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SLICING REGRESSION: A LINK-FREE
REGRESSION METHOD

By Nairua Duan! anp Ker-CHAU Li2

RAND Corporation and University of California at Los Angeles

Consider a general regression model of the form y = g(a + x'8, &),
with an arbitrary and unknown link function g. We study a link-free
method, the slicing regression, for estimating the direction of B. The
method is easy to implement and does not require iterative computation.
First, we estimate the inverse regression function E(x|y) using a step
function. We then estimate I' = Cov[ E(x|y)], using the estimated inverse
regression function. Finally, we take the spectral decomposition of the
estimate [' with respect to the sample covariance matrix for x. The
principal eigenvector is the slicing regression estimate for the direction of
B. We establish n -consistency and asymptotic normality, derive the
asymptotic covariance matrix and provide Wald’s test and a confidence
region procedure. Efficiency is discussed for an important special case.

Most of our results require x to have an elliptically symmetric distribu-
tion. When the elliptical symmetry is violated, a bias bound is provided; the
asymptotic bias is small when the elliptical symmetry is nearly satisfied.
The bound suggests a projection index which can be used to measure the
deviation from elliptical symmetry.

The theory is illustrated with a simulation study.

1. Introduction. Regression analysis is usually based on a working model.
For example, we might assume the standard linear model

y=a+XB +e, elx ~ N(0,0?),

where y denotes a scalar outcome variable, x denotes a d-dimensional column
vector of regressor variables and B8 denotes a d-dimensional column vector of
slope coefficients. Under this model, we might use the least squares regression
to estimate the parameter vector (a, 8).

In most empirical applications of regression analysis, the working model is
at best an approximation. We probably do not believe in the working model,
therefore we should be concerned about robustness against violations of the
issumptions in the model. For example, we might consider distribution viola-
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506 N.DUAN ANDK.-C. LI

tion: the error distribution might not be normal. There is a rich literature on
distribution violation for the linear model and robust methods which protect
against distribution violation; see, e.g., Huber (1981).

On the other hand, the functional form of the model might also be violated.
For example, in applying the least squares regression, one might be concerned
whether E(y|x) is indeed linear in x'B. Instead, the true model might have the
following form:

(1.1) y=8(a+xB,g), ¢elx~F(e),

where the bivariate function g is the link function, F is the error distribution;
both g and F are assumed to be arbitrary and unknown. We call a model of
form (1.1) a general regression model.

When the link function is arbitrary and unknown, we cannot estimate the
entire parameter vector (a, 8'). The most that can be identified for (a, B') is the
direction of the slope vector B, that is, the collection of the ratios {8,/8,,
J,k =1,...,d}. In other words, we can only determine the line generated by 3,
but not the length or the orientation of B. Whether we can actually identify
the direction of B is examined in Appendix A.

Why should we be concerned about estimating the direction of 8? In some
situations, the direction of 8 might be the estimand of interest; an interesting
example from radiobiology is given in Vegesna, Withers and Taylor (1988).
When the prediction of y from x is of interest, we can first estimate the
direction of B, then use nonparametric regression of y on X' to estimate the
link function g. For inference purposes, being able to identify the direction of
B means we can distinguish between H,: B, = 0 and Hy: B; # 0, i.e., we can
determine whether a specific regressor variable, say, x;, has an effect on the
outcome; see the inference results in Section 4.3.

Given sufficient prior information, we might specify a link function and an
error distribution and proceed with the parametric regression method based
on the working model. For example, we might specify the standard linear
model and proceed with the least squares regression. If the true model does
not have the specified link function, we have link violation. Brillinger (1977,
1983), Goldberger (1981), Greene (1981, 1983), White (1981), Chung and
Goldberger (1984), Ruud (1983, 1986), Duan and Li (1985, 1987, 1991) and Li
and Duan (1989) studied the behavior of various parametric regression meth-
ods under link violation.

There are many situations in which we do not have precise knowledge about
the link function. It is therefore desirable to use estimation methods which do
not require the specification of a link function. We will call such estimation
methods link-free regression methods. Even when we do have some prior
information on the link function, it might still be desirable to use link-free
methods because the prior information might be highly imprecise. -

We study a link-free regression method, the slicing regression, for estimat-
ing the direction of B. The slicing regression is very easy to implement and
does not require iterative computation. The method is based on a crucial
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relationship between the inverse regression E(x|y) and the forward regression
slope B; see Theorem 2.1. The empirical algorithm is given in Section 3. First,
we estimate the inverse regression curve E(x|y) using a step function: we
partition the range of y into slices and estimate E(x|y) in each slice of y by
the sample average of the corresponding x’s. We then estimate the covariance
matrix I' = Cov[ E(x|y)], using the estimated inverse regression curve. Finally,
we take the spectral decomposition of the estimate I’ with respect to the
sample covariance matrix for x. The principal eigenvector is the slicing regres-
sion estimate for the direction of B.

We establish the basic asymptotic theory for the slicing regression in
Section 4: consistency, asymptotic normality, the asymptotic covariance ma-
trix, Wald’s test and a confidence region procedure. We also discuss efficiency
for an important special case: there exists an unknown transformation of y to
the standard linear model and x is normally distributed. The slicing regression
usually has good efficiency and is insensitive to how the range of y is
partitioned into slices.

Most of the results in this paper require the following design condition:

The regressor variable x is sampled randomly from a

(DC.1) nondegenerate elliptically symmetric distribution.

We will refer to the distribution of x as the design distribution. We study the
behavior of the slicing regression when the design distribution deviates from
elliptical symmetry and establish a bias bound (Theorem 6.1); the asymptotic
bias is small when the design distribution is nearly elliptically symmetric. The
bias bound can be estimated empirically and suggests a projection index which
can be used to measure the deviation from elliptical symmetry.

We can obtain different versions of the slicing regression by using different
weights for the slices when estimating I'. We derive the optimal weights in
Section 5. If the distribution of x is normal, the optimal weights are propor-
tional to the number of observations in each slice. If the distribution of x is
elliptically symmetric but not normal, the optimal weights in essence impose a
heterogeneity correction.

We give results from a simulation study in Section 7 to demonstrate the
behavior of the slicing regression for moderate sample sizes.

ReEMARK 1.1. The slicing regression reduces to the usual discriminant
analysis if we partition the range of y into two slices. We usually assume
normality for x (conditioned on y) for discriminant analysis [Fisher (1936),
Haggstrom (1983)]. This condition is analogous to (DC.1); both conditions
follow from the weaker condition (DC.1") in Remark 2.2.

2. Inverse regression. An obvious way to estimate the direction of B
without specifying a link function is to use a suitable nonparametric regression
method to estimate the forward regression function

n(x) = E(y[x).



508 N. DUAN AND K.-C. LI

Since 1 depends on x only through x'8 when y follows a general regression
model of form (1.1), it is possible to determine B from 7, e.g., using the
gradient of n, which is proportional to 8. This approach might be unsatisfac-
tory due to the curse of dimensionality: For realistic sample sizes, it is difficult
to implement standard nonparametric regression methods such as kernel
methods, nearest neighbor methods, or smoothing splines, when the dimen-
sionality d is larger than two, because the design points are very sparse; see,
e.g., Huber (1985).

In order to avoid the curse of dimensionality, we consider the inverse
regression function

(2.1) £(y) = E(x|y).

The inverse regression function is easy to estimate because y is a scalar; each
component of the function can be estimated as a one-on-one nonparametric
regression, thus we are free from the curse of dimensionality.

The inverse regression function might be of interest in its own right for
studying the relationship between y and x. For example, inverse regression
received a fair amount of attention in calibration problems; see, e.g., Krutchkoff
(1967, 1969) and Hunter and Lamboy (1981). Conway and Roberts (1983) used
a variant of the inverse regression, the reverse regression, to study job
discrimination.

When we are mainly interested in the forward regression, it might still be
useful to consider the inverse regression if the inverse regression provides
useful information about the forward regression. This is established in the
following theorem.

THEOREM 2.1. Assume the general regression model (1.1) and the design
condition (DC.1). The inverse regression function (2.1) falls along a line:

(2.2) §(y) = n + 2Br(y),
where p = E(x), 3 = cov(x) and «(y) is a scalar function of y:
_ E[(x—p)Bly
(2‘3) K(y) - BIEB *
Proor. Design condition (DC.1) implies
oL EBB(x—p)
(2.4) Exx'B)=pn + _—B—'_E—ﬂ——

The theorem follows from the fact that £(y) = E[Ex|x'8)|y]. O

According to the theorem,

(2.5) B o E(y) — m),

with the proportionality constant being 1/«(y). For any y with x(y) # 0, we
can determine the direction of B using the right-hand side of (2.5). The
following corollary allows us to combine the information from all y’s.
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COROLLARY 2.2. Assume the same conditions in Theorem 2.1. Let T =
cov(&(y)). The slope vector B solves the following maximization problem:
2.6 L(b h L(b bTb

. m , = ——.
(2.6) max L(b), where L(b) = L

The solution is unique (up to a multiplicative scalar) if and only if x(y) # 0.

Prcor. According to (2.2),
I = Var(x(y)) SB'S

has rank one. The result follows from Cauchy’s inequality. O

According to the corollary, B is the principal eigenvector for I" with respect
to the inner product
(2.7 (b,v) =b'2v.
The maximum L() is the principal eigenvalue. Since the rank of I is one, the
spectral decomposition for I' is trivial: all eigenvalues except the first are zero.
The corollary simply restates the fact that £(y) falls along the line (2.2). On
the other hand, the method suggested in Corollary 2.2 is more useful than that
in Theorem 2.1 when the design distribution deviates from elliptical symme-
try. Although the inverse regression might no longer fall along a line, it is still
possible that B would (nearly) solve the maximization problem (2.6); see
Remark 2.1.

The maximand L(b) is the R? for the nonparametric regression of x'b
on y:

Var[ E(xb|y)]
Var(x'b)

It measures how well we can predict x'b from y. The corollary indicates that
among all linear combinations x'b, y predicts x'8 the best.

L(b) =

ReEMARK 2.1. If the stochastic term ¢ is degenerate and the link function is
invertible, Corollary 2.2 would hold for any design distribution, elliptically
symmetric or not. To see this, note that conditioning on y is equivalent to
conditioning on x'B, therefore I' = Cov[ E(x|x'8)]. The maximand L(b) is the
R? for the regression of x'b on x'8, which is maximized for b a 8. Further
discussions on Corollary 2.2 are given in Section 6.

REMARK 2.2. Design condition (DC.1) can be replaced by the following
weaker condition in Theorem 2.1 and Corollary 2.2:

The regressor x is sampled randomly from a nondegenerate
(DC.1") probability distribution; the conditional expectation
E(x'b|x'B) is linear in x'B for all b € R¢.

3. Slicing regression. We now apply the results in Section 2 to the
sampling case. Given a random sample {(y,,x}), i = 1,...,n} from a general
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regression model (1.1), we want to estimate the direction of the slope vector .
In order to apply Theorem 2.1 or Corollary 2.2, we need to estimate the
inverse regression function £(y). For simplicity, we use a step function esti-
mate (cf. Remark 3.1). We partition the range of y into, say, H slices,
{sy,...,sy). For each slice of y, we estimate £(y) = E(x|y) by the sample
average of the corresponding x’s. More specifically, our estimated inverse
regression function is

Li1X1,

(3.1) Ey) -4, - ==

ify €s,,
~1lin

where 1, is the indicator for the event y, € s,.

The estimated inverse regression function converges to the true inverse
regression function if we choose a suitable sequence of partitions whose
meshes decrease to zero as n — «. However, since ¢(y) falls along a line, a
crude estimate for £(y) is adequate for estimating its direction. We assume for
simplicity that the partition is fixed a priori and does not depend on n.

Under the same assumptions in Theorem 2.1, we have

(3.2) &= E(é\h) =p + 2Bk,
where

E[(x - p)Bly € 5;]

B'%p ’
thus the expectation of the estimated inverse regression function also falls
along the line (2.2).

If the scalar k; for the jth slAice is nonzero, we can estimate the direction of
B using the direction of B¢’ = 371(£; — X), where X is the sample average and
3 is the sample covariance matrix for the observed x’s. By the central limit
theorem, Y converges to k& ;B at rate Vn , therefore the direction of BV is
Vn -consistent for the d1rect10n of B if k; is nonzero.

Usually there is more than one slice for which %, is nonzero. We should
combine the information from all the slices to estimate the direction of 8. We
will use a modification of the maximization problem (2.6) to do this. First we
introduce some notations:

h=P(yEsh)’ p=(p1:'-"pH),’ k=(k17""kH),’
§=[§17"-’§H] _[fly "’éH]'

(3.3) ky=E[k(y)]y € s4] =

(3.4)

We estimate I' by
(3.5) [ =éwé,
where W is an arbitrary symmetric nonnegative definite H by H matrix,
chosen a priori, which satisfies
(3.6) W1=0.
We can_interpret ' as a weighted covariance matrix for the data vector
{§1, L€ H} using W as the weight matrix. Condition (3.6) is required for I to
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be location invariant. By the strong law of large numbers, [ converges almost
surely to

W = KWk3BB'S,

which is proportional to T.
For a given weight matrix W, we consider a maximization problem similar
to (2.6):

(8.7 L(b here L(b bTh
. max where = —%.

) max £(b), (b) = oo
We will refer to any solution to (3.7), [§ , as a slicing regression estimate for the
direction of B. This is usually defined uniquely up to a multiplicative scalar.
The slicing regression estimate f is the principal eigenvector for [* with
respect to the inner product

(2.7) [b,v] = biv.
The maximum
(3.8) A =L(B)

is the principal eigenvalue.
The estimate B’ discussed earlier is a special case of the slicing regression
estimate, when the welght matrix is taken to be W = uu’, where u; =1 -
u, = —p, for h #j and p, is the sample proportion of y,’s in the hth shce
There are many other choices for the weight matrix W. For example, we can
take

(3.9) W=W® = D(r) — rr; rl1=1; r, >0, h=1,..., H;

where D(r) denotes the diagonal matrix with elements from the H-dimen-
sional column vector r. With this weight matrix, I' is the covariance matrix for
the data vectors {él, ..., &g}, with the Ath slice weighted by r,. Note that r is
a probability measure on the index set {1,..., H}.

An especially important weight matrix of form (3.9) is W™, for which each
slice is weighted by the probability for y to fall inside the slice. We will refer to
this weight matrix as the proportional to size (pps) weight matrix. We will
show in Section 5 that the pps weight matrix is optimal when the design
distribution is normal.

REMARK 3.1. The step function estimate (3.1) might not be very efficient
for estimating £(y) and can be improved upon, e.g., using kernel estimates. We
might also choose the amount of smoothing adaptively, say, choose H adap-
tively. In order to present the idea of slicing regression with a minimum of
obfuscation, we have focused on the step function estimate with a fixed
partition. The consideration of other smoothing methods and the adaptive
choice of the smoothing parameter remains to be examined. However, the
efficiency result in Section 4.5 indicates that the slicing regression estimate
based on a fixed partition step function is nearly fully efficient for an impor-
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tant special case, therefore the method might be insensitive to the smoothing
method or the smoothing parameter.

. ReEMARK 3.2. If the covariance matrix % is known, we can use 2 instead of
3 in our maximization problem:

3.7 max L(b), where L(b) = ——.
(3.7) max L(b) ®) = 555
When the distinction is necessary, we will refer to the slicing regression based
on (3.7) as the ignorant slicing regression and refer to the slicing regression
based on (3.7) as the nonignorant slicing regression. The nonignorant slicing
regression estimate B is the principal eigenvector for I' with respect to the
inner product (2.7). The maximum

(38) L= L)
is the principal eigenvalue.

It might appear that the nonignorant estimate would perform better than
the ignorant estimate. Contrary to this intuition, the ignorant estimate usually
performs better; see Section 4.4.

4. Asymptotic theory. We now establish the basic asymptotic behavior
for the slicing regression: consistency, asymptotic normality and the asymp-
totic covariance matrix. The results are then applied to two standard inference
problems: testing a null hypothesis and constructing a confidence region. We
also discuss efficiency for an important special case. Throughout this section
we assume the weight matrix W is given a priori and satisfies (3.6).

4.1. Consistency. It was noted in Section 3 that we can estimate the
direction of B consistently using B if & ; is nonzero. We now consider the
consistency property for the slicing regression estimate in general. An estimate
B is consistent for the direction of B if the angle between S and B converges to
zero, i.e.,

(BAvEB)Q o
(B'2B)(B'=B)

where the cosine function is taken with respect to the inner product (2.7).

(4.1) cos?(B, B) = (a.s.),

THEOREM 4.1. Assume the general regression model (1.1), the design
condition (DC.1) and the following conditions:

The weight matrix W is symmetric and nonnegative definite
and satisfies (3.6).

(DC.3) KWk > 0.

(DC.2)

The slicing regression estimate f3, which solves the maximization problem
(8.7 or (3.7, is consistent for the direction of 8. Furthermore, the estimated
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principal eigenvalue A, in (3.8) or (3.8) is a consistent estimate for the
population principal eigenvalue

(4.2) A = KWk

The proof is sketched in Appendix C.
It might be difficult to verify (DC.3) because very little is known a priori
about k. If rank(W) = H — 1, then (DC.3) is satisfied if

(DC.3) k #0,

which is much easier to verify.

A sufficient condition for (DC.3’) is that «(y) be monotonic. This condition
might be verifiable a priori in many empirical applications. A scientist might
not have enough prior information to specify a link function; he might,
however, have enough prior information on the ranking of the effects, so he
can affirm the monotonicity of «. Further discussions on the monotonicity
condition are given in Appendix A.

4.2. Asymptotic distribution. We now discuss the asymptotic distribution
for the slicing regression. We assume for convenience that g8 has been normal-
ized to have length one:

(4.3) B'Sp = 1.

In order to study the asymptotic covariance matrix, we also normalize the
slicing regression estimate:

(4.4) gsp=1, pSp>o0,
for the ignorant slicing regression and
(4.4) Bsp=1, BIB>0,

for the nonignorant slicing regression. Since we do not know B, we cannot
determine empirically whether the second part of (4.4) or (4.4') is satisfied or
not: we cannot choose between B and —p. Nevertheless, the distinction
between the two solutions is irrelevant for inference about the direction of B;
see Section 4.3.

Design condition (DC.1) implies that the conditional covariance matrix for x
given x'B has the form

(4.5) Cov(x|x'B) = a(x'B)(Z — 2BB'),
where a is a scalar function and E[a(x'8)] = 1. If the design distribution is
normal, a is identically one.

We introduce some more notations:

u=Wk=(uy,...,ug),
(4.6) a,=E[a(xB)ly€s,], a=(ay,...,ay),

Cp = E[a(x,ﬁ)(x - /-"),Bly € sh]’ c= (c17 . ‘7cH),'
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The asymptotic distribution for the nonignorant slicing regression is given in
Theorem 4.2; the result for the ignorant slicing regression is given in Theorem
4.2'. The proofs are sketched in Appendix C.

THEOREM 4.2. Assume the general regression model (1.1), the design
condition (DC.1), the normalization (4.3) and conditions (DC.2) and (DC.3).
The nonignorant slicing regression estimate, which solves the maximization
problem (3.7) and is normalized by (4.4'), has the following normal approxi-
mation:

Vn (B - B) -, N(0, AS™" - pB),
where the scalar A is given by
_Tiieud/p

(4.7) (uk)?

THEOREM 4.2'. Assume the same conditions in Theorem 4.2. The ignorant
slicing regression estimate, which solves the maximization problem (3.7) and
is normalized by (4.4), has the following normal approximation:

Vn (B - B) —_ N(0,V),
V=S8(2"'-8p)+TBB,

where S and T are nonnegative scalars,

(4.9) S=A+B-2C,

A is the same as in (4.7), B = E[la(x'8)(x — uw)B)?], C = u'c/uk and

= $var[((x - wp).

For inference purposes, we need to estimate the asymptotic covariance
matrix. For some situations to be discussed later, we can use the estimated
principal eigenvalue A, in (3.8) or (3.8) to estimate the scalar A in (4.7) or S
in (4.9). [The second term on the right-hand side of (4.8) does not affect the
inference about the direction of B, therefore it is not necessary to estimate T'.]
Otherwise, we might need to estimate p, a, k, B and ¢, in order to estimate A
or S. We can use the following method of moment estimates:

(4.8)

1 n A A ,A
ﬁh=;Z Ly, ky=(é - X)B,
i=1 ,
1 n 1. =) -1 _ Apr R
(410) dh _ Z th(xt X) (S’ BB )(xz X) ,

i=1 npy,

1 = A A A\2
(1) B=g—7 ¥ (x - %27 - AB)(x: — D)((x; - )B)

R 12 L —-%)(37 - BB x, - ®)(x, - X)B
(412) & =75 L A=~ B nﬁh)( ( .

The derivations of (4.10)-(4.12) are sketched in Appendix C.
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REMARK 4.1. Design condition (DC.1) can be replaced in Theorems 4.2 and
4.2' by the weaker conditions (DC.1') and (4.5). Note that (4.5) is equivalent to

Var(x'b|x'B)

(4.5) E[Var(x'b|x'8)]

does not depend on b.

The numerator in (4.5) is the residual variance when we regress x'b on x'B.
This regression is usually heteroscedastic; condition (4.5) indicates that the
pattern of heteroscedasticity does not depend on b.

REMARK 4.2. The results in Theorems 4.2 and 4.2' would still hold if we
replace W by a consistent estimate W; see the proof for the theorems in
Appendix C.

REMARK 4.3. If we normalize the ignorant slicing regression estimate by
(4.4') instead of (4.4), the asymptotic covariance matrix is given by the first
term on the right-hand side of (4.8). For empirical applications, we usually
have to normalize by (4.4) instead of (4.4') because 3 is unknown. For
inference about the direction of B8, the two asymptotic covariance matrices are
equivalent.

4.3. Inference. We now apply the results in Section 4.2 to two basic
inference problems: testing hypotheses and constructing confidence regions for
B. Since we can only identify the direction of B, we can only test scale-
invariant hypotheses of the form

(4.13) H,:L'B=0,
where L is a given d X g matrix of full rank ¢ < d. Under the null hypothesis

(4.13), the terms proportional to BB’ in the asymptotic covariance matrix are
annihilated by L, therefore Wald’s test is given by

nBL(L'S L) 'L'B
(4.14) ( 3 ) - x2

for the ignorant slicing regression and

nB'L(L'S"'L) 'L'g
(4.14) X

for the nonignorant slicing regression. Wald’s test does not depend on the sign
of B: we can choose either 8 or — B, disregarding the second part of (4.4) or
(4.4).

Wald’s test can be inverted to obtain confidence regions. They have to be
cone-shaped: If B is in the confidence region, any scalar multiple of 8 has to be
in the region also. For example, we can test hypotheses of the form

Hy: B a B,

and take the confidence region to be those B,’s for which the previous null
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hypothesis is accepted. This leads to the confidence region

o SXEi1-a

(4.15) {/3: sin?(B, B) < —‘Ll—l—}

n

which has asymptotic confidence level 1 — «; the sine function is taken with

respect to the inner product (2.7') and B is the ignorant slicing regression

estimate. We can also construct confidence regions for subvectors or linear
combinations of B.

4.4. Normal design distribution. The asymptotic theory for the slicing
regression is greatly simplified if the design distribution is normal. Under
normality, we have

a(x,B)El, ahfl, B=1, chEkh'
It follows that the scalars in Theorems 4.2 and 4.2’ are given by

_ o1 ub/p S = T ub/p
(uk)® (uk)*

The scalar S for the ignorant slicing regression is smaller than the scalar A
for the nonignorant slicing regression. In other words, even when we know the
true 3, we are better off ignoring this information and using 3 in the
maximization problem (3.7). Note that the maximization problem (3.7) is
different from the usual two matrices spectral decomposition: ' and ¥ are
dependent.

The benefit of ignorance depends on the design distribution and is not
universally true. We give a somewhat artificial example in Appendix B for
which the knowledge about 3 does help. We can expect, though, that the
benefit of ignorance will hold for design distributions reasonably close to being
normal.

If we use the pps weight matrix,

(4.16) W® = D(p) — pp',

the scalars in Theorems 4.2 and 4.2’ are given by

(4.17) A==l s-log
uk A M

which can be estimated consistently by substituting XI for A;. In other words,
when we use the pps weight matrix and the design distribution is normal, we
do not need to estimate a, k and ¢. We will establish in Section 5 that the pps
weight matrix (4.16) is optimal for the normal design distribution.’

4.5. Efficiency. We consider the efficiency of the slicing regression esti-
mate for an important special case. We assume there exists an unknown
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transformation to the standard linear model:
(4.18) tH(y) =a+xB +e¢, e ~N(0,0%).

We also assume that the design distribution is normal. We use the ignorant
slicing regression based on the pps weight matrix. As our benchmark for
comparison, we use the least squares regression of #(y) on x, which gives an
efficient estimate for («, B'). In order to implement this procedure, we need to
have perfect prior information on the transformation ¢. This information is
not available in most empirical applications. The slicing regression does not
require any knowledge about the transformation ¢.

We now compare the performance for the two methods for estimating the
direction of B. In order to make the comparison, we normalize the least
squares slope to satisfy the first part of (4.4). We also assume (4.3). The
normalized least squares slope is approximately

(4.19) B+ (37— BB)S..— 3BB(S -3)B,

where S, is the sample covariance between ¢’s and x’s. This is asymptotically
normal with mean 8 and asymptotic covariance matrix

1
(4.20) —[o*(37" - Bp) + TR

We want to compare the scalar o2 in (4.20) with the scalar S in (4.17), which
in this special case is given by
1- Q%+ o2
4.21 S=—=_
( ) Q2

where

2
Q2= g pilty — E[t(»)]}
h=1 Var(t(y)) ’
Q? is the proportion of the variance of #(y) explained by the discretized t(y)’s,
(ty, .oy ty).
For estimating the direction of B, the efficiency for the ignorant slicing
regression is

t, = E’[ t(y)|y € sh].

) 0_2Q2 (1 _ R2) Q2
(4.22) efficiency 1-Q% 107 1 QR
where R? is the usual R? for the linear model (4.18).

Unless R? is very close to one, the efficiency in (4.22) is usually fairly high,
even when the number of slices is fairly small. For example, we assume
R? = 0.30, a value typical of social science research. Assume for now that we
use equal size slices: the partition is chosen so that the probability for y to fall
inside each slice is equal. For three slices, we have @2 = 0.79 and efficiency =
0.72. For ten slices, we have @2 = 0.96 and efficiency = 0.94. Ten slices are
probably good enough for most purposes.
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REMARK 4.4. It is possible to improve upon the equal size slices. For three
slices, the optimal partition yields @2 = 0.81 and efficiency = 0.75 when R2 =
0.30.

5. Optimal weight matrix. So far we have left open the choice of the
weight matrix W. We now derive the weight matrix W which minimizes the
scalar S or A in the asymptotic covariance matrix. The pps weight matrix
(4.16) appears to be reasonable and also guarantees that condition (DC.3) can
be replaced by the weaker condition (DC.3'). We will establish that it is indeed
optimal for the normal design distribution. For other elliptically symmetric
design distributions, (4.16) might not be optimal; the optimal weight matrix in
essence imposes a heterogeneity correction which is not necessary for the
normal design distribution. The optimal weight matrix might depend on some
unknown quantities, which can be estimated from the data in empirical

applications.
The scalars A and S depend on W only through
(5.1) u=Wk.

We will refer to u as the scoring rule. Two weight matrices with the same
scoring rule give asymptotically equivalent slicing regression estimates. We
shall find the optimal scoring rule under the constraints

(5.2) ul=0, uk=#0,

then find a corresponding weight matrix W which satisfies (5.1).
Given a scoring rule u, we can always find a representation of the form

Wao [D(r) —rr] +qq; rl1=1;, ql1=0;

5.3
( ) thO, h=1,...,H,

which satisfies (5.1). The corresponding I' can be interpreted as a weighted
covariance matrix with a location correction:

H
(5.4) I'= hZ "h(fh - f)(fh - f)',

-1
where £ is the weighted sample average £ = YH (r, +q,)¢ .

We give the optimal scoring rule u in Theorems 5.1 and 5.1', respectively,
for the nonignorant and ignorant slicing regression estimates. The proofs are
straightforward applications of the Lagrange multipliers method, with the
constraints u'l = 0 and u'k = 1.

We introduce some new notations:

Pr/ap .

5.5 bh=vm —— P=(Pn....,Pu)
(55) T (Bir---» Bn)

Since p is a probability measure on the index set {1, ..., H}, we have moment
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operators such as
H H )
Z DPrky, Ug(k) = Z ﬁh(kh - Ep(k)) .
= h=1

THEOREM 5.1. Under the same assumptions in Theorem 4.2, the optimal
nonignorant slicing regression estimate, which minimizes the scalar A in
(4.7), is based on the scoring rule

ph(kh - Ep(k)) .

ap

(5.6) uy =

The minimized scalar is

1 E;(a) 1
(5.7) A_ﬁ_ o2(K) =

which can be estimated consistently by the reciprocal of A, in (3.8).

THEOREM 5.1'. Under the same assumptions in Theorem 4.2, the optimal
ignorant slicing regression estimate, which minimizes the scalar S in (4.9), is
based on the scoring rule

(5.6) i, = paf(en = p(c));: v(ky p(k))],

where v = [Eg(a) — oy(c, K)]/02(k). The minimized scalar is

o (k) - of(c)
Ey(a)

For normal design distributions, the optimal scoring rules (5.6) and (5.6")
are both given by u, = p,k,, which can be represented by the pps weight
matrix W®, In other words, the pps weight matrix is optimal for the slicing
regression when the design distribution is normal. The minimized scalars A
and S are given by (4.17).

When the design distribution is nonnormal, we need to find suitable repre-
sentations for the optimal weight matrices corresponding to the optimal
scoring rules. The optimal scoring rule (5.6) can be represented by W®), the
weight matrix of form (3.9) with r = p. This optimal weight matrix can be
interpreted as the pps weight matrix with a heterogeneity correction: each slice
is weighted by p,/a, instead of pj, thus slices with less dispersion (smaller
a,) are weighted heavier. [" can be interpreted as a weighted covariance matrix
for the data vectors {£ TRER £,), with each slice weighted by p,.

For the optimal scoring rule (5.6"), there does not appear to be a closed form
representation of form (3.9), therefore we will use a representation of form

(5.7) S=B+
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(5.3). Taking r = p, we have
ph(ch - Ep(c))

ap

(5.8) qp X

The optimal weight matrix can be 1nterpreted as W® with a location correc-
tion. Instead of centering £ ) sby &= T H | p,é, to derive the estimate 1", we
center them by £ = £ + L, ¢, £, as in (5.4). The location correction can be
interpreted as follows. We approximate the parameter ¢, roughly by

= E[a(x'B)(x — n)Bly € 5]
=~ E[a(x’B)|y < Sh]E[(X - u)Blye Sh] =a,ky,
thus the optimal scoring rule is approximated by
Vph[kh - Ep(k)]
a, ’

Ey(a)[1 - o ()]
a5 (k) =

(5.9) Uy

u

Prky +

> 0.

The first term on the right-hand side of (5.9) is the scoring rule for the pps
weight matrix, W®. The second term is the scoring rule for W®), the pps
weight matrix corrected for heterogeneity. Therefore the optimal scoring rule
(5.6) is roughly a convex compromise between the two.

REMARK 5.1. Design condition (DC.1) can be replaced by the weaker condi-
tions (DC.1) and (4.5) in Theorems 5.1 and 5.1".

ReEMARk 5.2. In order to implement the optimal slicing regression when
the design distribution is nonnormal, we might have to estimate nuisance
parameters (a, k, ¢), which depend on B. We can use the pps weight matrix to
obtain an initial estimate for B, then estimate the nuisance parameters from
this initial estimate. We can then estimate the optimal scoring rule and the
optimal weight matrix and reestimate the direction of 8 using the estimated
optimal weights (cf. Remark 4.2).

Prior to carrying out the reestimation, we can estimate the optimal scalar
(5.7) or (5.7') and compare it with the estimated scalar for the original weight
matrix. The ratio between the two scalars can be used to estimate the potential
improvement in efficiency. If the potential improvement is small, the reestima-
tion might not be worthwhile. This is likely to be true if the heterogeneity is
moderate, i.e., a,’s are close to each other. We give an extreme example in
Appendix B to demonstrate that the weight adjustment can result in a
substantial improvement if the heterogeneity is severe.

6. Violation of elliptical symmetry. We have assumed until now that
the design distribution is elliptically symmetric. It is natural to ask whether
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the slicing regression still provides a good estimate for the direction of 8 when
the elliptical symmetry is violated. We now establish a bias bound for the
population case.

Let 3 be a solution to the maximization problem (2.6) and A = L(B) be the
maximum. They are, respectively, the principal eigenvector and eigenvalue for
the spectral decomposition of I" with respect to the inner product (2.7). B8 is
the population version of the slicing regression estimate for the direction of B.
When the design distribution is not elliptically symmetric, 8 might not be
collinear with B. We measure the noncollinearity between B and B by
sin?(B, B), where the sine function is taken with respect to the inner product
@2.7.

We now consider another spectral decomposition. Let A = Cov[ E(x|x'B)].
We take the spectral decomposition of A with respect to the inner product
(2.7). The principal eigenvector is B; the principal eigenvalue is one. Let 7 be
the second eigenvalue. We can interpret r as a measure of the deviation from
elliptical symmetry. Under elliptical symmetry, E(x|x'8) falls along the line
(2.4), therefore 7 = 0. When elliptical symmetry is violated, E(x|x'B) is a curve
which meanders around (2.4) and 7 measures the largest mean squared
deviation from (2.4).

The comparison between A and r gives the following theorem.

THEOREM 6.1. Assume the general regression model (1.1). Assume the
regressor X is sampled randomly from a probability distribution which might
not be elliptically symmetric. Let B be a solution to the maximization problem
(2.6). The noncollinearity between B and B satisfies the following bound:

2 S T/(l - T)
(6.1) sin®(B, B) < A=
The proof is sketched in Appendix C.

If the design distribution is elliptically symmetric, we have 7 = 0, thus the
right-hand side of (6.1) is zero, i.e., the slicing regression is Fisher consistent
(cf. Corollary 2.2). If A = 1, the bound is again zero, thus we have Fisher
consistency even though the design distribution might not be elliptically
symmetric. In order for A = 1, we must have y = g(x'8), where g is invertible
(cf. Remark 2.1).

If the right-and side of (6.1) is close to zero, the slicing regression would be
nearly Fisher consistent for the direction of B. This is true if the design
distribution is nearly elliptically symmetric (7 = 0) or if A is close to one.

For the sampling case, the bias bound (6.1) can be estimated from observed
data. Note that both A and 7 depend on B. If we have a consistent initial
estimate for the direction of B, we can then estimate T using this initial
estimate and carry out the spectral decomposition to estimate 7. If such an
initial estimate is not available, we can replace 7 in (6.1) by

75 = sup 7(B).
BeR?
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In order to estimate 7'P, we need to maximize the estimate #(8) over 8. This
is a projection-pursuit problem, with #(8) as the projection index. Huber
[(1985) and discussions] gave a comprehensive review of the projection pursuit
problem. Cox (1985) suggested a projection index, the maximum curvature in
Cox and Small (1978), which is analogous to ().

7. A simulation study. We have conducted a simulation study to demon-
strate the performance for the slicing regression estimate. We consider two
general regression models:

(71) y:x’B+8’
(7.2) y=0.1(xB +¢)’,

where g =(1,1,1,0,0,0), x ~ N(0, I;) and ¢ ~ N(0, 1). We generate samples
of size n = 100 each for each model, then estimate the direction of 8 by the
ignorant slicing regression estimate $8, normalized by (4.4"); cf. Remark 4.3. In
order to study the sensitivity of B to changes in the number of slices, H, we
take H = 6,10, 20. For each H, the grid points are equally spaced between —3
and 3. In other words, the first slice is y < — 3, the last slice is y > 3 and there
are H — 2 slices in between. We use a thousand replicates to estimate the
expectation and the standard deviation for each component of 3. We also
estimate the total variance for B, i.e., the trace of the covariance matrix for B.

The results of the simulation study are given in Tables 1 and 2. For both
models, E(B) is very close to (0.577,0.577,0.577,0, 0, 0), the true slope vector
B normalized to have length one. The estimate is insensitive to changes in the
number of slices. For each model, the total variance varies by less than twenty
percent when H changes from 6 to 20. This suggests that the choice of H for
the slicing regression problem might not be as crucial as the choice of the
smoothing parameter for the typical nonparametric regression or density
estimation problems.

We also report the performance of the least squares estimate (after normal-
ization) for comparison. For model (7.1), the least squares estimate is the

TaBLE 7.1
Expectation and standard deviation (in parentheses) of f = (ﬁl, Ce [§6)’ for (7.1), n = 100. The
last row is the least squares estimate after normalization

H B1 B2 Bs Ba Bs Be Total variance

6 0.571 0572  0.569  0.000 0.000 —0.004 0.0232
(0.056) (0.055) (0.057) (0.069)  (0.069)  (0.066)

10 0.570 0572  0.570 0.001 —-0.001 —0.004 0.0223
(0.054) (0.054) (0.056) (0.068)  (0.067)  (0.065)

20 0569 0571 0569  0.001 0.001  —0.004 0.0263
(0.059) (0.060) (0.062) (0.072)  (0.071)  (0.072)

Least squares 0.572  0.573  0.571  0.002 —0.001 —0.003 0.0179

(0.048) (0.048) (0.050) (0.060) (0.060) (0.060)
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TABLE 7.2
Expectation and standard deviation (in parentheses) of f§ = (ﬁl, e, ﬁa)' for (1.2), n = 100. The
last row is the least squares estimate after normalization

H B1 B2 Bs B4 Bs Be Total variance

6 0.568 0.570 0.570 0.000 0.003 —-0.004 0.0284
(0.062) (0.062) (0.064) (0.076) (0.075) (0.072)

10 0.570 0.570 0.570 —-0.001 0.002 —0.004 0.0268
(0.060) (0.060) (0.062) (0.073) (0.073) (0.071)

20 0.569 0.569 0.570 —0.001 0.002 -0.004 0.0273
(0.060) (0.062) (0.063) (0.074) (0.074) (0.071)

Least squares  0.561 0.560 0.562 0.003 0.001 —-0.004 0.0554

(0.082) (0.085) (0.086)  (0.107) (0.104)  (0.108)

maximum likelihood estimate, therefore it outperforms the slicing regression
estimate. However, the slicing regression estimate has a reasonably good
relative efficiency, about eighty percent (0.0179,/0.0223) for H = 10. For
model (7.2), the slicing regression estimate is about twice as efficient as the
least squares estimate. It is also interesting to observe that the performance of
the slicing regression estimate is roughly the same under the two models. This
further confirms that the slicing regression estimate is insensitive to the
choice of the slices; for the slicing regression, (7.1) differs from (7.2) only in
transforming the grid points which determine the slices.

It is perhaps unfair to compare the slicing regression estimate with the least
squares estimate for model (7.2). After examining the residuals, we probably
will use a Box—Cox transformation model, which might do a better job than
the least squares regression without a transformation. However, the improve-
ment in efficiency is at most thirty-three percent (1 — 0.0179,/0.0266) for
H = 10, because the transformation model estimate cannot perform better
than the least squares regression based on the correct transformation.

The example chosen here is fairly unfavorable for the slicing regression
because R? is rather high: R? = 0.75 for model (7.1). If R? is lower, e.g., if
R? = 0.30, the relative efficiency for the slicing regression would be higher
than what is shown here; see Section 4.5. Finally, the simplicity of the slicing
regression suggests itself as a good initial estimate if one wishes to pursue
adaptive estimation.

APPENDIX A

Identifiability. We noted in Section 1 that the most we can identify in
the parameter vector (a, B') is the direction of 8. We now discuss whether the
direction itself can be identified. '

A.1. Identification using inverse regression. If the scalar function «(y) in
(2.3) is not identically zero, we can use (2.5) or Corollary 2.2 to identify the
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direction of B. If we know further that x is monotonic, we can use Theorem
4.1 and (DC.3') to verify the consistency of the slicing regression estimate. The
following theorem establishes these properties for two rich classes of general
regression models.

THEOREM A.l. If the conditional distribution of y given X'B is stochasti-
cally monotonic in X'B, i.e., if P(Y < y|x'B) is monotonic in X'B, then k(y) # 0.
If the conditional distribution of y given X' has monotone likelihood ratio,
then k(y) is monotonic in y.

If we impose the stochastic monotonicity condition on the true model, we
can then identify the direction of 8 using the inverse regression function. The
class of general regression models which satisfy this condition is very rich and
includes location families, monotonic transformation families and natural
exponential families. Similarly, if we impose the monotone likelihood ratio
condition, we can use the slicing regression to identify the direction of g.

We now give an example to demonstrate that the monotonicity conditions
are neither necessary nor redundant:

ExampLE A.1. We consider a class.of heterogeneous models of the form
y =eg(x'B), where E(e|x)=0.

The nonparametric forward regression E(y|x) is identically zero and provides
no information about B; y depends on B through heteroscedasticity instead of
through the mean. The inverse regression might or might not be informative
about B. If g is nonnegative and increasing in x'B, then «(y) is increasing in | y|
and therefore cannot be identically zero: larger |y|’s are more likely to come
from larger x'B’s. If g is symmetric about zero and the distributions for x and
¢ are both symmetric about zero, then «(y) is identically zero.

Theorem A.1 follows from the following lemma about Bayesian estimation,
which might be of interest in itself.

LEMMA A2. Let = ({K/(y)} be a one parameter family of sampling
distributions, parametrized by 0. Assume that % has densities {k,(y)}. As-
sume that 0 follows a prior distribution TI(6). Let 6(y) = E(0ly) be the
posterior expectation and 11(8|y) be the posterior distribution.

() If % is stochastically monotonic in 6, then 6 cannot be a constant.

(ii) The following three conditions are equivalent: (a) The sampling distri-
butions in % have monotone likelihood ratio. (b) The posterior distributions
I1(6ly), as a one parameter family parametrzzed by y, have monotone likeli-
hood ratio. (c) The posterior expectation 6(y) is monotonic in y for all TI(8).

Theorem A.1 follows immediately from Lemma A.2: we treat x'8 as the
parameter 6 and treat the conditional distribution of y given x'8 as the
sampling distributions %" The proof of Lemma A.2 is sketched in Appendix C.
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A.2. Identification using forward regression. Li and Duan (1989) estab-
lished results similar to Theorem 2.1 for a rich class of parametric forward
regressions. Let L(6,y) be a criterion function such as the negative of a
log-likelihood function. Let the regression estimate (&, ') be a solution to the
minimization problem

n
min ) L(a + x!b,y;).
(a,b) ;1

The population version of this estimate is the solution (a*, B*) for the
minimization problem

(A1) min E[L(a + x'b,y)],
(a,b)

where the expectation is taken over the joint distribution of y and x. Li and
Duan [(1989), Theorem 2.1] have shown that

under design condition (DC.1) and a convexity condition on L. If the propor-
tionality constant in (A.2) is nonzero, B* identifies the direction of B. The
following theorem compares identification using forward and inverse regres-
sions.

THEOREM A.3. Assume the general regression model (1.1) and the design
condition (DC.1). Let L(0, y) be a criterion function which is convex in 6 for
all y. Assume that the minimization problem (A.1) has a unique solution
(a*, B*). If k(y) = 0, then B* is null.

Proor. Using the result in Li and Duan [(1989), Theorem 2.1], we need
only minimize the following expectation over (a, c¢):

(A.3) E[L(a + cx'B,y)] = E[E{L(a + cx'B,y)ly}];

the regression slope is then given by g* = Bc*, where (a*, ¢*) minimizes (A.3).
By the convexity of L and Jensen’s inequality, the right-hand side of (A.3) is
bounded from below by E[L(a + cE(x'Bly), y)I. If «(y) = 0, the minimization
problem reduces to minimizing E[L(a,y)] over a, i.e., the optimal value for ¢
is zero. O

According to the theorem, if any parametric forward regression based on
(A.1) identifies the direction of 8, then «(y) # 0; it follows that the inverse
regression would also identify the direction of B. In other words, the inverse
regression is at least as effective as any parametric forward regression based
on (A.1) for identifying the direction of S.

Design condition (DC.1) is used in Theorem A.3 only to reduce (A.1) to the
minimization of (A.3), not in the subsequent derivations. For the special case
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of a simple regression, we have the following result which might be interesting
in its own right.

OBSERVATION A.4. Assume that (y, x) follows an arbitrary probability dis-
tribution, where y and x are both scalars. Let L(6,y) be a criterion function
which is convex in 6 for all y. If E(x|y) is a constant, then the parametric
forward regression of y on x based on

min)E[L(a + xb,y)]
(a,b

has zero slope, i.e., the optimal value for b is zero.

If inverse regression fails to reveal any relationship between y and «x,
parametric forward regressions based on convex criterion functions cannot
either. When the joint distribution for (y, x) is normal, this is a well-known
fact: If E(x|y) is a constant, then E(y|x) is also a constant; actually, y and x
are independent in this case.

APPENDIX B

Weight adjustment. For nonnormal design distributions, the pps matrix
might not be optimal. If the design distribution is nearly homogeneous, that is,
a,’s are close to each other, we would expect the pps weight matrix to have
good efficiency relative to the optimal weight matrix. However, the pps weight
matrix might be very inefficient if the design distribution is highly heteroge-
neous.

We now construct a rather extreme example with severe heterogeneity. We
take x to be two-dimensional, with the design distribution being uniform on
the circle centered at 0 with radius v2, thus Cov(x) = I. Let 6 be the angle on
the circle. We have

0 ~U(0,2m),
x; = V2 cos(6), xy, = V2 sin(9).

Let the slope vector be B = (1,0) and the model be y = x'8 = x,. We divide
the range of y into four slices, using the partition (— V2 cos(8), 0, V2 cos(8)),
where 6 is a small positive constant. The dispersion of x in the two extreme
slices are therefore very small.

We compare five slicing regression estimates for this example.

1. B°P is the optimal ignorant slicing regression based on the scoring rule
(5.6)). .

2. [ff’ is the ignorant slicing regression based on the scoring rule (5.6).

3. BP is the ignorant slicing regression based on the pps weight matrix.

4. B°P* is the optimal nonignorant slicing regression based on the scoring rule
(5.6).
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5. BP is the nonignorant slicing regression based on the pps weight matrix.
For 6 near zero, the scalars S or A for these estimates are approximately

0.140 SP = - SP = w5 0.401
gpz 010, SPEg, ST o g = 0401,
T w2
APt = —§5 = (0.5245, AP = — = 1.234.
6 8
For & sufficiently small, A° is smaller than S°F, thus the benefit of
ignorance does not hold for this example. When 3, is unknown, B°" outper-
forms the other two ignorant slicing regressions substantially: the relative
efficiency of BP? is about 0.28, while the relative efficiency of BP is about 0.35.

Sopt- 1
2

APPENDIX C
Technical proofs.

Proor oF THEOREM 4.1. Since [' converges almost surely to a matrix
proportional to I', both L(b) and L(b) converge to a criterion function
proportional to L(b) in (2.6). The convergence is uniform in b. The rest of the
theorem follows from Corollary 2.2. O

Proor oF THEOREM 4.2 AND THEOREM 4.2". Without loss of generality,
assume that u'’k = 1. We approximate I' by

= uk3gps + (£ - ¢)up's + SBu(€ - ¢) = (3B + A) (3B + A),

where A = (£ — £)u. The nonignorant slicing regression maximizes

[b'(3p + )]

b'2b
The nonignorant slicing regression estimate, normalized by (4.4'), is approxi-
mated by

(C.2) B=B+ (271 - BB)A.

The right-hand side is asymptotically normal with mean B. The asymptotic
covariance matrix is given by

Cov(B) = (271 — BB")Cov(A) (2! — BB).

Using the approximation £, — £, = L7, 1,,(x, — £,)/np,,, it is straightfor-
ward to derive the asymptotic covariance matrix for A and verify (4.7) and
Theorem 4.2.

For the ignorant slicing regression, the denominator in (C.1) is based on 3
instead of 3. Using the approximation

S7tesTt-3 i -3)3 7Y,

(C.1) L(b) =
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the ignorant slicing regression estimate, normalized by (4.4), is approximated
by

(C.2) B=p+ (I -pp)A- (371 -pB/2)(2-3)B.

The covariance matrix for 38 gives the B term and the T term in (4.8) and
(4.9). The covariance between A and 3 gives the C term.

For Remark 4.2, note that if we replace W by W, k by k and u by 0, the
same approximation for [* holds with A replaced by A = (£ — £)a. Since A
differs from A by a lower order term, the results in Theorems 4.2 and 4.2'
remain the same. O

DERIVATION OF (4.10)—(4.12). All three estimates follow from

E[(x - p)(37' - BB)(x — w)|x'B] = (d - 1)a(x'B).

(4.10) follows from taking the expectation on both sides of this equation over
x'B conditioned on y € s,. (4.11) follows from multiplying both sides by
(B(x — w))?, then taking expectation; (4.12) follows from multiplying both
sides by B(x — w), then taking the conditional expectation.

Proor oF THEOREM 6.1. Without loss of generality, assume E(x )
Cov(x) =1, B'B=1, BB =1. Let 6 be the angle between B and B.
decompose B as follows:

B = cos(6)B + sin(8) 5, where 58 =0,6'8 = 1.
For any b € R¢, we have the inequality
(C.3) A(b'f)’ < bTh < b'Ab;
the second inequality follows from

Var(x'b[x'B) = Var(x'b|x'B,¢) < Var(x'b|y).

Taking b = cos(6)B8 + (sin(8) /7)8, we have b’ = cos%(0) + sin?(8)/r and

b'Ab = Var[ E(x'b|x'8)]

= cos?(0) + (sin?(0)/7%)Var[ E(x'5x'B)]
+(2sin(8)cos(0)/7)Cov[x'B, E(x'5Ix'B)].

Since Var[E(x'6|x'8)] <7 and Cov[x'B8, Ex'§|x'8)] = 0, we have b'Ab <
cos?(9) + sin%(9) /7. It follows from (C.3) that A(cos?(8) + sin?(9)/7) <1,
which proves the theorem. O

Proor oF LEMMA A.2. Without loss of generality, assume E(6) = 0. As-
sume that 6 = 0, i.e., [ 0k,(y) dII(6) = 0. This is equivalent to [ 0K ,(y) dII(6)
= 0. Since E(8) = 0, the integral in the last identity is the covariance between
6 and K,(y), where y is treated as a constant. If % is stochastically mono-
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tonic, K is monotonic in 6, therefore this covariance cannot be identically zero.
This establishes a contradiction and proves part (i).
By definition, the monotone-likelihood ratio property for ¥ is equivalent to

(C.4) (v =96 = 0)[ko(y) kg (¥') — ko(¥)ke(¥)] > 0,
where y # y' and 6 # 0’ are arbitrary. The posterior density is given by

dll(6ly) /d11(6) = ko(y) /kn(y),

where k& (y) = [ky(y) dII(#) is the marginal density for y. Therefore we can
divide the term inside the square bracket in (C.4) by k(y)k;(y") to obtain the
monotone-likelihood ratio property for the posterior distributions and vice
versa. This establishes the equivalence between (a) and (b) in (ii).

It is a well-known fact that (b) implies (c). To verify that (c) implies (a), take
the prior distribution to be uniform over two given points 6 and 6'. It follows
from (c) that for any y < y’,

Oko(y) + 0'ko(y)  Oko(y') + 0k (y")
ko(y) + ky(y) ko(y") + ko(y")
This inequality is equivalent to (C.4). O
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