist C, x4, 7 < » such that

8(Ax)/g(x) <CX, A21,x2x,.

THEOREM 2.3 [Goldie and Smith (1987), Corollary 2.2.1 and Propositions
2.5.1 and 2.5.2]. If the slowly varying function L satisfies (SR1) and g has
bounded increase with v < 0, then (SR1) holds uniformly on every compact
A-set in [1, o), and

® L
Ly_a_l (xy) dy_a_1= ﬁ(g(x)) asx — oo,

L(x)

If L satisfies (SR2) and g € RV,, y < 0, and k(y) = K[?t""' dt, |K| < «, then
(SR2) holds uniformly on every compact A-set in [1,»), and

jw —a—1 L(xy)

1 L(x)

dy —a™! g(x) asx > o,

" a(a—7)

The assumptions in Theorem 2.3 are very general and hold for a wide class
of slowly varying functions. See Goldie and Smith (1987) and Haeusler and
Teugels (1985) for details and examples.

Define

(2.2) S =m-1 Zn: I(X} > b*(n/m) +§/\/ﬁ), L eR.
i=1

THEOREM 2.4. Assume that the slowly varying component L in (1.1b)
satisfies either

(SR1) with g having bounded increase with v < 0 and

(282) o a(b(n/m)) — 0
or
@2.50) (SR2) with g € RV,, y <0, k(y) = K[7t"" ' dt, |K| <

and Ym g(b(n/m)) - A € R.

Suppose further that there exists a random vector (Y,Z) such that for all
{ER,

2.4 Vm (Hf - &H,a Y(S® - £S¥)) -, (Y, Z).
( n
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Then
(2.5) Vm (H}— €H}, X}y — b*(n/m)) =4 (Y, Z).
If, in addition, for all € € R and p in some neighborhood I of 1,

Xr > b*(—':—n-) + 8]) -p 0,
p

(26) m1Y (I(X;" >b*(p—n,;) +s) _p

i=1

then we have

(2.7 Vm (H, — EHY, X%, 11y — b*(n/m)) >4 (Y, Z),
Y-Z, .under (2.3a),
_ ! KA
(2:8) M(H" a) 2 Y—-Z+ ————, under (2.3b).
a(a =)

Proor. First assume that (2.3a) holds. First fix { € R and observe that
Vm (XE, .1y — b*(n/m)) < { iff S® < 1, and hence iff

a~1Vm (8P — £8©)

(2.9) = “‘1‘/5(1 - %F(e‘/ﬁ"—b(n/m)))

= a1 (1 = ZF(b(n/m)) F(e/b(n/m))/F(b(n/m))).
By arguments leading up to (2.2) in Smith (1982),
(210) F(b(n/m)) = ~—[1+ &(g(b(n/m)))].
Also by Theorem 2.3, uniformly in n,
F(e/V™b(n/m))/F(b(n/m))

= e ¥/VmL(e*Y"b(n/m))/L(b(n/m))

= e~/ (1 + O(g(b(n/m)))),
since {e!/V™: m > 1} C [1, e¢]. Thus (2.9) is equivalent to

a”Vm (8 - £8F) <a™'Vm[1 - e~/ (1 + &(g(b(n/m))))]
= e~ Vm [al/Vm + 6(1/m) + 6(g(b(n/m)))]

={+o0(1),
since ym g(b(n/m)) — 0. Consequently, (2.4) implies that for each (y, {) € R?
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at which P[Y <y, Z < {]is continuous,

lim P[Vm (H;~ €H}) <y, Vm (X%, .1, — b*(n/m)) < {]

n—ow

= lim P[Vm (H;} - €H}) <y, *Vm (8 — £S¥) < ¢ + o(1)]

n— oo

=P[Y<y,Z</{].

This shows (2.5). It follows from (2.6) and the proof of Theorem 2.2 that
Xiomp — 0*(n/pm) >p 0, p € I. Thus (2.5) and Lemma 2.1 imply (2.7). More-
over since H, = H, — (X, ,,) — b*(n/m)), (2.7) and the continuous mapping
theorem implies Vm (H, — #H}) -, Y — Z. By (2.10) and Theorem 2.3 we
have

n _ o  F(yb(n/m
Vm (€H;— a7 1) = \/r;(,—n-F(b(n/m))'/‘1 y! Mdy - a‘l)

F(b(n/m))

- m(a + &(g(b(n/m))))

L(b(n/m)) 2~

= Vm &(g(b(n/m))) - 0,

showing (2.8) under (2.3a). Next suppose (2.3b) holds. Then the above proof
still applies with the following modification. By arguments leading up to (3.1)
of Smith (1982),

o [Fye Lb/m) )
1

F(b(n/m)) = —[1+ o(g(b(n/m)))].

Applying this and Theorem 2.3, the conclusions of the theorem can be estab-
lished in a similar manner as in the proof under (2.3a). O

3. Some limit theorems for stationary sequences. In this section, we
assume that { X} is strictly stationary with “short range” dependence; that is
to say that the finite-dimensional distributions of {X;} are invariant under
shifts, and the dependence between observations from {X;} becomes weaker as
time separation becomes larger. The dependence structure will be described in
more detail shortly. The goal of this section is to show, in this setting, how the
sufficient conditions in Theorems 2.2 and 2.4 can be verified. In dealing with
dependence, we follow the style of Ibragimov and Linnik (1969), Section 18.4.
The approach that we take is by no means optimal for every specific situation.
In practice, any information on {X;} should be taken into account when
studying problems of this nature. Further it is useful to note that the setting
being investigated in this section is not the only dependent setting where the
results in Section 2 are applicable; indeed, even the stationarity assumption
can be relaxed. The content of this section should therefore be seen as a broad
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description of what can be expected and a general guideline of how to proceed
in the problem of tail index estimation when dependence is present.

Suppose Y,; is a functional of X;; for example, Y,; may be (X} —
b*(n/m,)), or I(X} > b*(n/m,) +¢), etc. Let £YY,,} be the o-field o{Y,,;:
a<i<blandforl<l<n-—1,let ,

B(1;{Y,;}) = sup{| P(A n B) — P(A)P(B)|:
Ae FMHY,}, Be F{Yu), 1<k<n-1}.
We first prove a weak law of large numbers under some quite general condi-
tions.

THEOREM 3.1. Suppose {r, = o(n)} is a sequence of positive integers and
S, is a random variable measurable with respect to F ;™. (Y,;}, 1 <k <
k,, where k, = [n/r,]. Assume that

(@) k,B(r,;{Y,;h) - 0,
) m; 1Tk £ 18,1108, >m,) - 0,
(© m;2xk £S2,1(S,,| <m,) > 0.

Then

kn
m;t Y (8, = &€8,,) =p 0.
k=1

Proor. Write

k, k,
mY_Ll Z (Snk - gsnk) = m;l Z (Snk - gsnk)
k=1 k=1, k odd
kn
+m;1 E (Snk_é’Snk)'
k=1, k even

We shall only prove that the first piece tends to 0, since the proof for the
second piece tending to 0 is the same. Denote by &, the set of odd numbers in
{1,2,...,k,}). It follows from Theorem 17.2.1 of Ibragimov and Linnik (1969)
and the triangle inequality that

it it
ge _ S — & expl —S
XP(mnkEQ,"J I P(mn nJ

n

+1
~168(r3 {¥,0)

which tends to 0 by (a), where i denotes the imaginary unit. This implies that
one’ can proceed by assuming that S,,, &k € £,, are independent random
variables, which we do from now on. Define

<

~

Sun=SuI(1Sul <m,),  1sksk,.



1556 T. HSING

>£]

< P[Snk # §,, for some k € @] +P

For each ¢ > 0,

P[m;1

Z (Snk - g‘gnk)
kel

Z (Snk - ggnk)
ke O,

< Y P[S.l>m,] +m;%"2 Y Var(S',,k).
ked,

ke O,

-1
m,

>5]

By (b) and (c) the right-hand side tends to 0, and hence the result follows from
(b) which implies )
k,
m;' Y (£8,-&8,) - 0. o
k=1

THEOREM 3.2. All three quantities H,, H, and H; converge to a™! in
probability under the following conditions.

(i) There exists a sequence {r, =o(n)} of positive integers such that
k,B(r,;{Y,;) = 0, wherek,, = [n/r,]and Y, = (X} — b*(n/m,)),, and that
(b) and (c) of Theorem 3.1 hold for S, == X%, 1. ,,Y,..

(ii) For each ¢ € R and p in some interval containing 1, there exists a
sequence {r, = o(n)} of positive constants such that k,B(r,;{I,;}) = 0, where
k,=In/r,land I,; = I(X}* > b*(n/pm,) + €), and that (b) and (c) of Theo-
rem 3.1 hold for S, = Efi'zk_l),nﬂlni.

Proor. It follows from Theorem 3.1 that the condition (i) implies that

kn kr,, knrn
m;I Z E (Yni - gYni) = m;l" Z (Yni - gYni) —p 0.
k=1i=(k—Dr,+1 i=1

Since m,;'X?_ k,r,+1Yn; 18 @ positive quantity having an expectation tending to
. 0, we conclude that m,;'X? (Y,;, — €Y,;) =p 0. In precisely the same man-
ner, (ii) implies that m,'L?_(I,;, — &I,;) »p 0 for all ¢ € R and p in some
neighborhood containing 1. The conclusion of the Theorem thus follows

readily from Theorem 2.2. O

Let
Y, = (Xf = b*(n/m,)), and Y =I(XF~b*(n/m,) > i/ \m,).

'TuEOREM 3.3. Assume that the slowly varying component L in (1.1b)
satisfies either (2.3a) or (2.3b) in Theorem 2.4. Suppose there exist positive
integers r,, with r, - ©and n/r2 — », and constants x, ¢ and w such that for



TAIL INDEX ESTIMATION 1557

all {eRand 0 <e<1,
(a) knB([er,); {Yoi, Y,0)) = O,

22k, .
(b) em E Z Cov(Yni7 Ynj) =X
n 1<i<jx<ler,]
ak,
(c) YL (Cov(Y,:, %9) + Cov(Y9, Y,)) = 0,
em, 1<i<j<ler,]
2k” @) y©
(d) em Z E COV(Yni ’Ynj ) - w,

n 1<i<j<ler,]
k, .
(e) Z—f(wn(a))zz(wn(a)l > 1m,) =0 forall 5,7>0,

where k, =[n/r,] and W,(8) = LtI(Y,; — €Y,,) + (§/aXY, — &Y,
Then for all { € R,

Jm (Hf - €HY,a{(S® — £5%))

(3.1) 0\ _of2+x 1+y
_’dN((o)’“2(1+¢ 1+w))’

where S == m 1L Y.
Proor. It clearly suffices to show
)
m((H;— EHF) + — (8% - efS,(f)))
a

-4 N(0,a72((2 + x) + 28(1 + ¢) + 8*(1 + w)))
for each 6. Let 0 < ¢ < 1 be a fixed constant. Define
Fi={G-Dr,+1,...,G-Dr, + [(1-&)r,]}, l1<i<k,,

S={G-Dr,+ [(1-e)r,] +1,...,ir,}, 1<i<k,,
& ={k,r, +1,...,n}.
Define also
1 o
U, = ) ((Ynj - &Y,;) + ;(Yn(ﬁ) - é°Y,f§))), 1<i<k,,

" Vs jes,
1

8
)y ((Ynj ~ EY,;) + —(Y9 - ng))), 1<i<k,,

ni ‘/_‘
Mn jes,
1

R Y (v, - ey, 2 (y© - y®
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Thus,
) kn

(32) Jm, ((H;— FHY) + (89 - &S,‘f))) - Y (U, +U,) +R,.
@ i=1

We first consider the convergence of ¥ f; 1U,;- By a simple argument in
conjunction with condition (a) (cf. the proof of Theorem 3.1), we can proceed as
if the U,,; are i.i.d. r.v.’s. The sum of the variances of the U,; is derived as

follows.
k [A-#)r,] 52 [A-#&)r,]
n
k,Var(U,,) = — Var ), Y,j+ —5Var Y} Y&
j=1 a j=1

n

I

5 (A=or] ~ [1=e)r,]
a j=1 j=1

where, by (1.5), (b), (c) and (d),

k [A-e)r,]
n

—Var ) Y,

m i1

n

k, :
(la-anVay 2 TE  ooum,x,)
n 1<i<j<[1-#&)r,]
a1~ )2 + ),

52k [A-e&)r,]

n
Var ) Y®
2 nj
a®m, i1

2

_ o°k, ([(1 _ 5)7'"]V31'(Yn(§)) +2 Z Z COV(Y,,(,{), Yn(f)))

2
a'm, 1<i<j<[(1-e)r,]

- 8% 731 - ¢)(1 + 0),

Sk [A-e)r,] [A-#)r,]
2—= Cov Y, . Y ©
am ng nj» ng nj

n

ok
= i - Y (€9)
22 ([(1 - )7, ] Cov(¥,0, T

+ ¥y (Cov(YM-, Yn(f.)) + Cov(Y,ft{), Ynj)))

1<i<j<[1-é&)r,]
- 28a"%(1 — &)(1 + ¢).
Thus £, Var(U,;) > a™2(1 — X2 + x) + 26(1 + ¢) + 6%(1 + w)). Using this
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and (e), we conclude readily from the Lindeberg central limit theorem that
k,
(1-¢e) 2L U,; >4 N(0,272((2 + x) + 26(1 + ¢) + 6%(1 + ))).
i=1 .

In exactly the same way, ¢ ~1/2L%» U, can be shown to converge to the same

distribution. By the Cauchy-Schwarz inequality and the assumption that
r2/n - 0, Var(R,) is seen to tend to 0 and hence R, —p 0.Since 0 < ¢ < 1is
arbitrary and in view of (3.2), (3.1) follows from letting ¢ — 0. This concludes
the proof. O

COROLLARY 3.4. Under the assumptions stated in Theorem 3.3,

an (H;— gH;’ X(:';nn+l) - b*(n/mn))

. o n((Q)w(2Ex 11Y)

Suppose further that condition (i) of Theorem 3.2 holds. Then

Vm, (H, - €H}, X5, oy = b*(n/m.,))

(34) 0\ _o[2+x 1+
~d N((o)"" 2(1+./, ‘ 1+w))
and
(3.5)
N(0,a (1 + x + © — 2¢)), under (2.3a),

‘/r—n—n(Hn —a™!) -, N(KA/a(a — y),a 2 (1 + x + 0 — 2¢)),
under (2.3b).

Proor. (3.3) follows readily from Theorems 2.4 and 3.3. Further, condition
(ii) of Theorem 3.2 implies that (2.6) holds for all £ € R and p in some interval
containing 1. Hence (3.4) and (3.5) are also simple consequences of Theorems
24 and 3.3. O ‘

If additional information on {X j} is available, the conditions in Theorem 3.3
may be considerably simplified. The following is an example.

TeEOREM 3.5. Let {X} be a strictly stationary l-dependent sequence, where
l is a positive integer, and the slowly varying component L in (1.1b) satisfies
either (2.3a) or (2.3b). Suppose there exist constants x, ¢ and » such that for
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all { € R,
l
(a) m Z éf)YnlYnj X
nj=2
l
(b) m Z (é)YnlYn(f) + gYn({)YnJ) - ll’,
nj=2

n l
() 2 ¥ EYHYH > w.

m, Jj=2

Then (3.3), (3.4) and (3.5) hold.

Proor. By Corollary 3.4 it suffices to show that the conditions (a)-(e) of
Theorem 3.3 hold for any {r,} such that r, = o(m,) and r, — », and that
condition (ii) of Theorem 3.2 holds for r,, = I.

First let {r,,} be such that r, = o(m,) and r, = «. Condition (a) of Theorem
3.3 holds trivially by I-dependence. To show condition (b) there, note that

2a? > Y Cov(Y,;,Y,,)
em, 1<i<j<ler,] " nJ
ler,] i+1-1
C LY ) — 2a2 ,Y, ;)
Emn LZIJ;+1 OV( " nj) em, Jj=2 " "J)
where the first term is equal to
2a2k Z COV( nl» nJ) - X

EnJZ

and the second term is bounded in absolute value by [cf. (1.5)]

2a?

Ynl) - 0.

This proves condition (b) of Theorem 3.3, and (c) and (d) there are proved in a
similar manner. Next we show condition (e) of Theorem 3.3. Let W,(8) be as
defined there. Clearly,

(1W.(8)| > 7y/m, ) < “e“W‘*(a)

By l-dependence, the right-hand side is bounded by
k, 2 8 03} 63} !
;é_;n—z'ﬁ(rn)é) (Ynl - éf)Ynl) + ;(Ynl - é)Ynl ) ’

which tends to 0 by the choice of r,. Next we let r, =/ and observe that
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condition (ii) of Theorem 3.2 holds for this choice—it suffices to show that

k, ! n 2
5 5(2 I(X;" >.b*(pm,,) + e)

-0
n i=1

which is most straightforward. O

If {X,} is i.i.d., then the parameters y, ¢ and @ in Theorem 3.5 are equal to
0, and (3.5) coincides with a familiar result in the literature [cf. Davis and
Resnick (1984)]. In view of Theorem 3.1, it is seen that x, ¢ and w can be
consistently estimated once an appropriate restriction on the dependence of
{X,} is satisfied, making it possible to construct confidence intervals of a. To
see how well the asymptotic results work, we simuylated actual coverage
probabilities of confidence intervals of «~! for the moving average sequence

Xi=Zi+2Zi+1’ i=1,2,...,

where the Z; are ii.d. Cauchy (and hence a = 1). For a large number n and
some properly chosen number m, an approximate (1 — q)100% confidence
interval of a~! suggested by Theorem 3.5 is

AL 1/2
1+x+d— 2¢z)

mé&?

(3.6) at izq/z(

where

m
A—1 _ — -1
@ '=H,=m™" Y X35 = Xim+1y
j=1
n—-1
A A2 -1
X =2a"m Z (Xz* _X(fn+1))+(Xi*+1 _X(>l;n+1))+v
i=1

n—1
g=am™ 1Yy {(Xi* - X(",‘,,+1))+I(Xi+1 > Xim+1)
i=1

+H(XH - X(":n+1))+I(Xi > X(m+1))}’
n—1

d=2m"" Y I(X;> Xpni1y Xiv1 > Ximany)-
i=1

Table 1 consists of coverage probabilities of (3.6) for n = 250, m =

TaBLE 1

m

qg 50 60 70 80 90 100 110 120 130 140 150

0.1 0.8395 0.8490 0.8490 0.8595 0.8805 0.8945 0.9080 0.9055 0.8990 0.8630 0.8005
0.05 0.8915 0.8975 0.9085 0.9245 0.9330 0.9455 0.9555 0.9625 0.9515 0.9385 0.9030
0.01 0.9435 0.9520 0.9605 0.9690 0.9755 0.9820 0.9870 0.9905 0.9950 0.9925 0.9865
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TABLE 2

m
q 50 100 150 200 250 300 350 400 450 500
4

0.1 0.8441 0.8403 0.8377 0.8377 0.8499 0.8706 0.8929 0.9093 0.8968 0.8182
0.05 0.8930 0.8957 0.8954 0.8986 0.9057 0.9212 0.9432 0.9543 0.9503 0.9055
0.01 0.9478 0.9538 0.9573 0.9597 0.9652 0.9738 0.9833 0.9893 0.9915 0.9833

50,60,...,150 and ¢ = 0.1,0.05,0.01, and Table 2 consists of coverage proba-
bilities of (3.6) for n = 1000, m = 50,100,...,500 and ¢ = 0.1,0.05,0.01.
The coverage probabilities are obtained with 10,000 simulation runs.

As can be seen, the approximations are quite acceptable for a large range of
values of m for both n =250 and 1000. This brings up the important
question of how to choose the optimal m for a given data set of size n. To deal
with this, one possibility is to again resort to (3.5) which gives the asymptotic
mean squared error of Hill’s estimator. This is best illustrated by the works of
Hall (1982) and Hall and Welsh (1985) [cf. Haeusler and Teugels (1985)] which
considered related issues for the case where observations are i.i.d. with tail
distribution

F(x) =Cx[1+ Dx? + o(x7?)] asx > =,

where C,a, B > 0 and D € R. The presence of dependence will undoubtedly
- make matters more complicated. A study on this topic is under way.

4. Tail index estimation for finite moving averages—an example.
In this section we illustrate the central limit theorem, Theorem 3.5, by
considering a finite moving average sequence. Despite the simple dependence
structure of this sequence, the asymptotic variance of Hill’s estimator is a
highly nonlinear function of the moving average coefficients and the derivation
is less straightforward than one might expect

Let Z,Z,,Z,,... be iid. positive r.v.’s with P[Z > z] = z‘“L(z) where
a>0and L is s'lowly varying at « and satisfies either (2.3a) or (2.3b). Define

l
XJ= Zaizi+j_1, j=1,2,.-.,

i=1

where a;, 1 < i <, are positive constants. { X;} is a strictly stationary /-depen-
dent sequence. By a result in Section 8.8 of Feller (1971),

P[X, >t] Lo
(4.1) W - i{:lai ast — oo,

As in the previous sections, let 5(¢) be the quantile function of X, defined by
(1.2). Throughout this section, let {m = m,} be a fixed sequence of positive
integers satisfying (1.4), and write b, = b(n/m) for convenience. Also let {¢,,}
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be a collection of positive numbers such that

n
(4.2) e, >0 and ‘/ oy P[Z > ¢,b,] — 0.

Such an {¢,}-sequence exists since, by (4.1),

lim P[Z>sb]— \/—P[X1>eb] Ea—O
i=1

n—o

for any fixed &£ > 0.

We first state a basic lemma which is crucial for deriving the covariance of
(X¥ — b}), and (X} — b}),, 2 <j < l. The proof is tedious and is given in the
appendix.

LEMMA 4.1. For positive constant k and A, the following can be proved:

(a) lim —&((xZ)* = b}).. (AZ) = %) = a”%i(x, 2),

by o (2) D). I((A2)" - 8 > £/im) = o A),

{>0,

lim —P[(xZ)* — b5 > {/Vm , (AZ)* — b% > {/Vm | = py(k, ),

(c) nowm
£>0,

where p,, p,, p3 are bivariate functions on (0,) X (0, x) defined by

(4.3) pi(k,A) = %’—\f—{'(z + alog(: X i ))
(4.4) po(K,A) = %':‘—'\1)‘—)‘,‘(1 + a(log;)+ )
(4.5) pal, 1) = (EZA—Z)

By the definition of {X}, if 2 <j < then the Zs which contribute to X,
or X;are Z,1<r<l +J — 1, and the Zs that contnbute to both X, and
X; are Z,j<r<l. Wecanwnte

(46) S(XF—b%) ., (XF - b)), = &((XF - %), (Xf - b)), 5,),
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where
S,=I1(Z,<¢,b,,1<r<l+j-1)
+1(Z,>¢,b,,Z,>¢,b, forsome r #sin{1,2,...,1 +j — 1})

(4.7) l+j-1
+ X I,
r=1
with
L,=1(Z,>¢,b,,Z, <¢,b, forall s € {1,2,...,1 +j — 1} \ {r}).

LEmma 4.2. For 2 <j <,

n
im —&(XF — b* *—b¥), I, =
(a) ’}I_I)I:om ( 1 bn)+(Xj bn)+ nr 0’

re{l,2,...,l+j—-1} N {Jj,..., 1},

n
(b) Mm —&(X} —bF), (X} -b2),1(Z,<e,b,,1<r<l+j—1)=0,

nn>
n—o M

n
© Jl_lgo;f(X;“ —b3) (X —0b}),I(Z, > ¢,b,, Z, > €,b, forsomer +s

in{1,2,...,1+j—-1})=0.

ProoF. The proof of (a) goes as follows. If re{1,2,...,1 +j — 1} \
{J,..., 1}, I, is the event that all of the / components Z,s contributing to
either X; or X; are no greater than ¢,b,. Let us say that it is X; that has the
property. Then

(X —b7),=(log X, —logb,),

L
< (log( Y aie,,b,,) — log b,,)
+

i=1
l
= (10g ( Y a
i=1
which is equal to 0 from some 7 on since ¢, — 0. Thus (a) is proved. The proof

of (b) uses exactly the same idea and is omitted. We now show (c) by showing
that for r # s,

+ logs,,) ,

+

n
— (X} = b%), (X}~ b%), I(Z, > e,b,, Z, > e,b,) = 0.

Applying the Cauchy-Schwarz inequality twice, independence, (1.5) and (4.2),
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the above left-hand side is bounded by

1/2

n 1/2
;(e”(X;k —B3)5(XF - b)) (CIX(Z, > e,b,, Z, > €,,))

n . 1/2

= —(e(x: ~b)U(XF - 82),) " PLZ, > 6,8,
n

< Xlexr -y e(xr —v2) ) PlZ, > b
m nl)+ J n)+ n
n 1/2

= —(&(Xf = b%)%) " PLZ, > £,b,]

n
= ﬁ(‘/;)P[ZI >e,b,] > 0.

This ends the proof. O

LEMMA 43. For 2 <j<r<l,
n
lim a®—&( X = b%), (X} = b%), L, = pi(@,, 0, j10),
n—o m

where p, is defined by (4.3).

ProoOF. Since the a;’s and Z’s are positive, liminf, , (n/m)&(X{ —
b¥) (X* — b}),I,, is bounded below by

N n %k
'31_120 Tn—é)((arzr)* - bz)+ ((ar—j+1zr) - b:)+Inr
. n %
= lim = 8((a,2,)" - b2). (6,012, )" ~ b).,

XI(Z; <e,byforallie {1,2,...,1+j -1} \ {r}),

where the equality follows from the arguments in the proof of Lemma 4.2 (a).
By independence, (4.1) and Lemma 4.1, the above quantity is equal to

n ,
r}l—lEo ;é)((arzr)* - b;‘:)+ ((ar—j+lzr)* - b:)+Pl+J—2[Z1 =< Enbn]
n

(48) = lim —&((a,2)" = 82), ((ar—:Z,)" ~ b)),

= a—2p1(a’r’ar—j+1)‘
Next lim sup,, _,(n/m)& (XS — b}) (X} — b}).1,, is bounded above by

n
lim sup ;;f((arzr +eb,)" —b%), ((a,_;+12, + eb,)" — b%),

for any fixed ¢ > 0, since £, — 0. This quantity can be evaluated as [cf. (A.1)]

limsupifiof;oP[a,Z, + &b, > e*b,,a,_;.1Z, + &b, > eyb,,] dxdy,

now M
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which is bounded by

n -] o0
hl:lj:p—;];=0£=oP[a,Z, > e*(1—¢€)b,,a,_;.1Z, > e’(1 — €)b,] dxdy

. n a, \* ar—j+1 *
v 2ol ) (S22
now M 1-¢ + 1-—¢ +

=a_2p( a, ar—j+1).
N1-¢"1-¢

Since p, is continuous, as ¢ — 0 this upper bound tends to the lower bound
given in (4.8) and the result is proved. O

THEOREM 4.4. For 2 <j <,

n l
'!j_]i[:e ;g(xik - b:)+ (XJ* - b:)+ = a—2 E.pl(ar’ar—j+1)a

(2)

n l
i — (X - 60 I(X - b3 > §/Vm) = a7t E py(a,, 0, 0),

r=j

n !
®) lim ;J(XJ’-" —-b}) I(Xf -bt>¢/Vm) =a™ ! ) py(a, i1, a,),
n—oow =j

[eR,
l

o lm —P[Xt — b} > ¢/Vm, X~ b > 1/Vm] = T pa(ar,a, ),
n—o r=j

e R.

Proor. (a) follows readily from (4.6) and Lemmas 4.2 and 4.3. To prove (b)
and (c), one can write [cf. (4.6)], for 2 <j <[,

S(Xy - b3), I(XF ~ b} > {/Vm)
= &(XF - b)) I(XF - bs > {/Vm)8,,
E(XF —b¥) I(XF —br>{/Vm)
= &(XF - b)) I(XF - bk >(/Vm)8,,
P[Xf - bt > ¢/Vm, XF — bt > {/Vm]
= CI(Xf - b% > {/Vm, X} - b > {/Vm)8,,

where S, is defined by (4.7), and mimic the steps leading to (a). The modifica-
tion is quite straightforward and is omitted. O
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The following result follows simply from Theorems 3.5 and 4.4.

THEOREM 4.5. Let m, be positive integers satisfying (1.4) and {X} be the
finite moving average sequence ‘under discussion in this section. Then
(3.3)-(3.5) hold with

1

X= 2 Z Z pl(ar’ar—j+1)’

Jj=2r=j

l l
‘/’ = Z Z {p2(a’r1ar—-j+1) +p2(a’r—j+1’ar)}’

l l
2 Z Z ps(a,, ar—j+1)’

Jj=2r=j

e
I

where p,, p, and p, are defined by (4.3), (4.4) and (4.5), respectively.

APPENDIX

Proor oF LEMMA 4.1. The proof is based on the simple fact that for any
nonnegative r.v.’s X, Y,

.} 0

(A.1) E'XY=/ f P[X>x,Y>y]dydx.
x=0"y=0

Thus
E((kZ)" - %), (A2)* - b%),

=L

x y

Q0

P[Z > (k7 %e* Vv A~le?)b,| dydx
=0

_ joo f(x+log(A/K))+P[Z > k" le*b, | dydx
-0

x=0"y=0
®  r(y—log(A/x)), -1
P|Z > A", | dxd
+]y=0];=0 [ > e n] X ay

=f:

A
(x + log—) P[Z >k 'e*b,] dx
0 K]+

00

A
+[ (y—log—) P[Z > A"'e’b,] dy.
y=0 K]+
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Assume henceforth that « < A. The above becomes
o A
S/ (x + log;)P[Z > k" le*b, | dx
x=0
s A
+f (y - log—)P[Z > A" le?d, | dy.
y=log(A/k) K

Letting x = y — log(A /k) in the second term in the last expression, we get
E((xZ)* - b%), (AZ)* - b)),

= * -1,x
(A2) 2[x=0xp[z > k" le%b, | dx

A o :
+(log ;)[=0P[Z > k" le*b, | dx.

1t follows from (4.1) that P[Z > b,] ~ (m/nXZ'_,a%)~L. Thus

2[;0xp[z > k~le%b, ] dx

(A.3) = [* P[Z>«'eFb,] dx
x=0
m 1 ® o e 2 m «k*
SR [ e e SR
Similarly,
© 1m «k*
(A4) [x=op[z>,< le*b, | dx ~ e m T

Condition (a) now follows from combining (A.2), (A.3) and (A.4). Conditions (b)
and (c) are proved by basically the same line of techniques as above, and
therefore the proofs are not presented. O
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