The Annals of Statistics
1991, Vol. 19, No. 2, 531-556

RANK REGRESSION METHODS FOR LEFT-TRUNCATED
AND RIGHT-CENSORED DATA!

By Tze LEUNG LAI AND ZHILIANG YING

Stanford University and University of Illinois

A class of rank estimators is introduced for regression analysis in the
presence of both left-truncation and right-censoring on the response vari-
able. By making use of martingale theory and a tightness lemma for
stochastic integrals of multiparameter empirical processes, the asymptotic
normality of the estimators is established under certain assumptions.
Adaptive choice of the score functions to give asymptotically efficient rank
estimators is also discussed.

1. Introduction. Consider the problem of estimating the slope B in the
regression model

(1.1) y; = Bx; + ¢; (1=1,2,...),

where ¢; are i.i.d. random variables with a continuous distribution function F,
the x; are either nonrandom or are independent random variables that are
independent of {¢,} and the responses y, are not completely observable due to
left-truncation and right-censoring by the random variables ¢, and ¢, specified
later. Throughout the sequel we shall assume that (¢;, c;, x;) are independent
random vectors that are independent of the sequence {¢,} and such that
® >t > —oand —®© <c; < o Weshall alsolet j, =y, Ac,and A; =1, _.,,
where we use A and V to denote minimum and maximum, respectively. Thus,
the responses y; are right-censored by the censoring variables c;. Moreover, we
shall also assume left-truncation in the sense that (§;, A;, x;) can be observed
only when 7, > ¢,. The data, therefore, consist of n observations (52, ¢?, A%, x?)
with 52 >¢2,i=1,...,n.

The special case ¢; = — corresponds to the censored regression model [cf.
Kalbfleisch and Prentice (1980); Lawless (1982)], for which there is an exten-
sive literature on hypothesis testing and estimation of B when the ¢; are
assumed to belong to certain parametric families of distributions. The case
c; = o corresponds to the truncated regression model in the econometrics
literature [cf. Tobin (1958); Goldberger (1981); Amemiya (1985)], which as-
sumes the presence of truncation variables 7; so that (x;, y;) can be observed
only when y; < 7, (or equivalently, when —y, > —7, = ¢,) and which uses the

Received March 1988; revised June 1990.

!Research supported by NSF.

AMS 1980 subject classifications. Primary 62J99, 62G20; secondary 60F05.

Key words and phrases. Censoring and truncation, regression, linear rank statistics, martin-
gales, stochastic integrals, empirical processes, tightness, asymptotic normality, adaptive rank
estimators.

531

Y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz
The Annals of Statistics. MIKORS ®

Shos

WWw.jstor.org



532 T. L. LAI AND Z. YING

method of maximum likelihood to estimate B in various parametric models for
the ¢,.

Without assuming any parametric form for the distribution of the ¢;, we
study herein rank regression methods for the estimation of 8. In the case of

complete data (for which ¢, = —» and ¢; = «, so that 72 =y, and x? = x,),
letting e/(b) =y, — bx, and R ;(b) be the rank of e;(b) in the set of residuals
{e(d), ..., e,(b)}, one can define the linear rank statistic
(1.2a) L,(b) = ¥ xa,(Ri(b)),

i=1

where the scores a,(j) are generated from a score function ¢: (0, 1] = (—, «),
that satisfies [(¢(u)du = 0 and [$¢*(u) du < », by

a,(J) = ¢(Jj/n),

(1.2b) a.(j) =o(j/(n+1)) or
a.(J) = E&(UG),
Ufy < -+ < Uy, being the order statistics of a sample of size n from the

uniform distribution on (0, 1). There is an extensive literature on the use of
L,(0) as test statistics for testing the null hypothesis 8 = 0 and on the use of a
zero-crossing of L,(b) as an estimate of B, cf. Hajek and Sidék (1967) and
Juretkova (1969). We say that b is a zero-crossing of a step function L(b) if
the right- and left-hand limits L(6 + ) and L(5 — ) do not have the same sign,
that is, if L(b +)L(b - ) < 0.

To extend these rank regression methods to the truncated and censored
data (52, t?, A%, x?),i = 1,...,n, define the residuals e,(b) = 7? — bx? and let
eqyd) < -+ < e, (b) denote all the ordered uncensored residuals. For i =
1,...,k let

J(i,b) = {j <n:t? - bx? < ey (b) <50 — bx?},

(1.3) ZjeJ(i,b)xJQ

n;(b) = #J(i,b), x(i,b) = nib)

where we use the notation #A to denote the number of elements of a set A.
Let ¢ be a twice continuously differentiable function on (0,1). Let 0 < e < 1
and let p, be a smooth function on [0, 1] such that p,(0) = 0 and p,(x) =1
for x > n~*, as will be specified in Section 2. Define

A pn(n_lni(b))
) 1-Buw= T (1o 22RO
ieq(b)<u,Al)=1 n;(b)

k
(18)  8.(6) = L 0B, o(e(®)))paln ™ mal)){xdy ~ 2(5,5))-
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Recalling that for complete data a rank estimator of B is obtained as a
zero-crossing of L ,(b), we define in the present setting, in which the responses

y; are subject to left-truncation and right-censoring, a rank estimator ﬁn of B
as a zero-crossing of S,(b).

For data subject only to right-censoring (i.e., ¢, = —x), Prentice (1978) and
Cuzick (1985) have shown that the statistics (1.5) with b = B,, p, = 1 and

1 1
(1.6) y=¢— @, where d(u) = m[ #(t) dt,

provide natural and analytically tractable extensions of the classical linear
rank statistics (1.2) (with & = B,) for testing the null hypothesis B = B,.
Recently, Tsiatis (1990), Ritov (1990) and Lai and Ying (1989) studied the use
of such censored rank statistics for the estimation of 8. In particular, Lai and
Ying (1989) introduced the weight functions p, to smooth out the jittery
behavior of F, ,(e;(b)) and X(i, b) as functions of b at those i for which the
risk set size n,(d) is small compared to n. This enables them to apply the
tightness theory for stochastic integrals of empirical-type processes, developed
in Lai and Ying (1988) for right-censored data, to analyze the random function
S,(b) in the censored case. For data subject only to left-truncation (i.e.,
¢; = »), Lai and Ying (1989) have shown that the statistics (1.5) with  defined
by (1.6) again provide natural and tractable extensions of the linear rank
statistics (1.2).

In Section 2 we unify the results and methods for the censored regression
model and the truncated regression model by generalizing them to data that
are both right-censored and left-truncated, as previously described. Such data
are often encountered in biostatistical applications. A basic tool in the develop-
ment of this unified theory is a simple extension, given in Section 4, of the
tightness results of Lai and Ying (1988) for stochastic integrals of certain
empirical-type processes. Using this tightness lemma together with martingale
theory, consistency and asymptotic normality of the rank estimators based on
left-truncated and right-censored data are established under certain assump-
tions.

In Sections 3, we develop asymptotically efficient adaptive rank estimators
in which the score function ¢ in (1.5) is not predetermined in advance but is
chosen on the basis of the observed data (72, t?, A%, x?), i =1,...,n. Such
adaptive rank estimators can again be analyzed by making use of martingale
theory and the tightness lemma of stochastic integrals of empirical-type
processes. As will be shown in Section 3, these methods to construct and
analyze rank estimators and adaptive rank estimators can also be extended to
the case of v X 1 vectors B and «x;, so that (1.1) with Bx; = B7x, represents a
multiple regression model.

2. Consistency and asymptotic normality of rank estimators. In
this section we study the asymptotic properties of the estimate B, of B,
defined as a zero-crossing of the linear rank statistics S,(b) given by (1.5) for
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left-truncated and right-censored data. Throughout the sequel we shall restrict
b to a bounded interval [—p, p], assuming knowledge of an upper bound
p > |Bl. A basic step in the analysis of S,(b) is to represent it as a stochastic
integral of empirical-type processes. First note that the sample (52, £, A%, x?),
i=1,...,n, of left-truncated and right-censored observations can be regarded
as being generated by a larger sample of independent random vectors (y;, ¢;, c;,
x;),i=1,...,m(n), where

(2.1) m(n) =inf{m: Y I(tisyi,\cl)=n}.
i=1

To represent the linear rank statistics S,(b) given in (1.5) as stochastic
integrals, define

(2.2) t;(b) =t; — bx;, c;(b) =c; — bx;, ¥:(b) =y; — bx;,

m
(2.3) L,(b,s) = Z I(ti(b)sy,(b) Acyb)<s,yi(b) <ci(b)
i=1
m
(2.4) Y,.(b,s) = Z X; I(tl(b)syl(b) A e (b) < 5, ¥,(b) < ci(B))
i=1
m
(2.5) N,(b,s) = I(t,(b)sssy,(b)/\ci(b))’
i=1

M3z

(2.6) X, (b,s) = X; I(ti(b)sssyl(b)/\ci(b))’

1

.ﬁ.

log(i = F,, . 5(%))

(2.7) Pa(n"IN,(b,5))
= log{1 — L, (b,ds),
f_m<s<y 8 N,(b, ) n(b, ds)
Vi, n(858) = (B . 5(8))Pu(n ' N,u(B, 8)),
(2'8) = Vm,nXm
R

(29) T n(8) = [ Vo n(5,)Y(b,d5) = [ Ty n(6,9) (b, ).

From (1.4) and (1.5), it follows that
(2.10) S,(8) = Tpy(ny,n(b).

The following lemma approximates the stochastic integral T,, ,(b) by replac-
ing the empirical-type processes L,,,Y,,, N,,, X,, that appear in T,, ,(b) by
their expectations. As will be shown in Section 4, the lemma follows from a
simple extension of the tightness results of Lai and Ying (1988), for stochastic
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integrals involving these empirical-type processes, under the following assump-
tions:

(2.11) lx;] < B for all i and some nonrandom constant B,
F has a continuously differentiable density f such that

(2.12) f°° ( sup |f'(t)|) ds < » for some n > 0,

—®Vs<t<s+m

sup Y P{s<t —bx;<s+h}

|bl <p, —0<s<oo 1

(2.13) + sup Y P(s<c,—bx;<s+h}
bl <p, ~o<s<® 1
= O(mh) as m — »and h — 0 such that mh — o,
(2.14) sup{E( i) + E(ti“I(ti>_w))q} < o for some g > 0,
i

where x~= |x|I, ). The role of these assumptions in the tightness results for
the two-parameter process L,(b,s) or Y,,, N,,, X,, and for integrals with
respect to the signed measure Y,(b,ds) or L,(b,ds) is discussed in the
censored case (with ¢, = —x) by Lai and Ying [(1988), pages 842-843 and
347-348]. Note in particular that by (2.12),

ELm(b’ds) = Z E[f(s + (b - ﬁ)xi)l(ti—bxisssci—bxi)] dS,
i=1
(2.15) N
EYm(b’ds) = Z E[xz f(S + (b - ﬂ)xi)l(ti—bxlsssc,—bxi)] ds.
i=1

LEMMA 1. Let ¢ be twice continuously differentiable on (0, 1) and such that

(2.16) sup |¥"(u)| < .

0<uxl

Let p be a nondecreasing and twice continuously differentiable function on the
real line such that

(2.17) p(y) =0 fory<0 and p(y)=1 fory>1.

For m > n > 1, define L,,, Yy, Nyuy Xy oty Vions Vi and T, by
(2.3)-(2.9), where the weight function p,, is of the form

(2.18) p(x) =p(n*(x—cn™")), O0=<x<1,
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with ¢ > 0 and 0 < A < 15. Define
p,(n"'EN,(b,s))
EN (b, 5)

(219)  Anl(by) = [ EL,(b,ds),

—o<s<y

Gmn(8) = [ W(1 = e Ani® D) p (n"EN,(b, 5))

(2.20) EX(b,5)
EYm(b,dS) - WELm(b ds)]

Then under the assumptions (2.11)-(2.14), for every D > 1,

1
(2.21) max sup —|T,, (b) — ¢, ()| >0 a.s,

n<m<Dn |b|<p

| m,n(b) m n(B) - m n(b) + d’m n(B)'
(222) Do, 3P 72V nlb — B =0

Lemma 1 provides a basic tool for the analysis of the random function S,(b)
whose zero-crossing is the linear rank estimator ﬁ of B. Since S,(b) is not a
smooth function of b, one cannot apply standard techniques (based on Taylor’s
expansion of the random function in a neighborhood of the true parameter)
that are commonly used to prove asymptotic normality of maximum likelihood
estimates, M-estimators, and so on. Moreover, S,(b) is not a monotone
function of b [cf. Lai and Ying (1989)], so one cannot make use of the
monotonicity and contiguity arguments [cf. Jureékova (1969)] that have been
applied to prove asymptotic normality of rank estimators of B in the regres-
sion model (1.1) based on complete data (x;,y;). Lemma 1 enables us to
approximate S,(b) by S,(B) + [¢,,(n) (0) = &), (B, which is much more
tractable than S, (b).

To analyze the random variable S,(B) and the nonrandom function
Dy, n(0) — D, n(ﬁ) we begin by cons1der1ng the case in which the (¢,, c;, x;)
are i.1.d. and ¢, — Bx; is independent of c¢; — Bx;. For r = 0,1, 2, let

G,.(s) = E[x{I(tl—Bxlssscl—Bxl)] ’ G_(S) = P{t, — Bx; <c; — Bx; <s}.
Define

(2.28) 1, =inf{s: Gy(s) >0}, 7=inf{s > 75: (1 - F(s))Go(s) = 0}.
Suppose that F(r,) < 1(so —© < 7, < 7 < ») and that

fr+n supmsnf(s +t)
To— N 1- F(S)
Then for every 0 < § < 1, it can be shown that uniformly in m > n > ém,

G, n(B) = mA(b — B) + o(m'/? vV mlb - BI)

asm —> wand b - o,

(2.24) dF(s) <o for some n > 0.

(2.25) m,n(8) =
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where
f() f(s) Gi(s)
A= [ WG ))<f( ) —F(s)}{ )~ G (s )}dF( )
(2.26)
. F(s F(r,
F(3)=(1)T(T(O)) Ple; < sle; = 7o}, §=To.

Moreover, it can be shown that m(n)/n — K a.s., where

1 = _
(2.27) == fiw{GO(s) + G(s)) dF(s),

and that n~'/2S (B8) has a limiting normal distribution with mean 0 and
variance

Gi(s)
Go(s)
In fact, these results still hold when (¢;, c;, x;) are not identically distributed
and ¢; — Bx; is not independent of ¢, — Bx;, provided that the functions G and

G, (r = 0,1,2) that appear in (2.23), (2.26) and (2.27) now take the form of
(2.29). This is the content of:

(2.28) v = Kjﬂ/ﬂ’(i(s)){(;z(s) - }dF(s).

THEOREM 1. Suppose that in the regression model (1.1), the ¢; are i.i.d.
random variables with a common distribution function F and (t;,c;, x;),
i=1,2,..., are independent random vectors that are independent of {¢,} and
such that (2.11)-(2.14) hold. Let ¢ be a twice continuously diﬁerentiable
function on (0, 1) satisfying (2.16) and let p be a nondecreasing and continu-
ously differentiable function on the real line satisfying (2.17). Define t; (b),
c;(b), y(b) by 2.2), L,, Y,,, N,, X, anb, Vouws Vipn and T, , by
(2.3)-(2. 9) where the wezght functwn D,, is of the form (2.18) with ¢ > 0 and
0 < A < 55. Assume furthermore that forr = 0,1, 2,

1
(2.29a)  lim — 2 E{x]P[t, — Bx; < s < c; — Bx;|x,]} = G.(s),

1 —
(2.29b) lim oy Z P{t, — Bx; < ¢, — Bx; < s} = G(s)
m-—w i=1

exist for every s with F(s) < 1. Defining 1, and 7 by (2.23), assume that
7o < 7, that F satisfies (2.24) and that

li

m—o M

[P{t; = Bx; <79 = e} L ipirgy> 0)

(2.30)
+P{c, — Bx; > 1+ E}I(F(T)<1)] =0

for every € > 0,
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where A is the same as in (2.18). Let S,(b) = T,,,, ,(b), where m(n) is defined
in (2.1). Then

(@) supy <, 27 HS(B) = by (D) = 0 a.s., where ¢,y (D) is given in
(2.20). Moreover, m(n)/n — K a.s., where K is defined in (2.27).

(ii) Define A as in (2.26). Then with probability 1,
S,(b) — S,(B) = nKA(b — B) + o(n'? Vv nlb - Bl)

(2.31) asn > oandb — B.

(iii) As n - », n= 128 (B) has a limiting normal distribution with mean 0
and variance v given in (2.28).

REMARK. The assumption (2.30) is clearly satisfied when (¢;, c;, x;) are i.i.d.
and t; — Bx, is independent of ¢; — Bx;. It is needed to give the basic limiting
relations (2.37) and (2.41) that lead to the definitions of A and v in (2.26) and
(2.28).

Proor oF THEOREM 1(i)-(ii). Since S,(b) = T, .(b),

1
sup ;|Sn(b) - ¢m(n),n(b)| -0 a.s.

|bl<p

by (2.21). By Kolmogorov’s strong law of large numbers,

]_ m
(2.32) — Y [Lti<yiney — Plti<yiAc}] > 0 as.
i=1
By (1.1) and (2.29),
1 m 1 m
— Y P{t, <y, Ac;} = — 1 [P{t;, — Bx; <&, < ¢, — Bx;}
m m
(2.33) +P{tl - ﬂxi S ci - ﬂxi < 8i}]

o — 1
- f_w[GO(s) +G(s)] dF(s) = %
From (2.1), (2.32) and (2.33), it follows that m(n)/n — K as.

To prove (2.31), it suffices in view of (2.22) to show that (2.25) holds,
uniformly in 6m <n <m for every 0 <& <1, recalling that S,(b)=

T\ny, () and that m(n)/n — K as. Let F=1-F. By (2.5), (2.13) and
(2.29),

EN,(b,s) = f E{F(s + (b - B)xi)P[ti —bx,<s<c; — bxi|xi]}
(2.34) !

S P{ti—bxiSS},

HM§

1 —
(2.35) ;ENm(b,s) - F(s)Gy(s) asm —» xand b > B.
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In view of (2.18) and (2.19),
(2.36) p,(x)=0 ifx<cn™, px)=1 ifx>(c+1)n>
From (2.13), (2.15), (2.30) and (2.34)-(2.36), it follows that for any 7* € (7., 7),
-1
p.(n~EN,(b, 5)
Apn(8,) = [ 2 )
—oo<s<y ENm(b, S)
v f(s)
- = ds
[ 7o)
as m — © and b — B, uniformly in y [70,7*1 and m > n > &m for every
0 <& < 1. Therefore, by the definition of F in (2.26),

1—exp(— A, .(5,7)) > F(y)
as m — ©and b - B, uniformly in y € [7y,7*]and m > n > ém.

EL,(b,ds)

(2.37)

To prove (2.25), let H(x;,s) = P[t; — Bx; < s < ¢, — Bx,lx;] and assume
without loss of generality that g = 0. By (2.34),

EN, (b,s) = f: E{(F(s + bx,)H(x;,s + bx;)},
1

EX,(b,s) =Y E{x;F(s + bx;)H/(x;,s + bx;)},
1

EL,(b,ds) =Y E{f(s + bx;)H;(x;, s + bx,-)}ds
1

by (2.15), since B = 0. Define

8mn(0,8) = [ U(1 = e Pni®.0)p (n BN, (b, )

EXx;F(s + ax;)H;(x;,s + bxj)]
xi -

EXTF(s + ax;)H;(x;,s + bx;

xfE{

Xf(s + ax;)H;(x;,s + bxi)} ds.

Note that ¢, ,(b) = g,, (b, b) and that &m,n(0, ) = 0. Therefore
d’m,n(b) - d’m,n(o) = d)m,n(b) = gm,n(b’ b) - gm,n(O’ b)
= Amb + o(m'? v mb) asm — wand b - 0,

uniformly in m > n > m/(2K). The last relation follows by applying (2.24),
(2.30), (2.36), (2.37) and the Taylor expansions '

F(s +bx;) = F(s) — bx, f(s) + O(b?) and
f(s +bx;) = f(s) = bx; f'(s) + O(b?)
to &,,.(b, ) — g,, (0, b), recalling that sup, |x; < B a.s. The technical details
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of the argument are similar to those given in the Appendix of Lai and Ying
(1989) for the censored case. O

The proof of Theorem 1(iii) makes use of Rebolledo’s (1980) martingale
central limit theorem and the martingale structure of S,(B). This martingale
structure is a corollary of the following lemma of Lai and Ying (1991), which is
a generalization of the well-known martingale theory for right-censored data
[cf. Gill (1980)] and of its extension to left-truncated data [cf. Keiding and Gill
(1990)].

LEMMA 2. Let €,€,,... be i.i.d. random variables with a continuous
distribution function F and let A = —log(1 — F') denote the cumulative hazard
function of F. Let (x,,T;,C,),i = 1,2,..., be independent random vectors that

are independent of {e,}. Let & =&, AC;, A, =1, _c, and let F(s) be the
complete o-field generated by

X5 T I(T <§g) A; I{T <€ <sp I(Tlsuséi)’ I(T,séisu)’ u<s, i = 1’2""'
Define
(2.38) Mi(8) = I zrzoncy = | Jeoinc,=umry AA(0).

Then {M(s), #(s), — © < s < ®} is a martingale with predictable variation
process

(2.39) (M(8) = [ T ncyzusmy AA(R).

Proor or THEOREM 1(iii). Set T, = ¢, — Bx;, C; = ¢; — Bx; in Lemma 2. By
(2.9) and (2.10), S,(B) = S,(B; =), where

m(n)
S.(B;t) = Z f ‘lf m(n)nB(s))pn( Nm(n)(B’s))
(2.40) (8. %)
m(n) ’
{ m(n)(ﬁ,s)}dMi(s),
I}otingthat

m(n) m(n)

Nm(n)(B’s) Z I(e AC;2s5=>T;} and Xm(n)(st) Z in(eiACizszTi)‘
1

Since m(n) = inf{m: L1"Lp .. ¢, =n}, it follows from the definition of
F(s) in Lemma 2 that m(n) is N%__, F(s)-measurable. Furthermore,
Fm(n),n, g(8) is left-continuous in s. It then follows that {S,(B;?), 7(¢), —» <
t <o} is a martingale, [cf. Lai and Ying (1991)]. Moreover, as shown in
Theorem 3 of Lai and Ying (1991),

(2.41) supIF min,8(8) —F(H)| - 0 as,
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under the assumption (2.30). The desired conclusion then follows from
Rebolledo’s martingale central limit theorem [cf. Gill (1980) and Section 2 of
Lai and Ying (1989)]. O

CoRrOLLARY 1. With the same notation and assumptions as in Theorem 1,
suppose that

lim inf min inf n=Ye, (b)||)>0
(2.42) n—= |Q-8Kn<m<(1+8)Kn| l|bl<p
b—Bl=d

for every 0 < 6 < §,

for some sufficiently small 8, > 0, where ¢, , is given in (2.20). Then B, - B
a.s. If furthermore A + 0, where A is deﬁned in (2.26), then n'/*(j ﬁ — B) has
a limiting normal distribution with mean 0 and variance (KA)™2%v as n — o,
where v is given in (2.28).

Proor. Write n~'/2S(B,) = n"/28 (B) + n~V3S (B,) — S (B)} and
apply (2.31) and Theorem 1(iii). The details of the argument are similar to
those of Corollary 2 of Lai and Ying (1989). O

3. Asymptotically efficient adaptive rank estimators and exten-
sions to multiple regression models. By Corollary 1, the rank estimator
ﬁn, defined as a zero-crossing of the linear rank statistics (1.5), is asymptoti-
cally normal N(B,v/(K?A?n)) as n — ». Letting h = f/(1 — F) denote the
hazard function of F, we can express A given in (2.26) as

(s) 2( )
o [ 2 s - 2]
Since 1/K = [* (G, + G) dF and
T ~ G2
v=K[T ¢2(F(3))[ (8) — 5 ES; dF(s),

it then follows from the Schwarz inequality that

v {/:(GO +G) dF} [0(%)2(Gz g: ) dF

-1

(3.1)

(KA)®
and that equality holds in (8.1) in the case
- h'(s)
(3.2) y(F(s)) = ns)

Since 4 is usually unknown in practice, we study in this section how to use the
observed data (72,¢2, A% x?), i = 1,..., n, to estimate the asymptotically opti-
mal score function (3.2) for the linear rank statistics (1.5) from which we
obtain an asymptotically normal rank estimator ﬁn that attains the lower
bound in (3.1).
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Our basic idea is to divide the sample into two disjoint subsets, the first of
which is {(y‘? , 1 A‘}, x?): i < n/2}). From the first subsample, define the residu-
als e,(b) = 2 — bx? (i < n/2) and order the uncensored ones among them as
el(b) < vt <ey, )(b) Let n, = [n/2] that is, the largest integer < n/2,
and define J(i,b), n,(b), (i, b) as in (1.3) but with n, replacing n (i.e., on the
basis only of the ﬁrst subsample). In analogy with (1.5), define

ky
(3.3) Sp1(b) = X pa(n7tny(B))[%8) = Z(i,8)]|¥m,2(€ (D)),
i=1

where p, is defined by (2.17)—-(2.18) and ¢, ,(s) is an estimate of h'(s)/h(s)
defined later from the second subsample of n, =n —n, observations
(32,t%, A%, x2), n, < r < n. Likewise from the second subsample, define the
residuals e (b) =32 1 — bxnlﬂ (i < n,) and order the uncensored ones among
them as efi(b) < -+ <ef (). As in (1.3), let J*(i,b) ={n, <r<n:¢ -
bx < e*(b) < yr bx?}, n;“(b) = #J*(l, b), E*(l, b) = (ZrEJ*(i,b) x?)/n;k(b)
Deﬁne

ko
(3.4) S,,2(b) = ; pn(n“ln;"(b))[x[’f] - x*(i, b)]‘/’n,l(e[’f](b)):

where x%; denotes the covariate x . ;, corresponding to eff(b) and ¢, (s) is
an estimate of h'(s)/h(s) defined later from the first subsample. Combining
the two subsample statistics (3.3) and (3.4) gives the linear rank statistic

(3.5) 8(b) = 8,,1(b) +5,,2(b).

An adaptive rank estimator B} of B is defined as a zero-crossing of S(b).

The analysis of the random function S }*(b) and of its zero-crossing B uses
the same basic ideas as those used in Section 2 for the analysis of S,(b) and
B The first step is to extend the asymptotic linearity property (2 31) to

S *(b) — S*(B) and the second step is to establish the asymptotic normality of
8¥(B). Since the random function ¢, ,(s) is based entirely on the second
subsample, S, ,(B) defined by (3.3) in terms of the first subsample values and
the function ¢, ,(s) should still have the martingale structure used in the
proof of Theorem 1(ii). Likewise, S, ,(B) should also have this martingale
structure. In view of this ma.rtmgale structure no matter how ¢, ; is con-
structed from the jth subsample (j = 1, 2), there is considerable ﬂex1b111ty in
choosing ¢, ;. In particular, we shall choose ¥, ; to be sufficiently smooth so
that Lemma 1 and the asymptotic linearity property (2.31) can be extended to
S, (b). Moreover, (3.1) and (3.2) suggest that asymptotic efficiency of the
corresponding adaptive rank estimator may be achieved by choosing ¢, ; such
that

h'(s)
nj()_h() P0

sup
(36) s€lsy, sgl: h(s)=d,

forall s; > 75 and s; <s, <7,
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with 0 < d, — 0 and
Sy ©
[ w2 (s)dF(s) »p 0 and [y ;(s)dF(s) ~
. s

asn > »and s;] 7y, ST 7.

(3.7)

Motivated by these considerations, we introduce the following data-depen-
dent score function ¢, ; (j = 1,2). First compute from the jth subsample a
consistent estimator b, ; of B such that

(38) b,,—pB as. and b,,—p=0p(n"?) forsomed >0.

n,J
For example, we can choose a smooth score function ¢ satisfying (2.16) and
use it to define the rank estimator b, ; as a zero-crossing of the rank statistics
computed from the jth subsample by (1.4) and (1.5) (with { < &, in the case
j =1 and with similar changes for j = 2). Then under the assumptions of
Corollary 1, (3.8) holds with d = ;. Let w be a twice continuously differen-
tiable nonnegative function on the real line such that for some a > 0,

(3.9) . w(t) =0 fort ¢ (-a,a), [ w(t)dt=1.

Let 8, be positive constants such that
(3.10) 6,0 and 1/8, =o0(n°) foreverye > 0.
For example, take 8, ~ (logn)~!. Using w as the kernel and 5, as the

bandwidth, define kernel estimates ﬁn’l, iAL,,’z of h based on the two subsam-
ples separately by

({t — ew(b,,1)}/8,)p({n " 'ni(b, 1) = 8,}/8,)

ky
il’n,l(t) = 5;1 Z w
i=1

(3.11) ni(bn,1) ’
| & —ef; n”ln* _
iln,z(t) — 51 glw ({t [L](bn,z)}/rSnr)lf((i . ¥(b,2) — 8,}/8,) ’

where p is the smooth function satisfying (2.17) that has been used in the
definition of p, in (3.3) and (3.4). Making use of (3.8), it will be shown in
Lemma 6 that under certain assumptions on #,

i, (s)  h(s)
ho (s)  h(s)

where #, ((s) = #{i <ng; ) — b, x) <s <F) —b, x)}, #, () =#{n, <
i<nit) —b,,x) <s <y~ b, ,x}. Define for j = 1,2,

- J(S)

'//n,j(s) = (s) (h,, ()= n" %, (s)=8Y/%

(3.12) sup

s

tho (284 n 1, (s)=28Y% TP 0, J=12,

;~>

'3.13)
¢n,j(3) =

,_/\\

w((s —u)/8,)¥, J(u)du}p(2 ~8,s%).
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Thus, ¢, ; is a smoothed version of (// .. Making use of (3.12), we shall show
that the 1//,,’ ; thus constructed satisfies (3 6) and (3.7) in Lemma 6 that will be
used to prove the following.

THEOREM 2. With the same assumptions on (¢, ¢;, ¢;, x;) and on p, p, as in
Theorem 1, assume further that f is twice continuously differentiable with
sup,|f"(x)| < « and

fm, f(s+t)]
sup | ————

To— M|t <m f(s)

Let w be a twice continuously differentiable nonnegative function on the real
line satisfying (3.9) and let 8, be positive constants satisfying (3.10). Starting
with consistent estimates b, 1, b, , of B satisfying (3.8) and based separately
on the two subsamples as defined before, define h, , h, , by (3.11) and
U, 1,¥n o by (8.13). Define S, (b), S, 5(b) and Sj}(b) by (3.3)—(3.5). Let
h = f/(1 — F). Then with probability 1,

Sx(b) — 8*(B) = nKA*(b — B) + o(n'/? Vv nlb — Bl)
uniformlyinbwith |b — Bl <n"*asn — o

for every & > 0, where A* = [T(h’' /MG, — G2/G,) dF and K is defined in
(2.27). Moreover, as n — », n~2S*(B) has a limiting normal distribution
with mean 0 and variance KA*

(3.14) dF(s) <o for some n > 0.

(3.15)

The proof of Theorem 2 will be given in Section 4 and uses the general
tightness lemma for stochastic integrals of empirical-type processes presented
there. From the asymptotic linearity property (3.15) of S*(d) in [B —n~°,
B + n~°] and the asymptotic normality of n~'/2S*(B) established in Theorem
2, we obtain as in Corollary 1 the following result on the asymptotic normality
of B*.

COROLLARY 2. With the same notation and assumptions as in Theorem 2,
suppose that A* > 0 and that b,, is an (auxiliary) estimator of B such that

(3.16) b, —B=0,(n"?% forsomed > 0.

Then for every 0 < & < 3, P{S*(b) has a zero-crossing in[B—-—n"5B+n"°]
for all large n} = 1. Consequently, if By is defined as the zero-crossing of
S¥(b) closest to b,, then as n — ®, n'/%(B* — B) has a limiting normal
distribution with mean 0 and variance (KA*)™!.

In view of (3.8), we can choose the b, of Corollary 2 to be (b, ; + b, 5)/2.
Corollary 2 shows that the adaptive rank estimator B* attains the lower
bound (3.1) for the variances of the asymptotic normal distributions of the
rank estimators B developed in Section 2. More generally, in the setting of
Corollary 2, the variance (KA*)™! of the limiting normal distribution of
n'/2(px — B) is in fact an asymptotic lower bound for the variances of the
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limiting distributions of regular estimators [cf. Begun, Hall, Huang and
Wellner (1983)] for the semiparametric problem of estimating 8 when the
common distribution of the ¢, and the bivariate distributions of (¢;, c¢;) are
unknown. In the case of i.i.d. (t,, ¢;, x;), the general theory of asymptotic lower
bounds in semiparametric estimation developed by Begun, Hall, Huang and
Wellner (1983) can be applied to the present problem. Extension of this theory
to the setting of Corollary 2, in which the random vectors (¢;, Cis x;) need not
be identically distributed, shows that for any regular estimator B,,, the limiting
distribution of n'/%(g8, — B) can be represented as the convolution of two
distributions one of which is N(0,(KA*)™1), establishing the asymptotic opti-
mality of B* within the class of regular estimators. The details will be
presented elsewhere.

We conclude this section by considering extensions of the rank estimator 8,
[which is a zero-crossing of (1.5)] and the adaptive rank estimator B} to the
case of multivariate covariates x,. Suppose that the B and x; in (1.1) are
replaced by v X 1 vectors B8 = (B,,...,8,)" and x; = (x;;,...,%;,)" and that
by Bx; we mean B7x;, where B” denotes the transpose of B. We also use |b to
denote (b7b)!/2 for the vector b. As before, the y; in (1.1) are not completely
observable due to left-truncation and right-censoring. Defining S,(b) by (1.5),
note that S, () is now a v X 1 vector. Assuming that an upper bound p > |B|
is known, we define the multivariate rank estimator 8, as a minimizer of
IS, (b)| with |b] < p. As will be shown in Section 4, Lemma 1 can be easily
extended to this multivariate setting. Therefore, the same arguments are those
used in the proof of Theorem 1 and Corollary 1 can be used to prove the
following.

THEOREM 3. Suppose that in Theorem 1, x; = (x;,...,%;)T and B =
(By,...,B)" as v X 1 vectors and that the assumption (2.29a) is replaced by
its multivariate version:

Forj, k€{l,...,v} and for s < F71(1),

lim m~! Z Plt; — BTx; < s < ¢; — BTx;} = Gy(s),

m — ©

(3.17)  lim m™* 2 E{x,,P[t, - B"x; < s < ¢, — BTx;[x;] | = Ty(s),

i=1

lim m~ IZE{ X, sz[t —BTx,<s <c, — BTx,

m — o

xl]} = jk(s)'
Defining F as in (2.26), let A = (a;;)1<;,j<. be defined by

F(s)  f(s) L)L)
oM 1—F(s)}{“"(s) Gol(5)

Then the conclusions of Theorem 1()-(i) still hold. Moreover, as n — o,
n~1%2S.(B) has a limiting normal distribution with mean vector 0 and

(3.18) a;; = [:qp(ﬁ(s)){ } dF(s).
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covariance matrix V.= (v;;), ., j ,» where

T - L;(s)T;(s
(3.19) Vij = Kff '/’Z(F(S)){Fij(s) - —(‘é%@%} dF(s).

If furthermore (2.42) holds and A is nonsingular, then ﬁn — B a.s. and
n'/%(B, — B) has a limiting normal distribution with mean vector 0 and
covariance matrix K~2A~VA~1,

Similarly, we can extend Theorem 2 and Corollary 2 to multivariate x, and
B. Letting bx; denote b7x; and defining S, (b), S, ,(b) and S*(b) by
(3.3)-(3.5), the arguments used to prove Theorem 2 in Section 4 can also be
used to prove the following.

THEOREM 4. Suppose that in Theorem 2, x; and B are v X 1 vectors and
that the assumption (2.29a) is replaced by its multivariate version (3.17). Then
(3.15) still holds with A* = (a};), ., ;<,» Where

[ R(s))® _T(9)T(s)
(h(s)) {Fij(s) ——~—~—GO(S) }dF(s).

Moreover, as n — », n~1/28*(B) has a limiting normal distribution with
mean vector 0 and covariance matrix KA*.

(3.20) a¥; =
To

As in Corollary 2, starting with an auxiliary consistent estimator b, of B
that satisfies (3.16), we define an adaptive rank estimator B8} in the multiple
regression setting to be a minimizer of |S*(b)| in the ellipsoid {b: |6 — b,| <
n~¢ with 0 <e<dV % Then under the assumptions of Theorem 4, if
furthermore A* is nonsingular, it follows from Theorem 4 that as n — «,
n'/?2(B* — B) has a limiting normal distribution with mean vector 0 and
covariance matrix K~ !(A*)~!, which is asymptotically optimal as discussed
before for the univariate case v = 1.

4. A tightness lemma for stochastic integrals of empirical-type
processes and the proofs of Lemma 1 and Theorem 2. Defining L, (b, s)
and Y,(d, s) as in (2.3) and (2.4) but with b and x; being v X 1 vectors and
bx; = bTx;, consider stochastic integrals of the form

(41 [ Upu(bs)dL,(b,s) or [

s§= —

U, .(b,s)dY,(b,s),

where [)__. denotes either [_._ ., or [_..,_,. The tightness lemma is
concerned with approximating L, (b,s) or Y,(b,s) in (4.1) by EL,(b,s) or
EY,(b,s) and the random variables U, (b, s) by u,, (b, s) which are inde-
pendent of {(¢,, ¢;, ¢;, x;)} and which satisfy the following assumptions for some
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D25>0,§20and01,02,n0,d0>O:ForeveryOsy<1ands>O,

max sup |U, ,.(b,s) — umyn‘(b,s)
dn<m<Dn b—al<n~
(4.2a) s
—Um,n(a’ S) + um,n(a”s),

— O( n—l/Z—y/2+§+s) a.s.,

(42b)  max sup |U,, .(b,8) —u,, (b,s)| = O(n~/2*+e) a5
dn<m<Dn bl <p ’ !
—0o<ys <o

U, n(b, s) has bounded variation in s for every b & [-p,p] and

(4.2¢) o
max  sup f |dU,, .(b,s)| =0(n?) as.,
dn<m<Dn |b|$p §=—00 ’
(4.2d) max sup |u,, ,(b,s)| < Cinf as.forall n > n,,
dn<m<Dn 16l <p ’
—ow<s<o
max sup n"Hu,, (b,8) —u,, (b,s)]
(4.2e) dn=m=Dr|p_p|+ls-s' <d
<Cyd as.for0<d <d,and nd > n,.
LEMMA 3. Let ¢y, ¢,,... bei.i.d. random variables with a common, distri-

bution function F and let (t,,c;, xT) be independent random vectors that are
independent of {¢;}. Suppose that (2.11)-(2.14) hold. Let ¥, = BTx; + ¢;, with
IBl < p, and define L, (b,s), Y,(b,s) by (2.3) and (2.4). Let D >6>0 and
£€>0andletU, (b,s),u m, b, 8) be random variables satisfying (4.2a)-(4.2¢)
for every 0 <y <1 and ¢ > 0 and such that the family {u,, (b, s): |b] <p,
—® < s <} is independent of {(¢;, t,, c;, xI):i=1,...,m} for every n and
on <m < Dn. Then for every 0 <y < 1 and ¢ > 0,

y y
max sup U, .(b,s)L,(b,ds) — U, o(b,s)EL, (b, ds
dn<m<Dn lb—al<n=7 f—oo /_m B ( ) ( )
—o<y <o ‘
(4.3) y "
~[" U, .(a,s)L,(a,ds) + [ % o(a,8)EL,(a,ds)
=o(nt—M/2¥E+ey g
max  sup |[* U, (b,5)L,(b,ds) ~ [ u, (b,5)EL,(b,ds)
dn<m<Dn lb|<Sp —o0 — o
— o <o
(4.4) Y

=o(n'/?*¢te) g,
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where EL (b, ds) is given by (2.15). Moreover, (4.3) and (4.4) still hold if L,
is replaced by Y,

Lemma 3 is an extension of Theorem 2 of Lai and Ying (1988), which treats
only the censored case (with ¢, = —«) and which only considers the case
m = n and nonrandom u,, ,. It can be proved by the same arguments as those
used in the proof of Theorems 1 and 2 of Lai and Ying (1988). It says that
under certain conditions we can approximate the stochastic integral
/2o U, (b,8)L,(b,ds) by [* u, (b,s)EL,(b,ds) and provides two kinds
of error bounds for the approximation. We now apply Lemma 3 to prove
Lemma 1.

Proor oF LEMMA 1. Making use of Lemma 3 and arguments similar to
those in the proof of Theorem 3 of Lai and Ying (1988), it can be shown that
for every D > 1,0 <y <1and ¢ > 0,

max sup | n(b) m n(b) - Tm,n(a) + d)m,n(a)‘
(4.5) n<m<Dn Ib—alsn y

— O(n(l—'y)/2+3/\+e) a.s.,

4.6 max_ sup |T, .(b) — ¢, ()| = O(n'/?*3*¢) as,
n( n

n<m<Dn Ibl <p

where A is given in (2.18). Since A < 15, (2.21) follows from (4.6). Moreover, by
(4.5), with probability 1,

max | m, n(b) - ¢m,n(b) - Tm,n(B) + ¢m,n(B),

n<m<
= o(n'/?) uniformly in b with |b — B| < n~'/3,

= o(n%?) uniformly in |b| < p with |6 — | > n~1/3,

since A < . Noting that n%/® < n|b — B| for |b — B| > n=1/3, (2.22) follows.
O

REMARK. Since Lemma 3 is stated for multivariate b and x;, the preceding
proof also extends Lemma 1 to the multiple regression setting, which is used
in the proof of Theorem 3.

We now proceed to prove Theorem 2, noting that the same arguments can
also be used to prove Theorem 4 on multivariate x; and b. The first step is to
develop a stochastic integral representation of S*(b). As in Section 2, we shall
regard the first subsample of [n /2] observations as being generated by a larger
sample of independent random vectors (y,, ¢;, c;, x;), i = 1,..., m(n), where

(4.7) m(n) = inf{m Z Turey ey = [n/zl}

Likewise, defining m(n) (> m4(n)) as in (2.1), we shall regard the second
subsample as being generated by (y;, ¢;,¢;, x,), m(n) + 1 <i < m(n). Define

i v 12
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L, Y, N,, X, by (2.3)-(2.6). Moreover, for M > m, define also

M
(4.8a) Ly, (b, 8) = Z I(t,(b) < yi(B) A c(B) < 5, y,(b) < ci(B)}?
i=m+1

M

(4.8b) MM,m(b>s)= Z in(t,(b)syi(b)/\c,(b)ss,yl(b)sc,(b))’
i=m+1

M
(4.8¢) NM,m(b>3)= Z I(tl(b)sssy,(b)/\c,(b))’

i=m+1
M
(4.8d) XM,m(b’S)= Z in(t,(b)sssy,(b)/\c,(b)}'

i=m+1
The estimate ¢, ; of h'/h defined from the first subsample by (3.13) can be
written as ¥, ((8) = u,, (») .(8), where

(4.9) U, n(8) = Wi, 15 (¥, iy €y %) 1<i<m)
for some Borel function V¥,. Likewise i, 5(8) = U,,(n) m,(n), (S), Where
(4.10) Unt, m,n(8) = Vo s, 15 (¥is b5 €35 %) v 1<i<m)

for some Borel function ¥,. Define for M > m,

Tt n(8) = [ Po(n "IN, (b,8)) 0, ()

X,.(b,s) ]
x|V, (b, ds) — """ L (b,ds)

N,(b,s)

(4.11) B
[ pa(nNag, (b, 9)) e, n(5)

Xy m(b,s)
Ny (b, s)
Then analogous to (2.10), it follows from (3.3)-(3.5) that
(4.12) S(B) = Tty o ()

Note that {u,, ,(s), — © <'s < =} is independent of {(y;, t;, ¢;, x,): i > m + 1}
and that {vy ,, ,(s), — © <s < =} is independent of {(y,,¢;,¢c;, x,): i < m} for
every M > m and n. Note also that the assumptions (4.2a) and (4.2b) are
trivially satisfied by U, ,(b,s) = u,, ,(b,s) = u,, ,(s). Hence, applying Lem-
ma 3 and a slight modification thereof (with an additional index M) to
U, .(b,s)=u, (s)and to Uy , (b,s)=vy , (s), we have the following
analog of Lemma 1.

X

Y, (b, ds) - Ly .(b,ds)|.
s M, m

LEmMA 4. Let ¢, ¢, c;, x; and p, be the same as in Lemma 1. Let
y; = Bx; + &; with |Bl <p. For M > m, define L,,, Y,,, N,,, X,., Lys s Yo1 s
X, m by (2.3)-(2.6) and (4.8). Let D > & >.0. Defining u, ,(s) and vy ,, ,(s)
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as in (4.9) and (4.10) for some Borel functions ¥, and ¥,, assume that for
every & > 0, there exist n, and d, (depending on ¢) such that

U, n(8) and vy , .(s) have bounded variation in s and for alln > n,

max {/_:Idum,n(SH +|tm, 1 (0)]

dn<m<M<Dn
(4.13) o
g, 15)] #1301,
<nf a.s,,
max sup {,um,n(s) - um,n(s,), +|UM,m,n(s) - vM,m,n(s’)l}

(4'14) dn<m<Dn IS—S'ISd
<nfd a.s. forall 0 <d <d,andnd > n,.

Letting n, = [n/2] and n, = n — ny, define Ty} ,, ,(b) by (4.11) and let

S5, mn(0) = [ (T EN(B,5))0pt, ()

EX, (b, s)
EY,(b,ds) — g2 —EL,(b,ds)
N,.(b,s)
(4.15) 3
+ [ Pa(n T ENy, (B, 8))h i, ()
EY, (b.ds) — —2mm(®8) b g
X | EYy (b, S)—m m,m(b,ds)].
Then
(4.16) max sup n YTyl o n(8) = D31 m.n(0)| =0 a.s,
dn<m<M<Dn |b|<p
ITﬁ,m,n(b) - d)lfl,m,n(b) - TM*,m,n(B) + ¢1tl,m,n(ﬂ)|
max sup VRvas T
dn<m<M<Dn |b|<p n B
(4.17)

-0 a.s.

The following lemma shows that the ¢, ; defined in Theorem 2 by (3.13)
satisfy the assumptions (3.6), (3.7), (4. 13) and (4.14) for any £ > 0. For
notational simplicity we shall only consider the first subsample j = 1, as the
case j = 2 can be treated by the same argument. In particular, part (ii) of the
lemma shows that conditions (4.13) and (4.14) of Lemma 4 are satisfied by
U o(8) =V, (b(yy,t1,C1, %1, Ymsr s Cm> X)), 8), in which ¥, -, is defined
by (4.21) and the function b represents the preliminary estimator of B8 based
on the observable components of {(y,,¢;,¢c;,x;): i <m}, so that the case

1 2d 2]

m = m4(n) gives the b, ; in (3.8) and (3.11).



RANK REGRESSION WITH CENSORED AND TRUNCATED DATA 551

LEmMA 5. With the same notation and assumptions as in Theorem 2,
define L., Y,, N,,, X, by (2.3)-(2.6) and m(n) by (4.7). Let

(4.18) W, (b,y) = — ww(y—s)p(n—le(b,s)—an) L, (b, ds)

né,’ _« S, 3, n~'N,(b,s)’
B, n(b,5)
(4.19) 1 = (y=8\ (n'EN,(b,s) - 5,| EL,(b,ds)
N ns, f_ww( s, )p( 5, )n‘lENm(b,s)’
(4.20) Wx (b,y) = [(a/ay)wm’"(b’y)af:':{;’;fsw’"_IN’"‘b’”Z‘s]"/ﬁ’,
(421) ¥, (b,y) = { . [ (5 6,0 du}p(z ~5,5%).

Then
(422) ﬁn,l(y) = Wml(n),n(bn,l’ y)’ ‘pn,l(y) = \I,ml(n),n(bnl’ y)

(i) For every D > 6 > 0 and ¢ > 0,
max sup IWm,n(b’y) _hm,n(b’y)l

én<m<Dn 16l <p
—®o<y<ow

= 0((ns,) —16;3n(1/2)”) a.s.,

a

a
max sup @men(b,y) - @hm’n(b,y)’

én<m<Dn 16l <p
—o<y<w

= 0((ns,) —16;411(1/2)”) a.s.

(i) For every b € [—p, pl, ¥, .(b,y) is a twice continuously differentiable
function of y and

m
sup |‘I’m’n(b,y)| < (.’;_)5'1—13/4”“):”00’

16l <p
—©0<y<ow
d m
sup |, (b,y)| < (—)a,;ﬂ/ﬂlw'nwnw'nl
16l <p Y n
—o<y <o

+ 4812 p|l., sbupl\lfm,n(b,y) [,
Y

m
dy < 8(;)8;13/4”w'”w{“p'”w + 8732w},

d
@‘I’m’n(b,y)

sup /w

[bl<p” —

where |igl, = [*.lg(#)| dt and ||g]l.. = sup,lg(2)].
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Proor. First note that by (4.18),

P
I m,n(055)
(4.23) 1 e (y—s) (n"'N,(b,s) =8, Ln(b,ds)
=n_5,21f_ww( 5, ) ( 5, )n‘le(b,S)'

Moreover, 0 < p(y) < 1 and by (2.17),
p((x—198,)/8,)=0 ifx<4, and
p((x—6,)/8,)=1 if x >2§,.
The proof of (i) is similar to that of Theorems 2 and 3 of Lai and Ying (1988).
Since [~ ., L,(b,ds) < m, it follows from (4.23) and (4.24) that

m
< (—)afnw'um.
n

(4.24)

J
sup |—W,, .(b,y)
|b|$p ’ay m,n
—co<y <™

Therefore by (4.20), SUP 4 <, —o<y <ol Uk (0, Y| < (m /)5, 13/4|w'|l.. Noting

that p(2 — 6,y = 0 if |yl > (2/5,)'/2 by (2.17) and making use of (3.9), we
obtain (ii). O

Proor oF THEOREM 2. We shall use the stochastic integral representa-
tion (4.11) of S() = T, mn),~(0). As shown in the proof of Theorem
1, m(n)/n - K as. and the same argument can be used to show that
m(n)/n —» K/2 as. It will be shown in Lemma 6 that (3.7) and (3.6) are
satisfied with d, = 38L/%(— 0). Defining ¢} ,, ,(b) as in (4.15) and making
use of (3.6), (3.7), (3.14) and (2.24), it can be shown by arguments similar to

those in the Appendix of Lai and Ying (1989) that as n — o,
d)ﬂr;z(n),ml(n),n(b) - >';n(n),ml(n),n(ﬂ)

H(s) (F(s)  f(s)
= m(m)(6=B) [ G55 { f(s) 1 —F(s)}

x {Gz(s) -

(4.25)
Gi(s)
Go(s)
+0(n1/2 Vv nlb - Bl),

}f(s) ds + o(n'/2 v nlb — Bl),

uniformly in b€[B —n~% B +n"¢] for every € > 0. Since h'/h =f"/f +
f/(1 — F), (3.15) follows from (4.25) and Lemmas 4 and 5. Note in this
connection that (3.14) implies that

T+7M h' 2
f (——) dF < » for some n > 0 and
(4.26) mo-n\ R

f(s) = O((1 = F(s))" ) as s 17,

as shown in Lemma 2 of Lai and Ying (1989).
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To prove the asymptotic normality of S*(B),let T, = ¢, — Bx;, C; = ¢; — Bx;,
and define M,(s) by (2.38) and #(s) as in Lemma 2. Then by Lemma 2
{M(s), #(s), — ©» < s < »} is a martingale. Analogous to (2.40), we now have
S*(B) =S¥ (B;®) + S ,(B; o), where

mq(n)

SriBi) = ¥ S 0 o(8)Pa(n N (B 5))

ml(n)(Bas)
B TV dM(s),
% {xl le(n)(B’ S) } l(S)

m(n)

Sxa(Bst) = L [ 0 i(5)Pa(n Ny, mum (B> 9))

i=mn)+1" —%

X x. — Xm(n),ml(n)(B’s)
! Nm(n), ml(n)(B’ S)

As noted in the proof of Theorem 1(iii), the random variables m(n) and m (n)
are N5 _, Z(s)-measurable. Define

}dMi(s).

my(n) . h
Sn,l(B;t) Z f h(( ))pn _lN 1(n)(B S))

ml(n)(B78)
TR T M (s),
x{xl le(,.)(B,S)} i(s)
m(n) h'(s)
Sn,2(B;t) = Z ' pn(n_le(n),ml(n)(B’s))

i=myn)+1 - h(s)
{ Xm(n),ml(n)(B’ S)
X{x; —

Nm(n), ml(n)( B? S)

Since h'/h is nonrandom, the same argument as that in the proof of Theorem
1(iii) shows that {S, ,(B;t), #(¢), — » <t < »} is a martingale for j = 1,2,
and that n=1/ 2{Sn 1(B, ®) + S, 5(B; )} has a limiting normal distribution with
mean 0 and variance K *A.

Let #* denote the o-field generated by {(e;, ¢, c;, x,): i > m{(n) + 1} and
let # *(s) be the o-field generated by F(s) U #*. Then ¥, o(u) is measurable
with respect to #* for every u and {n~ 1/2(S”‘1(B, 1) — S, «B; 1),
F*(t), — o < t < «} is a martingale with predictable variation process

(n=VYSX(B;+) — Sua(B; ) (2)

}dMi(s).

m,(n)

h'(s))\?
<(2B)2n—1 Z f { U, 2(s) ~—}—l£3—))—}

XIi _px;s s5t,-paplie, = 5 GA(S),
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by Lemma 2, recalling that |x;|] < B and that 0 < p,, < 1. From (3.6), (3.7) and
(4.26), it then follows that

sup(n”"2(S%1(B3 ) = S,.1(8; D)) (1) ~p 0.
Hence by Lenglart’s inequality [cf. Gill (1980), pages 18-19],

n_l/z{srf,l(ﬂ;‘”) - Sn,1(3§°°)} —=p 0
By a similar argument, n~ /(S ,(B; ) — S, o(B;®)} =p 0. O

LEMMA 6. With the same notation and assumptions as in Theorem 2, h
satisfies (3.12) and , ; satisfies (3.7) and (3.6) with d,, = 38,/* forj =1, 2

Proor. We only consider the first subsample j = 1, as the case j = 2 can
be proved similarly. We shall make use of Lemma 5(i), which approximates
W, .(b,y) by the nonrandom function %, ,(b,y) defined in (4.19). We first
show that for every D > 6 > 0 and ¢ > 0,

max sup sup (1B, (b, ) — R ()|}
(4.27) dn<m=Dn,_g|<n=¢ n=1EN (b, y)=(1,/2)sL/5
= 0(82%),
max  sup sup {1(3/09) P, (B, 5) — B'(3)]}
(4.28) PSP b-plsnTC nTUEN, (b, 920/ 25
= 0(87/19).

Let F = 1 — F. By the assumption on f” and (2.12), sup(f(s) + If'(s)| +
|f"(s)]) < ». Hence by (2.11), (2.13), (2.34) and (3.10), we have for large n,

b —Bl <n=°, 6n <m <Dn and n"'EN,(b,y) = 8,/°/2
= n"'EN,(b,y + 6,t) An"EN,(B,y + 8,t) = 8/°/3
and F(y +6,t)=6/5/(8D) forall |t|<a

= (8/3Y) ki o(Bry) = 87 [ w/(£)h(y - 8,t) dt
(4.29) e
-/ w(R(y - 5.t) dt

= h'(y) + 0( sup |h"(y — 6 x)|f 8, ltlw(¢) dt)
x| <a

= 1'(y) + 0((8;%/5)*%5,),

in view of (3.9), since ' =f'/F + h? and k" =f"/F + hf'/F + 2hh’, and
since f(s)/F/%(s) = O(1) as s 1 7 in the case F(r) = 0 by (4.26). Moreover,
using (2.13), (2.15), (2.34), (3.9), (4.24) and (4.29), it can be shown that for
every ¢ > 0,

max sup sup {Ihm,n(b’y) _hm,n(B’y)I
(430) én<m<Dn Ib—Bl<n™° n=1EN,(b,y)=(1/2)s/5

+1(3/8) Py o(B,¥) = (3/3%) ke (B, 2)]) = O(n°8;%/5).
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Combining (4.29) and (4.30) gives (4.28), and a similar argument can be used
to prove (4.27).

By a straightforward modification of Theorem 1 of Lai and Ying (1988), it
can be shown that for every ¢ > 0,

(4.31) sup |N.(b,5) = EN,(b,y)| = O(m'/2*¢) as.

[bl<p, —o<y<w

From (3.10) and (4.31) together with Lemma 5(i) and (4.27), it follows that
with probability 1, for all large n,

dn<m<Dn,|b-Bl<n"® n"IN,(b,y) > 8% and W, .(b,y) =84
(4.32)

= n"'EN,(b,y) > 8Y/5/2, h(y) > 8/4/2 and F(y) = 81/5/(3D).

Since h' = (f' + f2/F)/F = O(1/F) by (4.26) and since b,1—B=0,(n"%
by (3.8), (8.12) follows from Lemma 5(1), (4.22), (4.27),A(4.28) and (4.32), noting
that A%, ,/h, - h'/h = (k) | — h)/h,  +h(h—h, )/(kh, ) and that
my(n)/n - K/2 a.s. Since lim, _,_, nTIN,, (b, 1, 8) = 2KF(s)Go(s)(> 0) a.s.
for s € [sy, s,] with 7, < s, <s, <1, it follows from (3.12) and (3.13) that
SUP, (s, 5,1 h(s)zzs}l/4|l/7n’1(8) — h'(s)/h(s)| —=p 0. Using this and (3.9) and not-
ing that ¢, ((s) = [* w(s), (s — 8,)dt for |s| < 8, /2, we obtain (3.6) with
d, = 36,/* Moreover, by (3.12) and (3.13),

- [h'(s)]
(4.33) P{'l//n,l(s)l < 2W1(h(s)za}/“/z, Fe=s5 /ey forall sp — 1.

Note that |y, (s)| < f‘iaW(t)I([;n’ (s =8, 0ldt < SUP|:|5a|‘Zn,1(3 —6,t) and
that for all large n,

h(s —8,u)>6/*/2and F(s — 8,u)>81/5/(2K) for some u € [—a,a]

= inf 2h(s — 8,¢) > h(s) > 61/*/3

[t <a

and sup |h"(s — 8,t)| = 0(8,%1°)  [cf. (4.29)]

|t <a

|2'(s = 8,t)] - 2{|n'(s)] + O(57/)) _ 2[K(s)]
nt) h(s) h(s)

Hence it follows from (4.33) that

+ 0(59™).

h'(s
(4.34) P{l([rn’l(s)| < 4%1”(3»0) + 8/2 for all s} - 1.
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Since sup;lx;,/ <B and 1 — A > %, we obtain from (4.31) that with proba-
bility 1,

m
sup  N,(b,s) < Y [P{t; — Bx; <7y — ¢+ Bm /%
b—Bl<m=4/2 i=1

s&lrg—e,7+€]

+P{c; — Bx; > 7+ ¢ — Bm~ /%] + o(m!™?)
=o(m!'™*),

by (2.30). Since #, 1(s) = N, (»,(b, 1, 8), it then follows from (3.13) that for all
e > 0.

P{ sup |‘Z’n’1(s)|*°}ﬁp{ sup n‘l#n,l(S)zsi/5}—>o.

s&lrg—e,7+¢] s€&lrg—e,7+¢€]
Since |y, (s)| < sup,tlsalzﬂn,l(s — §,t)|, we then obtain that
sup ¢, 1(s)l =p O

s&lrg—e,7+e]

for every £ > 0. Combining this with (4.26) and (4.34), (3.7) follows. O
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