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SOME RESULTS ON s™ ~* FRACTIONAL FACTORIAL DESIGNS
WITH MINIMUM ABERRATION OR OPTIMAL MOMENTS

By Jianua CHEN anD C. F. J. Wul

University of Waterloo

The minimum aberration criterion is commonly used for selecting good
fractional factorial designs. In this paper we obtain minimum aberration
2"~ * designs for k£ = 3,4 and any n. For £ > 4 analogous results are not

" available for general n since the resolution criterion is not periodic for
general n and k& > 4. However, it can be shown that for any fixed %, both
the resolution criterion and the minimum aberration criterion have a
periodicity property in n for s”* designs with large n. Furthermore, the
optimal-moments criterion is periodic for any n and k.

1. Introduction and definitions. Fractional factorial designs are among
the most commonly used plans for designed experiments [see, e.g., Box,
Hunter and Hunter (1978)]. The many successful applications of this method
in the quest of industrial quality and productivity are a recent testimony to its
importance. A key question in selecting such designs is to develop a goodness
criterion of a design. It had been a standard practice to choose a fractional
factorial design with maximum resolution. Since designs with the same resolu-
tion are not equally good, a more refined criterion called minimum aberration
was introduced by Fries and Hunter (1980). When the experimenter has little
knowledge about the relative sizes of the factorial effects, the minimum
aberration criterion selects designs with good overall properties.

With some exceptions [Fries and Hunter (1980); Franklin (1984)], there are
few theoretical results on minimum aberration designs in the literature. In
Section 3 we obtain minimum aberration 2" ~* designs for 2 = 3 and 4 and any
n. Formally an s"~* design is a fractional factorial design with n factors each
of s levels and s”* runs. For £ > 4, analogous results to those for £ = 3 and
4 are not possible because it is known in the literature on coding theory that
the resolution criterion is not periodic in n for 2" ~* designs with general n
[see Verhoeff (1987)]. However for large n and any fixed k, we show in Section
4 that both the resolution criterion and the minimum aberration criterion
have a periodicity property in n for s™* designs (Theorems 1 and 2). For
another criterion called optimal-moments [Franklin (1984)], we show in Sec-
tion 5 that a periodicity property holds for any s” * designs (Theorem 4). We
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MINIMUM ABERRATION DESIGNS 1029

also give a characterization of a minimum-variance s” * design in Theorem 3.
A minimum-variance design is a special case of an optimal-moments design.

In the following we use a simple example to explain and motivate the
definitions described before. The general definitions are formally given at the
end of the section.

A 2"~ fractional factorial design has n variables each of 2 levels and 2" *
runs. When & = 0, it is a full factorial design, in which the 2" runs consist of
all possible level combinations of the n variables. These combinations form a
2™ X n matrix with n independent columns.

For example, when n = 5, we have 32 runs and five independent columns
denoted by 1, 2, 3, 4, 5. If we define columns 6 and 7 by

(1) 6 = 123, 7 = 234,

where column 123 is formed by adding columns 1, 2, 3 (mod 2), the resulting
design has 7 variables with 32 runs and is called 272 fractional factorial
design.
Rewrite (1) as I = 1236 = 2347, where I is the column of 0’s. Another
relation among the factors (columns) is
I =1236 X 2347 = 1467.
All together we have
I =1236 = 2347 = 1467,
which forms a defining contrasts subgroup of the 272 design with I being its
identity element. The elements 1236, 2347 and 1467 in the subgroup are called
words. The symbols 1, 2 and so on are called letters. The number of letters in a
word is called the length of the word or wordlength.
Denote this design by d,. Let A/(d,) be the number of words of length i in
the defining contrasts subgroup for d, and the vector

W(d,) = (A(d,), Ay(dy),...) =(0,0,0,3,...)
be its wordlength pattern. The ith moment of d; is defined to be
M(d,) = Z jiAj(dl)'
j=1
The ith central moment of the design for i > 1 is defined to be

I~‘«i(d1) = Zjil(J _Ml(dl))iAj(dl)'

The resolution of d, is the smallest i with positive A,(d,). In this case, d,
has resolution IV.

Given n and k&, a 2"~ * fractional factorial design is not uniquely determined
by its resolution. Consider two other designs: ’

dy: I =1236 = 1457 = 234567,
ds: I =12346 = 12357 = 4567.
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Both have resolution IV, but have different wordlength patterns
w(d,;) = (0,0,0,2,0,1,0,...),
w(dgy) = (0,0,0,1,2,0,0,...),

and hence different moments. Since the first unequal components of W(d,)
and W(d;) (fourth component) have the relation

W(d;)[4] = 2 > W(d,)[4] = 1,

we say that d; has less aberration than d,, which in turn has less aberration
than d,. Compare their moments, the first unequal moments are

M,y(d,) = 68 > My(d,) = 66.

We say d is better than d, in moments when this moment is of even order
and d; is worse than d, when this moment is of odd order. Note that this
relation will not be affected when we compare central moments instead of
moments.

In general, an s * fractional factorial design at s levels, s a prime power,
can be defined as follows. A word is written as an n-dimensional vector with
components in a finite field of s elements F,. For two words

w; = (ay,a,y,...,a,) and w, = (by,b,,...,d,),
with a,, b; € F,, their product is a word defined by
w; Xwy,=(a; +b,a, +by,...,a, +b,).

An s"~* fractional factorial design is defined by its defining contrasts sub-
group, which is a subgroup of words generated under the multiplication X.
The word w, and all its constant multiples

Aw; = (Aay, Aay,...,Aa,) foranyA # 0,1 €F,

are considered to be the same in the subgroup. The length of a word is the
number of its nonzero components. The wordlength pattern, resolution and
moments are defined in the same way as in two levels.

DEFINITIONS. An s™~* fractional factorial design has maximum resolution,
if no other s™~* fractional factorial design has larger resolution.

Let d, and d, be two s" % fractional factorial designs and r be the
smallest i such that A,d,) # A,(d,). d; has less aberration than d, if
A,(d)) <A,(d,). An s"* fractional factorial design has minimum aberration,
if no other s”~* fractional factorial design has less aberration.

Let m be the first i such that M,(d,) # M,(d,). If m is odd and M, (d,) <
M, (d,), d, has better moments; if m is even and M, (d,) < M, (d,), d, has
better moments. An s™~* fractional factorial design has optimal moments, if
no other s” * fractional factorial design has better moments. An s”* frac-
tional factorial design is a minimum-variance design if it maximizes the first
moment M,(d) and minimizes the second moment M,(d).
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Without loss of generality, we assume throughout the paper that each of the
n letters in an s™* design must appear in at least one word of its defining
relations. Indeed, this is equivalent to maximizing the first moment.

The term minimum aberration and its formal definition are due to Fries
and Hunter (1980). The optimal-moments criterion can be found in Franklin
(1984).

2. A technical lemma. Denote the maximum resolution of an s"~*
design by R (n, k) and define the m-lag of a vector W to be

lag(W, m) = (0,...,0,W),
m

where W is preceded by m zeros. We have the following lemma.

LemMa 1. () For anys™™* fractwnal factorial design D, with wordlength
pattern W,, there exists an s®*¢*~D/G=D~k dogign D, with wordlength
pattern W,, such that W, = lag(W,, s*~1).

() R,(n+ (s*—1)/(s — 1,k) > R,(n, k) +s* L.

Proor. Part (ii) is a consequence of (i). The resolution of D, is R n, k) +
s*~1 Hence the maximum resolution s*¢*~/G=1~* degion has a resolu-
tion greater than or equal to R (n, k) + s*~1.

To prove (i), we first consider the special case s = 2. A 2"~ * design D, can
be represented by a (2* — 1) X n matrix with its rows being the 2% — 1
defining relations and its columns being the n letters. This matrix consists of
two submatrices A; and B,;, where A, has k rows corresponding to k&
independent generators and the 2 — £ — 1 rows in B, are generated from
those in A,. A 2"*2*~D~k design D, can be constructed by adding the matrix

A A, .
[B:] to [31] as follows:

Al A2]
2 ’ A = I ’C )
( ) [Bl 32 2 [ k 2]

where A, is k X (2% — 1), I, is the identity matrix of order ¢ and B, is
(2% — B — 1) X (2% — 1). The 2* — 1 columns in A, are given by

k
X e, A, € F5, at least one A; = 1,

where F, is the finite field of two elements and {c;} are the k2 column vectors
in I,. The rows of B, are generated from those of A, in exactly the same
way as B, is generated from A,. The resulting matrix of order (2% — 1) x
(n + 2% — 1) in (2) gives 2* — 1 deﬁnlng relations for n + 2% — 1 letters, that
is a 2#*2" =D~k degign. It is easy to show that each row of A, or of B, has
2*=1 components with 1’s and therefore each word in D, is 2k ! Jonger than
that of the corresponding word in D,. This proves (i) for s = 2. Extension to
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general prime power s is straightforward. The finite field F, is replaced by F,,
the finite field of s elements, the first nonzero A, in £ *_,A,¢; is chosen to be 1,
2% — 1 replaced by (s* — 1)/(s — 1) and the number of nonzero elements in
any row of A, or B, is s*~1. O

According to Lemma 1, we expect to find optimal designs of large size
through those of small size. This is true for 2 < 4 and s = 2, which will be
studied in the next section.

3. Minimum aberration 2” % designs for £ =3 and k = 4. The
minimum aberration 2" ! designs are obtained by defining n = 12 -+ - (n — 1).
For & = 2, Robillard (1968) gave the following method for constructing mini-
mum aberration 2”2 designs.

Let n — 2 =3m + r, where 0 < r < 3. For r = 0, define

(n—-1)=12---(2m), n=(m+1)(m+2)---(3m);
for r = 1, define
(n-1)=12---(2m + 1), n=(m+1)(m+2) - (3m + 1);
for r = 2, define
(n—-1)=12---(2m + 1), n=(m+1)(m+2) - (3m + 2).
Then it is easy to show that these designs have the maximum resolution
2n

v =[]

and minimum aberration.
For 2" 2 designs, we find minimum aberration designs using the following
rule. Let n=Tm +r,0<r<6.Fori=1,...,7, define

B, =

12

{(im -m+1)(im-m+2)--(im)(7m +i), wheni<r,
(im —m + 1)(im —m + 2) -+ (im), otherwise.
These B; divide the n letters into 7 approximately equal blocks. Let the
defining contrasts subgroup be
I=B,B4B,B;=B,B;B,B, = B4B;B,B,
(3) = B¢B;B3B, = B,B;B;B, = B,B;B,B, = B,B;B,B,.
We will prove that the previous désigns have minimum aberration and

therefore maximum resolution. Their resolutions can be summarized by the
formula

Ry(n,3) = [

when r # 2,

— 1, otherwise.

|
|

I W~
\1‘; q|;



MINIMUM ABERRATION DESIGNS 1033

TABLE 1
Minimum aberration 2"~ * designs

n Defining contrasts

5 I=12=13=14=15

6 I=13=24=125=126

7 I=124 =135 = 236 = 1237

8 I =1235 = 1246 = 1347 = 2348

9 I = 12346 = 12357 = 2458 = 3459
10 I = 23457 = 23468 = 13569 = 1456¢,
11 I = 34568 = 134579 = 12467¢, = 2567¢,
12 I = 145679 = 24568t, = 23578t, = 13678t,
13 I = 25678¢, = 135679¢, = 34689¢, = 124789¢,
14 I = 136789¢, = 24678t,t, = 14579¢,t5 = 23589¢.t,
15 I = 124789t t, = 135789¢,t, = 12568¢yt,t, = 13469t t5
16 I = 123589t t,t5 = 24689t tyt, = 23679t t5ts = 245Tt ot tote
17 I = 23469¢t,t,t, = 13579t ot tats = 34T8totatste = 3568t,tyt st
18 I = 345Tt ot totots = 2468tyt totats = 14589t L5t t; = 4679t ,tat 414
19 I = 4568ttt ot ts = 3579t Lot st sty = 2569t tot b5ty = 1578t otst 4t 5t

Note: ¢q, ¢4, - - - , tg denote factors 10, 11,...,19.

To construct 2"~ * minimum aberration designs, we use the same idea as in
k=3. Let n=15m + r, 0 <r < 15. Divide the n letters into 15 approxi-
mately equal blocks given by

B - {(im —m+1)(im—m+2)-- (im)(15m + i), fori<r,
’ (im —m + 1)(im —m + 2) - -+ (im), otherwise.
When r # 5, let
(4) I=By;B,B1;ByBygB;B¢B, = By;B,3B,,ByBg B;B; B,
= By5B14B11B10BsBsB;B; = By;B13B1;B1oB; BB B.

When r = 5, switch B;; and B; in the previous defining contrasts subgroup.
For 5 <n <19, the designs are given in Table 1 and their wordlength
patterns are in Table 2. The resolutions can be summarized by

8n
= when r # 2,3,4,6, 10,
D [ 1, otherwi

5|~ 1 otherwise.

By using computer search, Franklin (1984) obtained minimum aberration
2"~* designs for £ =3, 7<n <14 and %k = 4, 8 <n < 15. Although he did
not show the minimum aberration property for larger n, he did suggest (page
229) that for larger n “the matrix (which he used to define the design) should
be repeated as often as necessary”’. As we show later, this indeed gives the
minimum aberration designs with large n from the smaller ones. Tables 1 and



1034 J.CHEN AND C. F. J. WU

TABLE 2
Wordlength patterns of minimum aberration 2" ~* designs

n Wordlength pattern

(0,10,0,5,0,...)
(,3,8,3,0,1,0,...)
0,0,7,7,0,0,1,0,...)
(0,0,0,14,0,0,0,1,0,...)
(0,0,0,6,8,0,0,1,0,...)
(0,0,0,2,8,4,0,1,0,...)
(0,0,0,0,6,6,2,1,0,...)
(0,0,0,0,0,12,0,3,0,...)
(0,0,0,0,0,4,8,3,0,...)

I o e e e el o W
OO NP WNMFHOOW-I0Wm

(0,0,0,0,0,0,8,7,0,...)
(0,0,0,0,0,0,0,15,0,...)
(0,0,0,0,0,0,0,7,8,0,...)
(0,0,0,0,0,0,0,3,8,4,0,...)
(0,0,0,0,0,0,0,1,6,6,2,0,...)
(0,0,0,0,0,0,0,0,4,6,4,1,0,...)

2 give the defining contrasts and the wordlength patterns of the minimum
aberration 2"~ * designs for a complete cycle of n(5 <n < 19), which have
some overlaps with Franklin’s tables.

To prove the minimum aberration property, we need the following results
[Brownlee, Kelly and Loraine (1948)], for any 2" ~* design.

RO YA =2F-1.
R1 Y iA, =n2t 1,

R2 Either all the words have even length or 2*~! words have odd length.

First we consider the case of £ = 3. For n = 4, the design defined by (3) has
the wordlength pattern

(0,6,0,1,0,...).

Since we do not allow any words of length 1, we have

RO: A, +A;+ A, =T,

R1: 2A,+ 3A;+4A, =16,
which together with R2 make A, = 6, A, = 1. Therefore the proposed design
is the unique solution.

For 5 <n <10, the proofs are similar. See Chen and Wu (1989). For

n > 11, the proofs are essentially the same as those for 4 < n < 10 because,

from Lemma 1, they involve the same type of equations. For example, when
n = 4 + 7Tm, the equations become

(5) RO: A2+4m+A3+4m+A4+4m+"‘ =1,
(6) Rl: 2A,.,,+3A3,.4, +4A 4, + - =16.
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By subtracting 2 X (5) from (6), we get
Agiam T 2444 + 3A5 4 + - =2,

which forces A ,,, = Agi4m = -+ = 0. Therefore the proof for n = 4 + 7m
reduces to that for n = 4.

Next we consider the case of £ = 4. For n = 5, according to RO-R2, there
are two other patterns with less aberration

W= (0,6,8,1,0,...),
W=(0,7,7,0,1,...).

Consider the first one. Let [ be a letter shared by a shortest word and the
longest word. By deleting all the words that contain [, the wordlength pattern
of the resulting 2" =3 design (n’ < 4) must be (using RO and R2)

W =(0,3,4,0,...),

which violates R1. The proof of the second one is the same.
For n = 6, according to R1 and R2, only two wordlength patterns have less
aberration

(a) W =(0,2,8,5,0,...),
(b) W=(0,3,7,4,1,...).

In case (a), suppose letter I occurs in a shortest word. Let us delete all the
words which contain /. The remaining words define a 2"~ design with n’ < 5.
According to R1, its first moment is at most 5 X 4 = 20. On the other hand,
A, <land A, <5, implying Ay > 1 and from R2, A; must be 4. So we have
(A,, A) =(1,2) or (0, 3). Therefore

2A, +3A; +4A, =22 or 24> 20,

violating R1. In case (b), notice that there is a letter which occurs in at least
two of the three shortest words. This is because the product of these three
words has at most length 5 (note this is also true for n = 6 + 7m). Deleting
the words containing this letter would lead to the same violation as in the case
(a). Thus, we prove that no other design can have less aberration.

For n = 7, there are two other patterns satisfying RO-R2 with less aberra-
tion: ‘

W =(0,0,6,7,2,0,...),
W= (0,0,7,6,1,1,0,...).

To prove that there is no design with either of the wordlength patterns, we
assume the contrary. Suppose D, is a 27~* design with W = (0,0, 6,7, 2,0, ...).
The lengths of its generators are not all even. Otherwise, since the product of
two even length words has even length, it is impossible to have six words of
length 3. By adding a new letter to all odd length generators, we have a 284
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design D,. Every word in the defining contrasts subgroup of D, has even
length since all its generators have even length. Because the corresponding
words in D, are longer than the words in D, from RO and R1, the wordlength
pattern of D, has to be

(c) W = (0,0,0,13,0,2,0,...).

Now we prove the impossibility of (c). Assume that the two longest words are
w, and w,. There is a letter / in w,; but not in w,. By deleting all the words
containing [, the remaining words should define a 2"~ design with n’ < 7.
From RO and R2, the wordlength pattern of this design must be
(0,0,0,6,0,1,0,...) with its first moment being 30, which violates R1. There-
fore such a design does not exist. Proof of the impossibility of W =
0,0,7,6,1,1,0,...) is similar.

For the remaining cases (8 < n < 19), the minimum aberration property
can be proved by using RO-R2 and the methods in (a)-(c); see Chen and Wu
(1989). Using the same argument as in k£ = 3 [see (5) and (6)], we can show
that the proofs for n > 20 are the same as those for 5 < n < 19.

4. Periodicity of the resolution and minimum aberration criteria
for large n. The results in Section 3 on minimum aberration 2"~ * designs
for k=3 and 4 hold for any n. Such is not true for 2 > 5 because the
periodicity property of resolution breaks down at & = 5 [see Table I, Verhoeff
(1987)]. In this section, we will prove a periodicity property for two criteria,
resolution and minimum aberration for large n and any fixed k.

THEOREM 1. For any fixed k, there exists a positive integer N, such that for
n > N,

-1

s
Rs(n+ ,k) =R, (n,k) +s* L.
s

Proor. For any fixed n, we consider the sequence {R (n + m(s* — 1)/
(s — 1), k)Y, _o. The stated result amounts to proving that this sequence is an
arithmetic sequence for large m.

Assuming the contrary, there would be infinitely many m, say {m }7_,, such

that
sk—1

s—1

k

s
(7 Rs(n + mi,k) #Rs(n +— (m; — 1),k) + sk1,

From Lemma 1, the inequality in (7) must satisfy

k

s sk -1
(8) Rs(n+ -

s—1

T mi,k)st(n+ (mi—l),k)+sk_1+1.
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Applying (8) and Lemma 1 repeatedly, we have

E_ sk —

Rn+ lmi,k)st n + _l(mi—l),k)+sk‘1+1

9 sk —

®) >R,|n+ 1l m,_L,k|+(m;—m;_))s*1+1
s =

>R, (n,k) + m;sF1 +i.

On the other hand, Plotkin (1960) proved that

R . st"Ys — 1)n
s(n, )S Ti— .
So
sk—1 sk i(s = 1)n
k-1
(10) Rs(n+ T mi,k) <m;s + 1 .

From (9) and (10) we have
[sk_l(s - 1)n

P lst(n,k) + 1,

which is impossible as i » «. O
A similar result holds for the minimum aberration criterion.

THEOREM 2. For any fixed k, there exists a positive integer M, such that for
n > M,, the minimum aberratzon property is periodic, that is, if a minimum
aberration s™~* design has the wordlength pattern W, then there exists a
minimum aberration design s*¢"~D/=D~k yith the wordlength pattern
lag(W, s*~1).

Proor. Let v,; be the number of words with the shortest length in a
minimum aberration s**#*~D/s=1)~ degion From Lemma 1(i), Theorem 1
and the definition of minimum aberration, v,; has the property:

U,; 2V,; fori<jandn >N, Nk given in Theorem 1.

Therefore there is a positive integer v,, such that v,; = v, for sufficiently large
i. Similarly, each of the sequences of the number of words with the second
shortest wordlength, third shortest wordlength and so on, has a positive
integer as a limit. Now if we have only finitely many such sequences, there
would be a finite M, > N, such that for n > M,,

W,; = lag(W,,, s* 1),
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where W, is the wordlength pattern of an s *i¢"~D/Gs=)~*k minimum
aberration design.

To complete the proof, we prove that the wordlengths of a minimum
aberration s +{*~D/G=1)~k degion are in a finite range for any i. Note the
following fact for s” * fractional factorial design with minimum aberration,

n
Y A, = nsk 1,
i=1

So if the design has resolution R, then the longest possible wordlength

sk—1
(11) L <nst ! - (

—1|R.
s—1 )R

For a minimum aberration s**¥*~D/¢~)~k degion using Lemma 1(ii), we
have the following bound for its shortest length,

sk —
(12) Rs(n+ p— i,k) >R (n,k) +s* 1.
From (11) and (12), its longest wordlength is bounded above by
st -1, k-1 s* - 1l(r A E—1; k-1 k-1
O B L e (Ry(n, k) +s* 1) <s* 71 + sk~ 1n,

So the wordlengths of a minimum aberration s*+i"~ /(=1 ~k Jegion must
be in the range

[s*~li,s* 1 + s*~1n],

which has finite length independent of i. This proves the theorem. O

5. Periodicity of the optimal-moments criterion. Unlike the resolu-
tion and minimum aberration criteria, the optimal-moments criterion enjoys a
periodicity property for any s” * designs. In order to prove this result in
Theorem 4, we employ the following representation of an s”* design.

For simplicity we first consider the case of s = 2. As in the proof of Lemma

Ay

1, a 2" * design can be represented by a (2* — 1) X n matrix F = [see

(2)]. Since the 2* — 1 columns of the matrix A, in (2) contain every p(l)ssible

nonzero k X 1 vector, each of the n columns of A; must be part of A,. Noting
that B, in (2) is generated from A, in the same way as B, is generated from

A,, we see that each of the n columns of F must be part of G = [22]. It is
2

easy to show that G is a submatrix of a 2* X 2¥ Hadamard matrix H,: in
which + 1 are replaced by 0 and 1. Denote the columns of G by v;, Vs, ..., Ver_;.
Then each column of the matrix F for a 2" ~* design must be equal to one of
the v;. Let f; be the frequency of these columns taking v,. The 2" * design

can thus be represented by the frequency vector £ = (f}, f5, ..., for_ 1)
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For example, a 232 fractional factorial design with the defining contrasts
subgroup
I=123=12=3
can be represented by f = (1, 0, 2), where

1 1 1 1 0 1
F=11 1 of, G=1|0 1 1]
0 0 1 1 1 0

For general s, we noted in the end of the proof of Lemma 1 that the matrix
in (2) has a natural extension. In each column vector of this matrix the first
nonzero element is set to be 1. Then each column of the matrix F can be found
from the columns of G. The same representation in terms of the frequency
vector f holds for any s”* design.

With this representation, we find a simple expression for the moments of a
2"~ * design d. It is easy to show that for d, the length of its ith word is equal
to the ith component of the vector Z?’;‘llfjvj, where (fi, f5, ... for_1) is the
frequency vector representation for d. Therefore the mth moment of a 2" *
design

(13) M, -

Z fivil| >
J m
where ||Vl = X0, v = (vy,0y,...,09x_1). It is easy to see My =n, M, =
n2*~1 For an s"~* design, the expression M, still holds by replacing all the
nonzero value in v; by 1 for the calculation in (13).

With the expression for M,, we are ready to give a characterization of any

minimum-variance s"~* design with the frequency vector

f‘:(fl’ f2)~..’f2k—1)'

THEOREM 3. For any minimum-variance s"~* design, the frequencies f;
can only take two neighboring values. Suppose n = q(s* —1)/(s — 1) + r,
0<r<(s*-—1/(s—1).Thenf,=qorq+ 1.

Proor. First we prove the case of s = 2. Recall that the matrix G can be
augmented by a column vector of 0’s and a row vector of 0’s to form a
Hadamard matrix H,:. Therefore

Iv;llz = 2471,
(vj,v,> = 2572 for j # k,
M, = (Z v, X fj"j>
:2k—12fi2+2k—22fifj

- 2k—2[2 sz + (Z fj)zl
_ 2k—2[z sz + n2],
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which is minimized by taking f; = q or ¢ + 1. For general s, [lv,llz = sk
(v;,v;) = (s — D/sllvllz and the rest of the proof is the same. O

The minimum-variance designs given in the proof of Theorem 3 are not
unique since there are (zkn— 1) ways of choosing the frequencies f;. A natural

question is: When do these designs have optimal moments? Without loss of
generality, we assume ¢ = 0 and write M,, = |[L j fjvjllm, where f;=0or 1
and X f; = n. The vector L ;f,v; is the sum of n column vectors of the
Hadamard matrix H,: given at the beginning of this section. If for this H,:,
all its 2% X n submatrices are isomorphic (i.e., identical after permutations of
rows, columns or {0, 1} in F,), then the ¥ f;v; vector will be identical for any
minimum-variance designs. That is, under the stated condition, any of the
minimum-variance designs has the same set of moments and therefore has
optimal moments.

THEOREM 4. For any optimal-moments s" * design d,, there exists an
. k_ _ _ . .
optimal-moments s+ ~D/G=D~k degign d,, which has the same central
moments as d;.

Proor. For any optimal-moments s" * design d, with the frequency
vector f=(f, f2, ..), we can construct as in the proof of Lemma 1 an
s+ =D/s=1)~k" degion with the frequency vector f + 1 = (f; + 1,
fa +1,...). It is easy to show that d, has the same central moments as d,. If
d, is not an optimal-moments des1gn, there is a frequency vector (g, g5, ...)
which gives an optimal-moments s *¢*~D/(s=1)~k degion d 3. From Theorem
3, since Lg,=n+(s*—1)/(s—1), all g,>1. So the frequency vector
(g, — 1,8, —1,...) determines an s"~* design called d,. Note that d, has
the same central moments as dj. If d; has better moments than d,, d, has
better moments than d,, which contradicts the assumption that d, is an
optimal-moments design. O
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