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ANOMALIES OF THE LIKELIHOOD RATIO TEST FOR
TESTING RESTRICTED HYPOTHESES!

By J. A. MENENDEZ AND B. SALVADOR

Universidad de Valladolid

The first anomaly in the L.R.T. for testing restricted hypotheses was
observed by Warrack and Robertson. They found the L.R.T. for testing an
order restriction in a normal model to be dominated by a different test.

In this paper we deal with a more general situation in which the L.R.T.
for testing a face of an acute cone is dominated by a different test that does
not take into account some of the information in the model.

1. Introduction. In a normal model, the likelihood ratio test (L.R.T.
provides a frequently used method for testing means when the hypothese
define order restrictions on the parameters. The L.R.T. performs well in som:
testing problems, as can be seen in the book of Barlow, Bartholomew, Bremne.
and Brunk (1972). The first anomaly of the L.R.T. was observed by Warracl
and Robertson (1984). They showed a problem with some order restriction:
about means in a normal model where the L.R.T. is dominated by another tes
and they asked for the cause of such an anomaly. We examine this issue in :
general context, where answers can be given.

Consider a k-dimensional random normal vector N,(6, I'), with unknow:
mean vector 8 = (8, ...,0,) and a known covariance. We deal with the L.R.T
for testing the hypotheses:

Hy: a6 =0, ji=1,...,r; a6 >0, j=r+1,...,n.
(1.1) .
H,: a6 >0, j=1,...,n.

given by k-dimensional fixed vectors ay, ..., a, in such a way that H, define:
a polyhedric closed convex cone in R*.

The statistic T'(x) = —21n I(x) that defines the L.R.T. {T > ¢} for testiny
H, against H, — H, is given by

(1.2) T(x) =llx —x0l° —llx — x4[?,

where ||lx||> = x'T~'x and x°, x“ are the projections of x on H,, H,, respec
tively. ,
Let us consider the hypotheses:

0:a0=0, j=1,...,r,
(1.3)
Hf:a020, j=1,...r
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890 J. A.MENENDEZ AND B. SALVADOR
The L.R.T. {T * > ¢} for testing H; against H,* — H; is given by the statistic

(1.4) T*(x) =llx — x%0” —[lx — x*A* = [ x4 - x*O |,

the last equality is true since H, is the least dimension face in the cone H "
and x*° and x*# are the projections of x on Hy and H}, respectively.

We are concerned with the dominance of the L.R.T. {T > ¢} when H 4 is an
acute cone. The concept of an acute cone was first introduced by Martin and
Salvador (1988) who studied the relation between acute cones and the useful-
ness of the pool adjacent violator algorithm (PAV).

We now give some notation, definitions and a result, which will be useful
later. Let C be a cone, C = {x € R*: ajx>0, j=1,...,n}. Any face of C
may be denoted by

(1.5) KB={x:a;-x=0,j€B;a;x20,j€B°}

for some subset B of {1,..., n}. The subspace associated with K is L = {x:
a’x = 0, j € B}. Denote by p(x|C) the I' !-orthogonal projection onto the
cone C, so that

2 .
lx = p(%|C)II° = inf ||z — y|>.
yel

We will consider the following two definitions which are equivalent to
Definition 2.2 in Martin and Salvador (1988).

DermniTiON 1.1. The cone C;; = {x: ajx > 0, a’x > 0} is said to be acute
(strictly acute) if x'T~'y > 0 (> 0) whenever x € L, N C;;and y e L; N C;
with x in the I'"'-orthogonal subspace to L, e

DeFINITION 1.2. The cone C is said to be acute (strictly acute) if C;; is
acute (strictly acute) for any couple i, j in {1,..., n}.

Note that the acuteness of a cone is preserved by linear transformations of
the entire statistical problem and therefore we could use the identity matrix
for the covariance of the normal model and the unit metric on R k after
performing a linear transformation.

Proposition 1.1.  C is an acute cone if and only if a;p(x|C) = 0 for any x
such that a’;x < 0.

Proor. See Martin and Salvador (1988). O

In an obvious reference to the PAV algorithm, Martin and Salvador (1988)
say that the cone C is PAV when the sufficient condition in the proposition
holds.

We now explain briefly the PAV process for obtaining p(x|C) when C is an
acute cone [cf. Martin and Salvador (1988), Theorem 2.2].
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At the first step, we project x onto the subspace S; defined by the
constraints in C which are violated by x. If p(x|S;) € C, then p(x|S,) =
px|C). If p(x|S;) & C, at the second step we project x or p(x|S,) onto
S; N'S,, where S, is the subspace associated with the constraints in C which
are violated by p(x|S,). If p(x|S; N S,) & C, we begin a new step and so on. In
a finite number of steps we reach p(x|C). At any rate the solution p(x|C) is in
a subspace of S, as shown by Proposition 1.1.

In Section 2, we find the test {T' > ¢} to be dominated by {T* > ¢} when
testing H, against H, — H,, so that T and T* being equally sized, T*
becomes more powerful than 7. In order to prove that, we give three lemmas,
also useful in their own right. The proofs of the lemmas are given in Section 3.

2. Dominance of the L.R.T. The next lemma is a very useful property
of an acute cone.

LeMMA 2.1.  Let C be an acute cone and let B be a subset of {1, ...,n} such
that Ky is not empty. Then, for any x in C, p(x|Kg) = p(x|Lgz). Moreover,
p(x|Kg) # 0, whenever x + 0 and C is strictly acute.

The next two results generalize to arbitrary acute cones Lemmas 2.1 and
2.2 in Warrack and Robertson (1984).

Lemma 2.2. If C is an acute cone, then for any x € R* and 6 € C:
a;p(x + 8lC) = a/;p(x|C), j = 1,...,n.

LEMMA 2.3. Let x and y be two elements in a cone C, such that aix < a%y,
J=1,...,n. If Cis acute, then |lx — p(xIK, J*<ly - p&yIK, I

..........

As noted earlier we give proofs of Lemmas 2.1-2.3 in Section 3.
Before presenting the main result (Theorem 2.2), we need to prove the
following theorem about the statistic 7" defined in (1.2).

THEOREM 2.1. Let 6 be an element of H,. Then, for any x € R*,
T(x + 6) > T(x).

Proor. Through this proof we shall denote by U,, m =1,...,n, the
subspace L, ..., and we write x° and x4 instead of p(x|H,) and p(x|H,),
respectively.

Since x° = p(x|U,,) for some m > r and x° is reached projecting x onto a
subspace S defined by all such constraints which are satisfied with equality by
x?, the three cases considered below cover all possible situations.

Note that H|, is an acute cone in U..

The restrictions that define U, are always verified with equality by x°, so
that S can be defined by Ly, with {1,2,..., r} c B. Without loss of generality
we can take B = (1,...,m}, m > r, for each x under consideration.
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Case 1. Let x € R* be such that x°=p(x|U). If 0 € Hy, then
(x + 6)° =x° + 6, so that

2
lx = %01 =[x + 6) = (= + 0)°[".
By Theorem 2.1 in Robertson and Wegman (1978), |lx — x4|> > ||(x + 6) —
(x + 0)4]|, and therefore T(x + 8) > T(x).

Case 2. Let x € R* and 0 € H, be such that x° = p(x|U,) and
(x + 6)° = p(x + 6|U,,) for some m > r. Consider T", the L.R.T. for testing
H§:a6=0,j=1,...,m; a0 >0, j=m+1,...,n against H, — Hy.

If 6 € U, then by Case 1, T'(x + 6) > T'(x) and it is easy to prove that
T'(x) =T(x)and T'(x + 6) = T(x + 6).

If 6 ¢ U,,, consider 6™ = p(0|U,,), then as before, T(x + 6™) > T(x).

Let us consider the cone C™ ={x: a’x >0, j=1,...,m} and y™ =
p(x + 0|C™) and 2™ = p(x + §™|C™).

It is obvious that y° = p(x + 0|U,,) = p(x + 6™|U,)) = z°. Note that y° =
(m0 and z° = z(m°,

Decomposing x+0=x+6"+ 60— 0™ and since U,, is the least dimension
face in C'), the Lemma 2.2 guarantees that a y(’") >a2™=>0, j=
1,...,m, and by Lemma 2.3, [y™ —y°|*>> |Iz('") - 292 and therefore
||y('")||2 > [l2™)%.

Also we note that y — 2™ e C™ N U, therefore p(y'™ — z(™)]
Cm*D N U )=0, being C"*D = {x: a'x >0, j=1,...,m + 1}, which im-
phes by Lemma 2. 1, that y(™ — z(m & cm+D”op y(’") =2 In any case,

™ <al, z("‘) In the same way, a/y"™ <a}2", j=m +1,...,n.
Now suppose y('") € H,, then 2™ € H,, and both of them coincide respec-
tively with (x + 6)4 and (x + 6™)4 and the result follows. In the other case,
a ™ < 0 for some j. Without loss of generality we can assume j = m + 1.
Consider y™*D = p(x + |C™*Y) and z*D = p(x + ™|C™*D). We deal
with two situations:
(a) a, 2™ <0.

Let us consider the affine hyperplanes H; = {x: ajx = a2}, j=1,...,
m + 1.

Let A be the set of the indices j for which H? separates y™ and y™*. A
is not empty, since m + 1 € A. For each j € A there exists A; such that
Ay + (1= Ayt e HE '

Consider Ay = max;c 4 A; and ¥’ = Aoy™ + (1 — Ay *D.

Then, we have y' — Zm & C(”‘“) and y'(’"“) = ym*D g0 that
p(y’("‘“)IU ) =pGOIU, ) = p(z™ U, . ), the last equality because
U, .. is the least dimension face of C™* 1 and y™? = z(m9

If we decompose y’ = 2™ + (y' — z™), then by Lemma 2.2, a/y™*V >

a;z™*Y >0, j=1,...,m + 1, and by Lemma 2.3, IIy (m+D
p(y'(’"“’IU DI? = 120743 = p( Dy, D% Therefore [y V|2 >
[ER

(b) a, 2™ > 0.

y
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The hyperplane {a’, ,,x = 0} separates y™ and z‘™, so there is A € (0, 1)
such that y’ = Ay™ + (1 — M)z € C*D and |ly’||* = [|20™)|% = |2+ D)2
The points y™*? and y’ are in case (a) and therefore ||y *V|® > |ly’||%. In
both (a) and (b) situations, the points y™* D and z(™*V verify the conditions
that y™ and 2™ verified at the previous step, so that we could repeat the
same procedure with the cone C™*? and so on.

The PAV algorithm for acute cones guarantees [Martin and Salvador (1988)],
that in a finite number of steps, (x + 6)* and (x + #™)# are reached. For
these points, [I(x + 6)4]|%> > [(x + 6™)4||%. Therefore T'(x + 0) > T'(x + ™),
since (x + 0)° = (x + 8™)°.

Cast 3. Consider x such that x° = p(x|U,,) and let  be in H, such that
(x +6)°=p(x +0lU), r<s<m<n. Denote x* =p(x|U,) and 6° =
p(6]U,). Note that x® ¢ H,, whenever s < m. Without loss of generality, we
can suppose a’,;x < 0.

(x +6)° € Hyc Hy, so that @/, {(x + 6)° = a/,, (x® + §¢) > 0.

Therefore a’,, 6 > —a’,,,x® > 0.

Consider A, = —(a’,,,x)/(a’,, 0,0 < A; < 1.

a’, (x® 4+ 21,0®)) = 0 and we can write p(x + A,0|U,) = p(x + A,0|U,, ).

On decomposing x + 8 =x + 1,0 + 6 — 1,0, we have 0 — 1,0 € H, and
x + 6 and x + A,0 are in Case 2 hence T'(x + 6) > T'(x + A,0). Repeating the
procedure, we obtain (x + A,0)° = p(x + A,0|U,_ ).

Consider 1,0 in such a way that 1,60 — 1,0 € H, and p(x + A,0|U, ) =
plx + 2,0|U, ., ,) and therefore T(x + A,0) > T'(x + A,0).

In this way, after m —s — 1 steps we obtain A,,_,_,0 such that (x +
Ap_s10°® =plx + A,,_,_,61U,). Therefore T(x + A,,_, ;0) > T(x). The
chain of inequalities obtained proves that T'(x + 8) > T(x). O

THEOREM 2.2. The L.R.T., {T >t} for testing H, against H, — H, is
dominated by {T* > t}.

Proor. (a) Fix a point 6, in RI(Hy) ={a’6 =0, j=1,...,r; a6 >0,
j=r+1,...,n}. For each x in R*, there is a A, depending on x, such that

T(x +A0y) = T*(x + 2A6,).

Let x be a point of R* and z = p(x|H}). Consider

!
a;z

8= — Jj=r+1,...,n and A = max{s;,...,8,}.

’ ’
a’if,

Then z + A6, € H,.
0, € Hyc H,, with H; the least dimension face in H,", so that

p(x + A0oJHL) =2 + A6, = p(x + A6,|H,)
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and
p(x + A60[Hg") = p(x + A6,|H,).

As a consequence T'(x + A0,) = T*(x + A6,).
(b) Py(T>t¢t)<P(T*>t) Vo, V¢

We shall prove that T'(x) < T*(x) V x, so that (b) will become an obvious
consequence. Let x be a point in R* and z = p(x|H/*). H, is an acute cone, so
that 24 and x“ can be reached by projecting x on the same subspace. The
same is true for z° and x°. Therefore z4 = x4 and z° = x° and T'(x) = T'(2).
By Theorem 2.1, T(z) < T(z + 6) V 6 € H,,. According to (a), we can choose
6 € Hy in such a way that z + 6 € H,. Using then the Lemma 2.1, we
conclude that T'(z + ) = T*(z + 0).

T*(z + 6) = T*(2) follows, since 6 € H, c H,' and H{" is the least dimen-
sion face in H,'.

Finally, from the definition of T*, T*(z) = T*(x) and we can assure that,
Vx, T(x) < T*x).

Inequality (b) proves the L.R.T. to be less powerful than the test {T* > #}.
Now, we only need to prove that the same significance level is reached by both
tests.

(c) V¢, sup Py(T > t) = Py(T* > t).
0€H,
Let ¢ be a real number with Py(T*(X) > t) = a, where X ~ N,(0, ).
Consider 6 > 0 and E a sphere centered at the origin, such that

P({T*(X)>t) NE) >a—4.

This is always possible by considering E with P(X € E) > 1 — 8. For all A
and 0, € RI(H,), we have

Py({T*(X) >t} N E) = P, ({T*(X + 18,) > £} N {E + A6,}).

From (a) and the boundedness of E, there exists A, such that T*(x +
Aoby) = T(x + 140,V x € E.

Therefore P, , (T(X + A6,) > t} N {E + X400} > a — 6.

This inequality beside (b) proves (c) and the theorem follows. O

Figure 1 sketches the results in the proof of Theorem 2.2. H, is given by
a; =(0,1) and a, = (3, —1) and we can see {T > ¢}, the striped region, to be
contained in {T'* > ¢}, the dotted and striped region which shows the critical
region for testing H;* (defined by a,) against H,* — H/.

ReEMARK 1. If we consider part (c) in the proof of Theorem 2.2 and Figure
1, we may obtain an intuitive idea for getting the significance level of the test
{T > t}.

The significance level is reached as we consider A, —» « since for 6, €
RI(H,), P,,(T(X) > t) is an increasing function of A. This also implies the
test {T' > ¢} is biased. When 6, € RI(H,) and A, - ®, the only sensible
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(T>1)

0 AoBo -

Fic. 1. Critical regions given by T and T'*.

constraints defining H, are those defining H,, so that at infinity 7* and T
become equivalents.

REMARK 2. The region {T'* > ¢t} in Figure 1 yields the uniformly most
powerful level « test of H, against H, — H,. Although in general that is not
true, possibly {T* > ¢} will always be admissible. (We are in debt to a referee
for this remark).

Figure 2 shows how the Theorem 2.2 fails when H, is not acute. H, is
defined by a, =(0,1) and a, =(1,1). By considering ¢ in such a way
that P(T* >¢)=a V 6 € Hy, it can be seen {T* > ¢} c{T > t}, so that
P(T >t)>aV 60 € Hy, and the L.R.T. for testing H, against H, — H,, is not

N

F1G. 2. Critical regions given by T and T* for H, nonacute.
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dominated by {T'* > ¢} ({T > ¢} is the dotted region added to the striped region
{T* > t}).

3. Proof of the lemmas. We give proofs of the Lemmas used in Sec-
tion 2.

Proor oF LEMMA 2.1. Let x be in C. We use induction on the number of
elements in B. Consider B = {i} and x' = p(x|L,). Suppose x’ ¢ C. Then
there is a j # i such that o/, x! < 0.

Consider x*/ = p(x|L; ). We have x%/ — x° € L, N C;;, since a{x —x)=0
and a/(x" —x') = —aJx > 0. Also, x/ —x' is orthogonal to L;; because

x = p(x'IL; ).

Let z—x—x” and y = x* — x". They satisfy a'z > 0, a;2>20,aly=0
and a’y <0, so that L; separates y and z. There is an « € (0, 1] such that
t=az + (1 —a)y € L;. Consequently a/(t — x)=0 and a/(¢t — x¥) >0,
that is, t—x”EL ﬂC

On the other hand (x” —x)(t — x) = (xV — x)(x! — xV + alx — x°) —
ax’) = —|lx* — x%||® < 0, which is in contradiction with the acuteness of C;;.
Now, let us consider x + 0 and C strictly acute and suppose x* = 0. Then we
can write x =x —x* € L so that x = Aa;, where A > 0 since x # 0 and
x € C. C strictly acute 1mp11es aia; <0, # i, therefore a’jx = Aaa; <0, in
contradiction with x € C, so that we conclude x* = p(x|L; ) # 0.

Now, we suppose the result is right when B contains r elements. Let B be
some subset with r + 1 elements in {1, ..., n}. Consider x3~! = p(x|L_,) for
i €B.

By the induction hypothesis, x2~* € Ly_; n C.

Now Lz =L, N Lg_;, so that xB = p(x|Lg) = p(xB~¥|Lp).

In the subspace Lg_,, the cone Lz_, N C is acute and we can use the
preceding arguments in order to obtain x2 € C and also x® # 0, whenever
x # 0 and C strictly acute. O

Proor oF LEMMA 2.2. If x € C the result is obvious.

Given x in R*, consider B = {i: a/x° = 0} and B® = {i: a'(x + 8)° = 0},
where x¢ = p(x|C) and (x + §)° = p(x + 8|C).

Let 6 be in C. We begin by showing B® c B.

Consider B, = {i: ax” < 0} with x"** = p(x|L ) and

B = {i:aj(x +6)" <0} with (x+6)""" = p(x + 5|Ly)

for r =0,1,..., [x® =x and (x + 8)° = x + §]. It is obvious that B, C B, C
- cBand BicB{c --- cB®

Bjc B,, sincea/x <aix +a,8 <0 forie Bj.
We shall now prove that B c B,.

(x + &) =p(x + 8|Lpz) = p(*|Lpz) + p(8|Lgy).
Let i € B2, then a/(x + 8)! < 0.
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By Lemma 2.1, p(8lLpy) € C, so that a;p(8|Lgs) = 0, therefore
a;p(x|Lpg) < 0.

But L C Lg; since B§ C By, so that x' = p(x|Lp ) = p(p(x|LgyILp )
and we can assume that x! has been obtained by projecting x on L B, after
projecting x on Lp; in a step of the PAV process applied to x. In this way,
either x! has the restriction given by a; as an active constraint or does not, as
it happens with p(x|L g;). Therefore a;x' < 0 and i € B,.

In the same way, it can be proved that V r, B2 c B,.

If B} = B® and B, = B, then r <, because if p(x|Lg) € C, then p(x +
8|Lg ) € C by Lemma 2.1. Therefore, B®? c B.

Let x & C, then for any j € B, a/(x + 8)° > a/;x° = 0 and

(x +8)° =p(x + 8|Lps) = p(x|Lps) + p(8|Lps).

Denote by y, z the first and second terms on the right-hand side. By Lemma
2.1, z € C. Moreover Ly C Lys, since B> € B and so x° = p(x|Lg) = p(y|Lp).
Now, we prove, for y & C,

(3.1) aiy>ax® Vjé&B.

Assume that there is j & B such that oy < a’;x°. Consider x{ = p(x|Lg N
L)) and y; = x{ + (y — x°). Then ajy; < 0 and ajx; = 0.

Consider ¢ = A(y — y;). There is a ¢ such that a’# =0. For this ¢, set
tg =t —(y —x°). Then t5 = p(¢|Lp) and a’itz > 0 which is not possible since
C is acute. Therefore (3.1) holds and we can say V j & B, ax° < a’y + a;z =
a’i(x + 8)°.

Now, when y € C, we have B = B® and x° = y and therefore,

Vj,ax°=a}y <ajy +ajz=a}(x +8)°. O

Proor oF LEMMA 2.3. Let x, y be elements in C with ajx <a)y, j =
1,...,n.If a’x = ay for all j, then both x and y arein K; , + x and the
result follows.

Consider D = {j: a’x < a’y}, x? = p(x|Lp) and y® = p(y|L,) and denote
x® =p(x|K, _,)and y* = p(ylK, ). We have

2 2
Iz — 2?I® =llx — 21" + 122 — 22",

2 2 2
ly =yl =lly =32l +lly? = »2I°,
D|?

.....

.....

ly =PI =1y = y2I° =llx - =
where yP* = p(y|[L, +x) and L, +x ={2: z=y +x, y € Lp} so that the
result will be proved if we prove that |ly? — y?||® > [|x? — «?|%
C is an acute cone and y — x € C, therefore y? — x? € C by Lemma 2.1,
so that a/y? > a/x?, j=1,...,n.
Also yP, x? are in C N L, which is an acute cone in the subspace L. In
this way, x? and y? are, with respect to C N L, in the same situation as x
and y were respect to C. IfV j, a’x? = a’;y?, then |ly” - yolI2 = llx? — 242
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In the other case, we can apply to x” and y” the procedure applied to x
and y and so on. This iterative procedure gives pairs x %, y¥ satisfying for all
J, a;x¥ < ajy”. If we have at least one strict inequality for F c {1,...,n} in
every step, then we shall obtain x# and y* that verify the result. O
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