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Suppose that P is the distribution of a pair of random variables (X,Y)
on a product space X X Y with known marginal distributions Py and Py.
We study efficient estimation of functions 6(k) = [hdP for fixed h:
X XY - R under iid sampling of (X,Y) pairs from P and a regularity
condition on P. Our proposed estimator is based on partitions of both X
and Y and the modified minimum chi-square estimates of Deming and
Stephan (1940). The asymptotic behavior of our estimator is governed by
the projection on a certain sum subspace of Ly(P), or equivalently by a pair
of equations which we call the ‘“ACE equations.”

1. Introduction. Suppose that (X;,Y7),...,(X,,Y,) are iid random vec-
tors with joint df H on R?2 and marginal df’s Hy and Hy, respectively. Our
goal in this article is to discuss efficient estimation of H (at an arbitrary point,
or a fixed linear functional of the form [k dH) when the marginal df’'s Hy and
Hy are known; that is, Hy = F and Hy = G, where F and G are fixed and
known. If F and G are continuous, we may, without loss of generality, assume
that H is a df on [0, 1]> with uniform marginals, but our treatment in the
following sections will not insist on this.

One justification of the assumption of known marginals is by way of an
“auxiliary samples’ model as follows [this model was pointed out to J. Wellner
by Marshall (1986)]: Suppose (X;;, Y1y),...,(Xy,,Yy,) are iid H as above
and, in addition, we also observe independent samples of X’s and Y’s from the
marginals Hy and Hy of H: X,,,..., X,, areiid Hy and Y,,...,Y;, are
iid Hy. If n, and ng are very large relative to n,, we can (at least heuristi-
cally) act as if the marginal df’s are known and equal to the empirical df’s of
the n, auxiliary X’s and n4 Y’s, respectively. This model can, of course, also
be viewed as a missing data model: The Y’s are missing in the second sample
and the X’s are missing in the third sample. It is also a submodel of the
bivariate censorship model with nonidentically distributed censoring variables
[see, e.g., Dabrowska (1988)] and deserves consideration and study in its own
right. We intend to do this elsewhere.
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EFFICIENT ESTIMATION OF LINEAR FUNCTIONALS 1317

Vitale (1979) has studied a regression version of our problem. He also gives
motivations and justifications from census problems and from time series.

In the discrete, or contingency table, setting this problem has a long history,
apparently beginning with Deming and Stephan (1940), and continuing with
the work of Ireland and Kullback (1968). Despite the considerable knowledge
and effort devoted to the discrete problem, the continuous version of the
problem has not, to our knowledge, received an adequate treatment. In fact,
the estimators we study here for the continuous problem are based on the
estimators of Deming and Stephan (1940), but with the number of cells
tending to infinity with sample size n. However, with increasing number of
cells as n — «, the number of constraints in the discrete problems also
increases to infinity, and this makes the large sample study of estimators
much more difficult in the continuous problem which we study here than in
the discrete problem with a fixed number of cells as in Deming and Stephan
(1940).

There is also a long history of inequalities for bivariate distributions in
terms of their marginals beginning with Hoeffding (1940) and Fréchet (1951),
and continuing in the more recent work of Whitt (1976) and Cambanis,
Simons and Stout (1976). See Marshall and Olkin [(1979), page 381] for a nice
treatment. However, these inequalities in themselves apparently do not yield
an efficient estimator of F.

Haberman (1984) discusses minimum Kullback-Leibler divergence-type es-
timators for this and more general problems involving a fixed finite number of
constraints. Since our model can be viewed as one with an infinite number of
constraints, Haberman’s results do not apply. Sheehy (1987, 1988) has ex-
tended Haberman (1984) in a study of estimation of probability measures
subject to a finite number of constraints. Kullback (1968) and Csiszér (1975)
study minimal Kullback-Leibler divergence projections of a given (population)
distribution onto the set of distributions with given marginals. The results of
Kullback and Csiszar have been extended to other divergence measures by
Riischendorf (1984). [He also indicates difficulties in Csiszar’s (1975) Corollar-
ies 8.1 and 3.2.] Their results have apparently not yet been connected with the
estimation problem.

One possible explanation for the long-standing lack of a satisfactory solution
to the continuous problem is that the influence function of any efficient
estimator cannot be calculated in closed form, but can only be characterized in
terms of a certain pair of equations related to the projection on a certain sum
subspace of L,(P). These equations, which we call the ACE equations because
of the alternating conditional expectations algorithm for calculating certain
cases of projections of this type, occur repeatedly in this article and form the
basis for a large part of our treatment of this model. The alternating projec-
tions algorithm for calculating a projection on a sum subspace of a Hilbert
space was originated by von Neumann in the early 1930s, but did not appear in
print until von Neumann (1949, 1950). It was independently rediscovered by
Aronszajn (1950), Nakano (1953) and Wiener (1955). See Deutsch (1985) or
Kayalar and Weinert (1988) for recent reviews and further developments.



1318 P.J. BICKEL, Y. RITOV AND J. A. WELLNER

Appendix A.4 of Bickel, Klaassen, Ritov and Wellner (1991) gives a treatment
suited to semiparametric models.

Alternating projection methods have received considerable interest and
attention in statistics within the past few years in connection with nonpara-
metric (additive) regression and correlation; see, for example, Breiman and
Friedman (1985), Buja (1985) and Buja, Hastie and Tibshirani (1989).

The theory of orthogonal (or spectral) decompositions of bivariate distribu-
tions is also closely related to the alternating projection methods and can in
fact be used to solve our ACE equations whenever the spectral decomposition
is available. Although we will not pursue this direction here, the rich literature
concerning spectral decompositions, beginning with Rényi (1959) and continu-
ing with Lancaster (1958, 1963), Eagleson (1964), Venter (1967), Dauxois and
Pousse (1975) and Chesson (1976), should be mentioned. Buja (1985) shows
the connections between this theory and the work of Breiman and Friedman
(1985). Use of spectral decompositions for discrete distributions (sometimes
known as correspondence analysis or reciprocal averaging) goes back even
further, to Fisher (1936) among others; see, for example, Schriever [(1986),
Chapter 2] for an interesting account.

In fact, the bivariate model with known marginal distributions which we
treat here is just one example of a large class of semiparametric models in
which the efficient influence function involves a projection on a subspace of a
Hilbert space with a sum space structure. When the subspaces involved in
forming the sum spaces are orthogonal, explicit formulas are usually possible
since the projection on the sum space is then the sum of the individual
projections. However, when orthogonality fails (as it does in the present
model), explicit formulas are often not available and we are forced to work
with the equations defining the projections. As far as we know, this article is
the first instance of a complete proof of asymptotic efficiency of an estimator in
any model of this type with two honestly infinite-dimensional nonorthogonal
subspaces making up the sum space.

2. The estimator. Let (X X Y,Fy X Fy) be a measurable space and sup-
pose that F and G are given probability measures on X and Y, respectively.
Let P denote the set of all probability measures on (X X Y, Fx X Fy) with the
given marginal laws F and G. We let (X, Y) be the identity map from X X Y to
X X Y. Then for P € P we have

(P1) P(AXY)=F(A) forall AeFy
and
(P2) P(X X B) = G(B) forall B €Fy.

In other words, P(X € A) = F(A) and P(Y € B) = G(B), while P(X,Y) €
C) = P(C) for C € Fx X Fy.
For a € (0,1), let P, denote the subset of P satisfying, in addition,

(P3) P(Xe€A,YeB)>aF(A)G(B) forall AcFy, B<Fy.
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Let h: X X Y = R be a fixed Fx X Fy-measurable function with Er*(X,Y)
< «, We consider estimation of the functional

(2.1) 6,(P) = [ [h(x,y) dP(x,y) = ER(X,Y).
To introduce and describe our estimator, we first need partitions of X and Y
as follows: For a given sample size n let
An = {An,l’ LR An,k(n)} = {Anl’ LR Ank}
and
Bn = {Bn,l’ ] Bn,m(n)] = {Bnl’ tr Bnm}
be measurable partitions of X and Y, respectively. (Thus U kmA ;=X and
Ani ﬂAnJ = @ fOI‘ i :te.].) Let
F,=o{ly p,:i=1,....,k(n),j = 1,...,m(n)},
F,x= o-{lAm,: i= 1,...,k(n)}
and
Fy=o{lg ;:Jj= 1,...,m(n)}.

We assume that the partitions are constructed so that

F(A,) 2 i=1,...,k(n),

(F1) ‘/_ |

G(B,)) = j=1,...,m(n),

J_ ’
where yZ2/logn — © and v,/ Vn vn = 0, the sequences of partitions {A },{B,}
and hence also the sequences of sigma fields {F,x},{F,y} are nested (or
monotone increasing) and this of course entails that {A, X B,} and {F,} are
also nested:
FnX c F(n+1)X’
(F2) F,yCcF,,yy forn=12..,
Fn c Fn+1

and finally, the limiting sigma fields equal the original Fy, Fy and Fy X Fy,
respectively:

Fx=o U an) =Fy,
n=1
(F3) Fy=o U FnY) =Fy,
n=1
F. =0 U Fn) =Fy X Fy
n=1
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It follows immediately from (F2) that A, = E(h|F,) is a martingale with
respect to {F,} and hence from (F3) that #, — k a.s. and in L,(P)

(2.2) E[h(X,Y) - E(h(X,Y)|F,)]* >0 asn - w.

When X and Y are Euclidean, partitions satisfying F1-F3 can always be
constructed; see the remarks at the end of this section. When the margins are
uniform and the partitions are constructed so that equalities hold in (F1), the
growth restrictions on vy, imply that m(n) - « and m(n) = o((n/log n)'/?).

Here is our estimator of 6,(P). Suppose (X;,Y)),...,(X,,Y,)areiid P € P,.
For any k X m array {d,;} we write d,.= £7.,d,;; and d.; = Z}_,d;;.

(23) N;=Y% 1a,.xB, (X1, Y;) = # of (X,,Y)) pairsin A,; X B,,;
=1

fori=1,...,k(n), j=1,...,m(n),andlet D ={(i, j): N;; >0,i=1,...,k,
J=1,...,m}. Let {p,;: (i, j) € D} be the unique point minimizing

A N2
(N = mby;)
N,

ij

k(n) m(n)

X X

i=1 j=1

(2.4)

[N;;>0]

subject to the constraints

m(n)

(2.5) Pio= Y bi;=F(A,)=p}., i=1,...,k(n)
j=1
k(n)

(2.6) b= X bj=G(B,;)=p% Jj=1,...,m(n).
i=1

Since all p;; > 0 by (P3) and (F1), all the N,,’s are positive with probability
arbitrarily close to 1 for n sufficiently large (see Lemma 2) and hence
D=D,={G,j)ri=1,...,k j=1,..., m} with high probability for n large.

This is a modified minimum chi-square estimator of the cell probabilities
p;; = P(A,; X B, ). As shown by Deming and Stephan (1940) and Ireland and
Kullback (1968), the solution p,; is of the form

bij= %(1 +d;+5),

where @; and b ; satisfy

np? ™ .N, b
(2.7) d,.=]5 R T
and-

np? Tk N, .4,
(2.8) b= By DWWl g o

.
~.

N

J
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Alternatively,
(2.9) a = Py(d - b)
and .
(2.10) b="Py,(d-a)
where d = {d;} is given by
0 0
dy; = "—pl’v'—_& -1,

13

(note that the d, ;’s are computable from the data since p. and p?; are known)
and for any w = {w,},

1 m
Prw(i) = ~ zlw,.jN,.j, i=1,...,k
i j=
and

1 k
‘N-Zwl‘]MJ’ J=1,...,m.

Ji=1

f’yw(j) =
Similarly, for vectors a € R* and b € R™,
. 1 m .
Pyb(i) = N Y N, i=1,...,k
ic j=1

and

1 *
pYa(j)=FxlaiMj, J=1...,m.

e
The coupled pair of equations (2.9) and (2.10) are an example of the ACE
equations; similar related equations will reappear repeatedly in the following.

Now set

1 n
i;'ij = 1[N,~j>O]N— Z h(X,, }’l)lAm-XB,,j(Xl’ Y)
ijl=1
fori=1,...,k(n), j=1,...,m(n). Our estimator of 6,(P) is
l kE m
(2.11) b= Y ¥ Bk,
i=1j=1

To describe the asymptotic behavior of our estimator én given in (2.11), we
need to introduce two key functions. Let u: X > R and v: Y —» R be the
unique [up to centering and L,(P) equivalence] solutions of the equations
(2.12) Ep(h(X,Y) —u(X) —v(Y)|X)=0 as.
and
(2.13) Ep(h(X,Y) —u(X) - v(Y)|[Y)=0 as.
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Alternatively,

(2.14) u(X) =Px(h(X,Y) —v(Y))
and

(2.15) o(Y) = Py(h(X,Y) - u(X)),

where Py = E(:|1X) and Py = E(-|Y). These are the ACE equations again;
compare with (2.9) and (2.10). The functions z and v yield the components of
the projection of % onto the subspace Hy + Hy of L,(P) (which is closed
under the assumption that P € P,; see Lemma 1 in Section 3); here

Hy = {a = a(X): Epa®(X) < =}
and

Hy={b=5(Y): Epb*(Y) < }.
Thus, letting T1(h|H) denote the projection of % onto the subspace H of the
Hilbert space L,(P),

NkrHyx + Hy) = u(X) +v(Y)
or
(2.16) h(X,Y) —u(X) —v(Y) La(X) +b(Y)

for all a € Hy, b € Hy. The orthogonality relation (2.16) implies that

1(X,Y)=h(X,Y) - u(X) —u(Y) e P, the tangent space of P at P, and
hence that our estimator 0 is efficient. For more on efficiency see Sectlon 4,
where we also define and characterlze P.

THEOREM 1. Suppose that P € P, for some a > 0, that (F1)-(F3) hold
and Eh¥(X,Y) < . Then

. 1
Vn (6, — 6,(P)) = 7= Y {r(X,Y) —u(X)) —v(Y)} +0,(1)
(2.17) ) -l
= =YL 1,(X,,Y) +o0,(1).
noj= :
Hence

(2.18)  Vn (8, - 6,(P)) >4 N(0,E(I3(X,Y))) asn— .

Remarks and further problems 1. Alternative estimators. Two obvious
alternatives to modified minimum chi-square estimation of the p;;’s, and
hence alternatives to 0,,, are (a) minimum Kullback-Leibler divergence estima-
tion, and (b) maximum-likelihood estimation. These estimators are of the
forms pXL = (n"'N;))é, 5- and pM* = (n"'N;;)/(4; + 5j); see, for example,
Ireland and Kullback [(1968) pp 181 and 180, respectively]. In fact, the
minimum Kullback-Leibler estimator {p; JL} is easily computed by “iterative
proportional fitting” as originally proposed by Deming and Stephan (1940).
These alternatives deserve further investigation.
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2. The Assumptions (F1)-(F3) and (P1)-(P3). When X and Y are Euclidean,
partitions A, of X and B, of Y can always be constructed so that (F1)-(F3)
hold. This is obvious in the special case of X =Y = [0, 1] and both F and G
uniform on [0, 1]; just use the usual diadic partition

A, ={(E27(G+127]:i=1,...,2" - 1},

with m(n) = 27, and similarly for B,,, with m(n) and k(n) chosen so that (F1)
holds. For general F and G, the partitions can be generated by simply
proceeding diadically subject to satisfying (F1). (F1) together with (P3) implies
that the expected number of observations in each cell goes to infinity faster
than log n. Of course, (P3) alone implies that Hy + Hy is closed; see the proof
of Lemma 1 in Section 5. It would be desirable to weaken assumption (P3). A
first step would be to try to weaken it to just the hypothesis that Hy + Hy is
closed.

3. The asymptotic variance E[13(X,Y)] = o7. The asymptotic variance of
our estimator is not easily calculated because it involves a projection on
Hj + Hy; see Section 4 for some efficiency comparisons via inequalities. It is,
however, consistently estimated under the same conditions as used in Theo-
rem 1 by the estimator ’

where @; + 0, = ACE(ﬁIﬁ)(i,j); that is, #; and ﬁj‘ solve
Zﬁij(ﬁij—ﬁi—ﬁj)=0, i=1,...,k(n)
J

and

T piy(hiy——5)=0, j=1,...,m(n).
i

4. Nonlinear functionals and the estimator as a process. We have only
considered one fixed function 2 in Theorem 1. Of course this generalizes
immediately to finitely many functions & since a sequence of random vectors
converges in probability to zero if and only if each coordinate thereof converges
in probability to zero. This allows for treatment of nonlinear functionals of the
form g(fh,dP,..., [k, dP), where g is a fixed differentiable map from R” to
R, such as the correlation coefficient, via the delta method. To handle more
general nonlinear functionals, it would be useful to deal with the estimator as
a process indexed by h € H c L,(P), for example, for X =Y =[0,1], H =
{10 sjxp0,¢ 0 <5 < 1,0 < ¢ < 1}. Once a result concerning convergence of the
entire process is obtained, then many more nonlinear functionals can be
treated via the delta method; see, for example, Gill (1989) and Wellner (1989).

5. Local regularity of 9n. In Theorem 1 we have not only established
asymptotic normality of the estimator at a fixed P € P,, but something
slightly stronger, namely, asymptotic linearity. It follows from contiguity
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theory (Le Cam’s third lemma) and pathwise differentiability of 6,(P) that the
estimator 6, is locally regular.

6. The case of one fixed margin. If only one marginal distribution is known,
say PX F, then efficient estimation of 6,(P) is somewhat easier. Condition
(P3) is no longer needed, and condition (F1) can be relaxed to y, — « and
n~1/2y — 0. The estimator is just

k
o — 0
=Yp
i=1
where

; h(X,, Y)1e, (X0).

Z|

When the distribution of X is known and discrete, estimation of 6,(P) = EY
[ie, X=Y =R and h(x,y) =y] has been considered in both finite and
random sampling contexts by Jagers, Odén and Trulsson (1985).

7. Higher-dimensional versions of the problem. In more than two dimen-
sions (d > 2) there are many different variants of the problem we consider
here, depending on which lower-dimensional marginal distributions are as-
sumed known. In the simplest variant in which only the collection of one-
dimensional marginal distributions are assumed known, condition (F1) would
be replaced by F(Anj) >y,n Ve i=1,...,d, j=1,..., k=k(n), where

v2/(log n) - « and y2¢/n — 0.

3. Proof of Theorem 1. First we introduce some useful notation. For
PeP,let
(3.1) p;;=P(A,; X B,;).

We write, in the usual way, N;., N.;, p;., p.; and p,., p.; for the sums over j
or i, respectively, of the corresponding N;;’s, p;; or p;;’s.
Set

(32) Rh(X,Y)=E[r(X,Y)|F,]
it ], | 5, ME ) AP ), n, (K V),

so that 2(x,y) = h;; —pulfjA xB,,7(x,y)dP(x,y)on A,; X B, ;. Now let H,
and Hy be the subspaces of L (P) consisting of functions which are F, x and
F,y measurable, respectively:

Hy, =L,(X,F,x, F) = {u € Hy: u is F, x measurable},

Hy, = Ly(VY,F,;,G) = {v e Hy:visF,y measurable}.

Similarly, let Hy and Hy be the subspaces of L,(P,) consisting of functions
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which are F, ; and F,;, measurable, respectively:
Ay = Ly(X,F,x, PX) = {u € Ly(P¥): u is F, x measurable},

H,=L,(Y,F,,,PY) = {v e Ly,(PY): v is F,, measurable},
Y 2 ny’'n 2\"n nY
where PX and PY are the marginal empirical measures of X and Y, respec-
tively.

Corresponding to z and v, the components of the projection of A onto
Hy + Hy, let 2(X), %(Y) denote the components of the projection of 4 onto
H, + Hy in Ly(P). Because &,% and 7 are constant on elements of the
partition, %(x) = L%_ 141, (), 0(y) = L7051 an(y), this projection problem
reduces to just solving a finite system of linear equations governed by the cell
probabilities p;;: The coordinates &, and v; of Z and U must satisfy

(3.3) ZpU(TlU—ﬁl—vj)=0 for i=1,...,k,
j=

k
(3.4) Zpl](zl]_ﬁl_l_)‘])=0 fOI' j=1,...,m.

Similarly, we let 4(X), 0(Y) denote the components of the projection of & onto
H, + Hy in Ly(P,). Again, since k, 4 and 0 are constant on elements of the
partition, this projection problem reduces to a finite system of equations,
governed now by the empirical cell probabilities N;;/n = P,(A,; X B, ;). The
coordinates &; and 0; of 4 and 0 must satisfy

(3.5) zlmj(ﬁij—ﬁi—aj)w fori=1,...,k,
i
k —

(3.6) Y Ny(Ri,—2,-8)=0 forj=1,..,m.
i=1

These equations are, of course, just discrete analogues of the ACE equations
(2.14) and (2.15).

We will prove Theorem 1 by way of seven lemmas, which we now state. We
will then show how the lemmas yield the theorem. Proofs of the lemmas are
deferred to Section 5.

The seven lemmas.

LemMA 1. IfP € P,, then u(X) — Eu(X) € Hy and v(Y) — Ev(Y) € Hy
are uniquely defined [up to equivalence in Ly(Py) and Ly(Py), respectively].
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LEmMA 2. Suppose that P € P, and (F1) holds. Then
(i) For any ¢ > 0,

Pr(max ﬁi—'z 1+£) -0 asn—> x,
i,j Ni/n

Nij/n
Pr| max 21+¢e| >0 asn-ow

»J Pij
and
Nij/n
Pr| max —1>¢e| >0 asn — =,
i’j pLJ N
(ii) For any € > 0,
N;./n
Pr|{ max —1/>e| >0 asn—->
i=1, ok pi.
and
N.J/n
Pr| max —1>e| >0 asn — .
j=1,...,m | p.;

(iii) Forany 0 <y <a

Pr(max (N;./n)(N.;/n) UL
{ i N;;/n

)—>0 asn — o,

LemMma 3. Suppose that P € P, and (F1) holds. Then
Noa Ny R . .
(i) pij=—n—(1+ai+5j) fori=1,...,k(n)andj=1,...,m(n).

il max |d;| + max |5~|—> 0 asn — «,
( ) lsiskl l| l<j<m 7 P

LemMma 4. Suppose that P € P, and (F1)-(F3) hold. Then
‘Z‘ﬁij(ﬁij - TLij) = Op(n_1/2)~
i,J

Lemma 5. If {p,;} is the solution of the minimization problem (2.3)-(2.5),
then

- 1 _
Z,ﬁijhij = 0,(P) + o Z.N,-j(hij -u; - 5j)
3.7 J

n

+ Xl: (pi-— ﬁ)(ﬁi - ;) + ZJ: (P-j - N.j)(hj - 7).
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LemMA 6. Suppose that P € P, and (F1)-(F3) hold. Then

j(Tzij -4, - v.)

J

1 & m
nC,fEnVar{—Z Y N,
ni=1j=1 ¢

~ [(h(x,5) = u(x) = v(y)) dP,(x, )

< f/(h(x,y) - TL(x,y))2 dP(x,y) >0 asn — .

LEmMA 7. Suppose that P € P, and (F1)-(F3) hold. Then both
Vn Z (p;.— Ni-/n)(ﬁi - Ei) = Op(Yn—l) = Op(l)
and

Vi (p.; = Ny/n) (0= 5;) = Op(v") = 0,(1).

Proof of the asymptotic linearity and normality theorem. Now we show
how Theorem 1 follows from Lemmas 1-7.

ProoF orF THEOREM 1. We first use Lemma 5 to write

Vi (8, — 0,(P))
- ﬁ( L hihy - eh(P)) ¥ W(Eﬁw‘(’;w - 7‘”))

i J
- % gNij(T‘ij —u; - vj) + \/'72:, (p;— N;/n)(&; - u;)
+Vn L (p.j = N-j/n)(f’j - vj) + ‘/EZﬁij(iiij - TLij) (by Lemma 5)
J i,j
= Va [[(h(x,9) - u(x) = v(9)) dPy(%,5)
Vo [[[h=T -5 - h+u+v]dP, + Vn T (b= No/n)(8, - ;)
+Vn ¥ (P = N'j/n)(f’j - vj) + ‘/Ez:ﬁij(ﬁij - Tlij)
J i,Jj

= ﬁ[[(h(x,y) —u(x) —v(y)) dP,(x,y) + I+ I + III + IV.

But I = 0,(1) by Lemma 6 and F2, IT = 0,(1) and III = 0,(1) by Lemma 7 and
¥, = ® and IV = 0,(1) by Lemma 4. O
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4. Efficiency. Here we do two things. We first show that the estimator 6,
is asymptotically efficient. In view of general asymptotic estimation theory
[e.g., Levit (1978), van der Vaart (1988), Pfanzagl (1982) or Bickel, Klaassen,
Ritov and Wellner (1991)), since the tangent set P0 is linear it sufﬁces to show
that the influence function I, of our estimator 0 is the projection of the
(pathwise) derivative of the functional 6,(P) onto the tangent space P of the
model P,. We then make some efficiency comparisons with inefficient, but
simpler, estimators.

The tangent space P. The tangent space P of the model P at P,ePis
defined to be the closure in Ly(P,) of the linear span of all score functions of
regular parametric submodels through P,. We claim that

To show that (4.1) holds, suppose that P, ={P,: 6 € @ CR}CP is a
regular parametric submodel through P, € P. Fix 00 € O so that Py = P,.
Then for any bounded function a = a(x) € Ly(P,), since P, € P for all be 0,

(4.2) [[a(x) dPy(x,y) = [a(x) dF(x) forall 6 € O,

where the right side does not depend on 6 since F is known. Hence differenti-
ation across (4.2) yields

(4.3) [[e()afx,) dPo(,7) = 0
(where ioo denotes the score function for 6 in P, = {P,}), or
(4.4) I, LaeHy.

By a symmetric argument,

(4.5) I, LbeHy.

It follows from (4.4) and (4.5) that
Pc(Hy+Hy)"

To prove the reverse inclusion, let h € (Hy + Hy)* and P € P,. Then there
is a uniformly bounded function » € (H + HY) which is arbltrarlly close to
h in L,(P,); a detailed proof of this claim is given at the end of this section.
Then the parametric model P, = {P,: |0| < 6,} defined (for some 6, > 0) by

4.6 i =1+ 0h
(4.6) dPO(x,y) = (%,5)

has tangent & at 6 = 0. Since the uniformly bounded functions are dense in
(Hy + Hy)*, (4.1) holds.

Now the linear functional 6,(P) has pathwise derivative 6,(PXg) = [hg dP
at g € P, so the “canonical gradient” (or adjoint of the map 6,: P — R) is just
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I(R|P) = h — II(k|H; + Hy) = 1,. Since the estimator 6, constructed in Sec-
tion 2 is locally regular with influence function i, it is asymptotlca.lly efficient;
see, for example, Pfanzagl [(1982), page 158] or Bickel, Klaassen, Ritov and
Wellner [(1991), Section 3.3]. .

Efficiency comparisons. A simple inefficient estimator of 6,(P) is the
‘““empirical estimator” given by

1 n
(4.7) 04(P) = [[R(x,5) dP.(x,y) = o L h(XY)

and, of course, since Eh*(X,Y) < w, it follows from the central limit theorem
that

(4.8) Vn (6,(P,) = 0,(P)) —a N(0,Varp[h(X,Y)])

as n — o, Note that this simple estimator does not take advantage of the
known marginal distributions.

It follows that the asymptotic relative efficiency of 6 #(P,) with respect to the
efficient estimator 6, is

Ex(13(X,Y))  Eph®— Ep(u +v)’
Varp(h(X,Y))  Eph® — (Eph)®

(4.9) en(P) =

Because of the difficulty in calculating the projection on Hy + Hy involved in
1,, we are able to calculate ¢,(P) explicitly for only a few special P’s. In view
of these difficulties, it is of interest to examine ¢,(P) for special P’s and to
look for inequalities.

ProposITION 1. Suppose that ¢,(P) is the asymptotic relative efficiency of
the empirical estimator 6(P,) with respect to the efficient estimator 6, given in
(4.3). Then

Ep{h(X,Y) — E(kIX) - E(RIY) + E(h))?
Ep{h(X,Y) — Eh)*
_E{(h- Eh)(E(hIX)+E(h|Y))}
E(h — Eh)®

5h(P indep) =

Proor. The assertion follows immediately from (4.3) by noting that the
subspaces HY and HY are orthogonal under independence (P = P,4,,) and
hence projection on H% + HY is given by the sum of the projections onto HY
and HY and these are just the conditional expectation operators. O

While our Theorem 1 does not apply to P’s concentrated on curves, 1t is
perhaps instructive to consider the expression for the variance o7 =
E[i2 2(X, Y)] for P’s of this type. If Y = ¢(X) a.s. P = P, for some function ¢
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then 1 » = 0 a.s. and o = 0, suggesting that the efficiency of 5n relative to the
empirical estimator 8(P,) increases with increasing dependence.

Now we specialize to the case X =Y =[0,1], F = G = uniform(0,1) and
h(x,y) = Lo s1xq0,(%, ¥) = by (%, ¥), so that

0,(P) =P(X<s,Y<t)=F(s,t).

Under independence, P =P, ., =F X G, we can calculate &,(P;n4,) =
€5/( Pingep) in (1) of Proposition 1 explicitly: Straightforward calculations yield

ndep
st(l-s)(1-¢) (1-s)(1-¢)
(410) es,t(Pindep) - St(l — St) n 1-—st .
In particular,

(1-8)* 1-¢
(4.11) et,t(Pindep) = (1- tz) = 1+1¢ and 51/2,1/2(Pindep) = 3’

so the empirical df estimator of 6,(P) = P(X < 1/2,Y < 1/2) has three times
the asymptotic variance of the efficient estimator §, at P = Piiep = F XG.

In the bivariate df case with uniform marginals, yet another competing (but
inefficient) estimator is the empirical copula function defined by

Cn(s’t) = Hn(ﬂ:n_l(s)’ﬁ;l(t))’

where H,, is the (joint) empirical df of the (X,Y)’s and [, G,, are the marginal
empirical df’s of the X’s and Y’s, respectively; see, for example, Stute [(1984),
page 370]. The limit process for this estimator is

X(s,t) — H(s,t)X(s,1) — Hy(s,t)X(1,¢),
where (assuming that the partial derivatives exist)
H(s,t) = %H(s,t), Hy(s,t) = :—tH(s,t)
and
Cov[X(s,t),X(s',t")] =H(s As',t At) — H(s,t)H(s',t).
It is easy to calculate that the asymptotic variance of this estimator is
p(l-p) + Hi(s,t)s(1 —s) + Hi(s,t)t(1 —t) — 2H(s,t)p(1 - s)
~ 2Hy(s,0)p(1 — t) + 2Hy(s, ) Hy(s,)(p — st);
this reduces to st(1 — s)}1 — ¢) under independence.
Proor oF P(P) > (Hy + Hy)* FOrR P € P,. Suppose that P € P,. Let h*
be a bounded function arbitrarily close to & in L,(P) and set
, h = h* - II(h*Hy + Hy).
Then
Ih = hlz <[|h* = Rl
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is as small as we please, and it remains only to show that £ is bounded. Since
h* is bounded, this will hold if and only if II(A*/H, + H,) is bounded. To
prove this, the key step is to show that the operator Py Py, on HY satisfies

(4.12) | PxPy|. < (I'-a)®?<1, forPeP,.

We then use the following explicit form of this projection obtained from the
pair of equations (2.14) and (2.15) characterizing the projection u + v =
II(h*|/Hx + Hy ). Substitution of (2.15) into (2.14) and vice versa yields

and
(I — PyPy)v = Py(I — Py)h*
or
u = (I — PyPy) "Py(I — Py)h*
and

v=(1 _PYPX)—IPY(I — Py)h*,

where wy = Py(I — Py)H* € HY and wy = Py(I — Py)h* € HY. This basic
representation will also be used in the proof of Lemma 7 in Section 5. Thus it
suffices to show that u = (I — PyxPy) " 'w is bounded if w € HY is bounded,
and similarly for v. This clearly holds if we show that there is a constant
0 < K < o such that

(4.13) (1 - PxPy) 'w|. < Kllwl.. for w e HY.
Let

B dP
r(x,y) = m(x,y) za.

But for A€ Fy, PeP, and w € HY,

[, @) dP(x,y) = [ w(@){r(xy) - o} dF(x) dG(y)

< Ilwlle;(XA{r(x,y) — a} dF(x) dG(y)

< lwlG(A)(1 - a).
Hence
ess.sup E(w(X)|Fy) < (1 - a)llwll
aﬁd, by symmetry,
ess.sup E(w(Y)[Fy) < (1 - a)llwll.
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for w € HY. Thus (4.12) holds and

”(I - PXPY)_lw”oo = OII(PXPY)iw"

L} i=

IA

Y 1 -a)lwl
i=0

I
g
8

proving (4.13). The corresponding inequality for v holds by symmetry. Since A
is bounded, the construction (4.6) is valid for sufficiently small 6, and hence
P(P)>(Hy+ Hy)* for PeP,. O

5. Proofs of the lemmas. Throughout this section (X, Y) will denote a
random vector with distribution P which is independent of the sample
(X, Y),...,(X,,Y).

ProoOF OF LEMMA 1. Let
HY = {a(X): Epa®(X) < =, Epa(X) = 0},
HY = (b(Y): Epb*(Y) <, Epb(Y) = 0}
with the L,(P) norm. Then u(X) + v(Y) — Eu(X) — Ev(Y) is the projection

of h(X,Y) — Eh(X,Y) on the closure of HY + HY. The result will follow if
H} N HY = {0} and H} + HY is closed. Let a € H and b € HY. Then

J[la(x) = ()] dP(x,) = a [ [[a(x) - b(y)]* dF(x) dG(y)

- of fa*(2) dPy(x) + [6%(5) dPy(5))
and hence
[ [a(x)b(y) dP(x,y) <1-a <1

for all a € H} and b € HY with [lall = ||5]| = 1. It follows that H} N HY = {0}
and

p(HY, HY) = sup{<a,b): llall = 1,16l =1} <1 -a < 1.

Hence, by Kober (1939) or Kato [(1976), Theorem 4.2, page 219], H} + HY is
closed, and the equations (2.14) and (2.15) uniquely determine the projection
onto HY + HY. O
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Proor oF LEMMA 2. (i) Shorack and Wellner [(1986), inequality 10.3.2,
page 415]. If B, = binomial(n, p), then

(a) P(% > /\) <exp(—nph(A)), A=1
and
(b) P(% ZA)Sexp(—nph(;)), A=,

where A(A) = A(logA — 1)+ 1>0for A > 1or A < 1. Hence

Pr{max Pis 21+e}
i,Jj ../n

1+e¢

< k(n)m(n)exp(—na%%h( - )

n B 1 y2 L
Sy_,'f’exP * (1+e)logn ogn

n
< Fn‘M [for n so large that ah(

2
) “— >M > 2, say

1+¢)/logn

- 0.
Similarly,

N../n
Pr{max 224 21+s}

iLJj  DPij

ST ¥ ew(-mpyh(1+e) [by @]

i=1j=1

< k(n)m(n)exp(—na');t—nh(l + e))

2

T log n
logn g

IA

% exp( —ah(1 +¢)

2
n

log n

n
—nM Ifor n so large that ah(1 + ¢)

>M > 2, say

IA

2

- 0.
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(ii) As in the proof of (i), but now using both (a) and (b), for any ¢ > 0,

P| max
i=1,...,k

1+e¢

< lé {exp(—np,..h(l +¢)) + exp(—np,-.h( ! ))}

nl/2

<

1
where c(¢) = h(1 + e)h( 1 e) >0

2exp(—n'"?y,c(&))

-0 asn —o w.
The argument for the N.; margins follows by symmetry.
(iii) The probability in question equals

P(m (Ni/n)(N.j/n) 1)
i, J

Nij/n Y
N~. ie N.' .7 i .7 1
— | e Ne/mP:)(Ns/mp.j) iy 1
i,J Nij/npij b;j Y
(M-/npi-)(N-j/np-j) @
< P| max > — by (P3
iJ N;;/np;; Y [by (P3)]
N;. a\l/3 N,; a\3
< P| max — >(—) )+P max — >(—)
i np;. \y i np;  \y

no: - a\l/3
+P(max Pij >(—)
i,j N Y
-0 asn—o>»

by () and (ii) since y < a. O

ProoF oF LEMMA 3. (i) First not that {5, ;} is the point minimizing a strictly
convex function over a convex set. A simple argument with Lagrange multipli-
ers ,,...,4, and b,,..., b, shows that (i) holds and that the @,’s and 5j’s
satisfy '

N. N. 1nm
(a) pzp-= T + n a; + ;]§1Mj5j’ i=1,. ,k
and
N. N.. 1
J *J A
(b) pOJ = _n— 75‘1 + ;i§1]vijan J= 1’ , m
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Equivalently, (a) and (b) can be rewritten as

np? rm™ N,b
(C) éi:NLi.-_l_'J—]ifi.!_J, i=1,...,k
and
0 k A
np'. Yi 1N, .4,
6,= J 1 = =1
(d) J N.J N,J ’ J ’ ’m

Note that {d;} can be centered arbitrarily; but multiplying across (c) by N,. and
summing over i yields

k m
(e) Y N.4;=-Y N;b;
i=1 j=1
and without loss of generality we can assume that the sum is 0:
k m
i=1 j=1
(ii) First, by Lemma 2(ii), for 0 < y < a it follows that
N;; N;. N; 0
— - — >
(8) i

foralli=1,...,k, j=1,..., m with probability converging to 1. Suppose (g)
holds (for all i, j). Then from (c) it follows that

o P B[Ny - (o/mN. N6y EFLuN N,

YN, T N,. = N.
(h)
R PV SV VIS
= N,. - _Ni-j=1( 0T e ~j)j y ()

fori =1,..., k. Hence

0
n np;. 1 Y
;] <\~ — 1+ maxll;fll‘vf 'EI(MJ MNJ)
i j=
0
np;.
= N, -1+ Irljaxléjl(l—y)
or
np).
6)) max|é;| < max -1+ (1 —y)maxll;jl.
i i | N;. J
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Similarly

) max|b;| <

J

+(1- y)mlaxldil.

Summing (i) and (j) and algebra yield

0.
o
N,

-

y{maxldil + maxléjl} < max
12 J 13 .j

(k)

—)pO asn — «©

by Lemma 2 (ii). O

Proor or LEMMA 4. We first compute conditionally on N:
2
B[ o (s~ 1)) I_V}
i,J

L #45{(h, - 7))

A
pij
i,j NzJle

f[A B(h(x y) - h(x y)) dP(x, y)l[N > 0]

=(1+0,(1))X

/ J g (B(2:9) = F(5,9)) dP(x,9)

;jnpl

by Lemma 3(ii), but

( | [ yen, (A (5:9) = F(%,9)) dP(x,7)
i,J ij

(b) = [ (hx3) - () dP(5,)

1
o(;) by (F2).
Combining (a) and (b) yields the claim. O

 ProoF oF LEMMA 5. First note that

(a) 0u(P) = [[h(x,5)dP(x,y) = [ [R(x,5) dP(x,5) = L k;,p,;.
,J
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Then
N.\,. _ N\,
Z (Pz_ ——)(u,—ui)+ Z (pJ_ —n—J)(J—vj)
12 J e
1
() =-X Ivij(ﬁi +0,-8; - ﬁj) - Zpij(ﬁi + 5,') + Y p.b;+ X p.b;
nij i, i J

1
"IN (BT -0 0) = Ta(®rn) ¢ DAl r0)
i,J t,J

since p,. =p;. =pl. and p.; = p.; = p°. Substitution of (a) and (b) into the
right side of (4.7) yields

— 1 _ 1 .
Y pijhi; + Py )y Ivij(hij -u; - l_lj) + =2 N,«j(ﬁi +0; - ;- ﬁj)
i’j l,j i

— L pi(Bi+5) + XL Bi(@: +9))
t,J

iJ
1 -

= ¥ pij(hey— T = 5) + — X Ny(Byy = 2 = 0;) + X bij(2:+ )

i,J i,J ,J

1 _
=0+ ~F N,(Ry -2 - 0;) + X Bij(8: +9;) [by (4.3) or (44)]
t,J LJ
= YL N,(1+ 6, +8)(Ri; - 8- 0;) + X Biy(ai+ 0))
i,J t,J

[by (4.5) or (4.6)]
= Z ﬁijﬁij [by Lemma 3(i)] ’
iJ
thus completing the proof. O

Proor oF LEMMA 6. Note that
k. m
(a) =Y ¥ lAn’ijn,j(hij -u; - vj)
i=1j=1
is the projection of % onto {E(wl|F,): w € Ly(P)} N (Hx + Hy)* and there-
fore, with I =h —u — v,

nCZ = nVar(jj(Z N dIPn)

®) =j[(i—l)2dp
< ff(Tz—h)zdP
-0

since & = E(h|F,) is an L,-bounded martingale [recall (2.2)]. O
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Proor oF LEMMA 7. By Cauchy-Schwarz,
N;. & (pm N /n)?
(a) {Z (pi.— _n_)(ul—u")} < Z —Zpi.(ﬁi—ii)z.
i o =1 p;. i=1
The first factor can be bounded easily since

ko (pi—N./n)*| 1k
E AL AN AT A 1-
. Z o E (1-p;)
k(n) -1 1
ST Sy

To bound the second factor on the right side in (a), we first define operators
L,(X X Y,F,, P) > Hy,
v: Lo(X X Y,F,, P) - Hy,
L,(XXY,F,,P,) - Hx,
2(X X Y’ n’ n) - ﬁY
as follows: For w(x,y) = Zijw(i,j)lAnixan(x, ¥), let
k m
(c) ﬁxw(x) = Exy(w(X’ Y)|an)(x) =X ( > pijw(i’j)/pi~) 1A,,,»(x),

i=1\j=1

(d) Pyw(y) = Exy(w(X,Y)|F,y)(y) = 3 (; (i’j)/P-i)lB,,j(y),
LN

Jj=
k
() Pyw(x) =E,(w(X,Y)[F,x)(x) = X_: W(i,j)/M-)lA,,,.(x),

k

(H wa(y) =[E,,(w(X,Y)| Y)(y) = 1(2 w(i,j)/N-i)lB,,j(y),
j=

i=1

where Eyy,E, denote expectation with respect to P,P,, respectively. Note
that we can represent these operators as matrices: In an obvious notation [as

in (2.9) and (2.10)],
Px(w)(i) =X pi;w(i,J)/D;.s
j=1
k
FY(w)(j) = ;lpijw(i,j)/}’-j;

Pe(w)(i) = & Nw(i, )/,
=k

k
Py(w)(J) = glNijw(i,j)/N.j.
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For the remainder of this proof we go back and forth between the operators
themselves and their representations in terms of matrices as needed.
In terms of the operators Py and Py, (3.3) and (3.4) can be written as

(2) Py(h-a-1)=0

and

(h) PY(TL—ZZ—v)=O

or

() @ = Px(h - ),

Substitution of (j) into (i) and rearranging yields

(k) (I- PyP,)a = Py(I - Py)h,

where I denotes the identity operator. Reversing this process gives

As an operator from Hy to Hy, A=1— PyP, =1 — PyP,Py is self-adjoint,
has range R(A) c HY = H; N {constants}* and has null space equal to the
constant functions. Moreover, (P3) implies that on HY,
(m) | By Py Byl < (1 - @) <1 —a,
which will be proved below. Hence the minimal eigenvalue of A as an operator
from H% to HY is bounded below by a. It follows that A~! = (I — Py P, Py)~?!
exists and
- — = — -1 —
(n) Al= (I - PXPYPX) is bounded (uniformly in k2, m) on H%.
By symmetry, the same is true for B = I — P, Py P} as an operator on HY:
— — = — -1 —
(o) Bl'= (I - PYPXPY) is bounded (uniformly in 2, m) on HY.

To prove (m, let w € HY, so that w(x) = Tf_,w;1, (x) with ©¢_,w;p;.= 0.
Then

= m [k p;
Pyw(y) = L {Z —wi}lB,,j(y)
j=1\i=1P-j
or
k (pij - api-p-j) w

Pyw(i) = %
v = o =
iciP o1 p.;

i



1340 P.J. BICKEL, Y. RITOV AND J. A. WELLNER

and hence [using (P3) implies p;; — ap;.p.; > 0]

— 2 m k (pij —ap,-.p.j) 2
||wa||z =2 {X Wi P.j
j=1 P

i=1 “j
= b;j —ap,.p.; Db;j —ap;.p.;
Zp.j{z( J J)w?}{z( ij i j)
Jj=1 i p.j i p.j
.Z.(pif —ap;.p.;))w}(l - a)
t,J

IA

= lwl3(1 - a)*.
Since Pyw € HY if w € HY, we can repeat this argument with Py replaced
by Py and w replaced by Pyw to obtain
— = 2 — 2
| PxPywl, <] Prwly(1 - o)® < lwli(1 - @)*

and this proves (m).
Now we show that

(p) "px"ﬁxn =, 0 asn o
and
(q) HPY—I_’Y" -,0 asn— o,
where | - || denotes the operator norm. But, for w € {E(w|F,): w € L,(P)},
— k m N/N—p/pp
B, — P, w(x) = w, ;—— LV H M, (%
( X X) (x) El ng ’ (pij/pi-) b;. A'"( )
k
=Z{ZwD }lA(x),
i=1\j=
where
D = Nij/npi;
Y N./np,.
Therefore

2
(2Pl = £, { £ wu2 22 o

J_
—_ 2
= ExyExy (wD Ian)}
< Exy(@°D?)
< mex D} Exy(w?)
= p(l)llwllz by Lemma 2,
which proves (p), and (q) follows by symmetry.
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It follows from (p), (q) and the fact that A has minimal eigenvalue bounded
below by a that A =1I— PyP,P; (as an operator on H%) has minimal
eigenvalue bounded below by «a /2 with probability converging to 1. Hence with
probability arbitrarily close to 1'for n large, A1 = (I — Py P, P;) ! exists
and is bounded.

Now note that

Hence the solutions %, 7 of (k) and (1) can be written as

() T =(I-PyPyPy) (Peh - PePyh) + T pijksy,
t,J

N 2
(s) 5= (I-PyPxPy) (Pyh - PyPyR).
Similarly, with probability converging to 1, the solutions &, D of the analogous

equations corresponding to (3.5) and (3.6) can be written (with probability
arbitrarily close to 1 for large n) as

t) 2= (1-BPoBy) (B - BoBLR) + %}: N,hy,

(W 0= (I-ByPyBy) (Byh - PyByR).
Therefore we can write
T = (I-PePyPy) (P Py)R)
+(I - BePyBy) ((PXPY P ﬁy)ﬁ)
v) +{(1- BeByB,) - (1- Fxﬁyﬁx)_l}(ﬁxﬁ ~ PyPyh)
+ lZ, (% —pij)Tzij

Now the constant term R, makes no contribution to the left side of (a) and
hence (a) can be replaced by

{Zi(pi--%-‘)wf-ﬁi)}z

Z pi{(R + Ry + Rs)(‘)}
D;. i=1

(w)
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where
k 2
Z P {(Ry + Ry + R3) (i)}
() 2 2 2
<4 szR(l)+Zle2(l)+Zle3()
i=1 i=1 i=1
=A+B+C.
To handle the terms A-C, we first show that
. _ 2 1
A Pxw — P )} =0,| ——
) Zp {(Pew - Prw))) -0, - T
and
A — 2 1
(2) %‘.p-j{(wa - wa)(J)} =0, i
for nonrandom functions w and, for any £ > 0,
(an) T pi{Brw(i)) < (1+ €)* L pyw(i, )
i i,j

with probability converging to 1 as n — « for random or nonrandom func-
tions w.

The arguments for (y) and (z) are the same by symmetry, so it suffices to
prove (y). To prove (y), we argue conditionally on N,.. First note that

Pi1 DPim
Ny, ..., Nyy)|N;.) = mult | N, ( ))
(( 1 )I ) ( pi. pi.

for i = 1,..., k. Therefore

E{(Bxw(i) - Pyw(i))’|N,.)

= WVar[Z w(i,j)‘Ni.]

(bb) "N, j#j' Pi- Pi-

i

1 g »
——{Z ﬂ(1 - %)wz(i,j) i ;” w(i, jw(i, .I)}

1 Pij o, . . ( pij . .)2
= — —w?(i, j) - —w(i,
N{g o (i,7) ?pi- (i,7)
1 Pij ,,.
< A » w*(i,J)
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Hence
L pi(Bxw(i) - Pew(i))’
1z 2.
=0”( N, EP (””)
npt 1 2
(0<) - 0, max | mx - £ pow “)
Vn .
< - [by Lemma 2(ii)]
L o, (1
< ‘Yn—‘/z p( )

and (y) holds. Finally, (aa) follows from Lemma 2 and the fact that Py is a
contraction in L,(P,).
Now we have

dd A= R%(i) =0 !
(dd) ‘ —Zi‘.Pi- (i) = p(yn‘/;z‘)

by (n) and (y);

(ee) = (1= ByByBy) {(Px— Bx)Pyh + By(Py— Py)R)
E‘Rzl + Ry,
where
2 (s 1
() B, = ¥ pi.R3() = Op(v \/5)

by (y) and P(IA~Y| > 2/a) > 0 and

. 1
(gg) B, = ; pi.R3,(i) = Op( n )
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by (), (aa) and P(|A~Y|| > 2/a) — 0. To handle C, write
Ry={(1-BeByBy) - (1- ﬁXﬁYPX)‘l}(sz ~ PyPyh)
- {(1-BeBy8y) " (- PePyPy) Jw
(hh) [say, where w = Py (I - Py)h € HY]
= (1= PyByBy)  (ByBy— PyPy)(1 - PyPyBy) w
= (1~ PybyBy)  (Byby - PyPy)w' say,

~

so that

i) C- Lo &) - 0, |

by the same argument as for B.
Combining (a), (b), (v) and (dd)-(ii) completes the proof. O
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