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SEQUENTIAL DETECTION OF A CHANGE IN A NORMAL
MEAN WHEN THE INITIAL VALUE IS UNKNOWN

By MosHE PoLrak! anp D. SIEGMUND?

Hebrew University and Stanford University

Three stopping rules are proposed to detect a change in a normal
mean, when the initial value of the mean is unknown but an estimate
obtained from a training sample is available. Asymptotic approximations
are given for the average run length when there is no change. Under
certain hypotheses about the length of time before the change occurs and
the magnitude of the change, we obtain asymptotic approximations for the
expected delay in detection in terms of the corresponding expected delay in
the much simpler case of a known initial value. The results of a Monte
Carlo experiment supplement our asymptotic theory to yield some general
conclusions about the relative merits of the three stopping rules and
guidelines for choosing the size of the training sample.

1. Introduction. Assume x,,x,,... are independent random variables.
The observations x,,. .., x, have probability density function f,, and x,,4,...
have probability density function f;. We write P, and E, to denote probability
and expectation when the change-point is v, v = 0,1,..., +o. The x’s are
observed sequentially with the goal of detecting the change-point » by a
stopping rule T having the properties that E(T'), the average run length
when there is no change, exceeds some large preassigned constant and the
expected delay, E (T — v|T > v), is small in some suitably defined sense.

The extensive literature on this problem is primarily concerned with the
case that f, and f; come from a common parametric family of distributions
and that f,, is completely specified. See, for example, Page (1954), Shiryayev
(1963), van Dobben de Bruyn (1968), Lorden (1971), Lucas and Crosier (1982)
and Pollak (1985). The most frequently described application is to process
control. As long as the observations, representing measurements on the output
of a production process, come from the target distribution f,, the process is in
control and no action is required. However, after the change-point v the
process is out of control and corrective action must be taken as soon as

possible.
We shall assume that f,, is unknown but can be estimated from a training
sample x,,...,x, , where 0 < vy, < v. One possible application is to detect a

change in the frequency of congenital malformations [Weatherall and Haskey
(1976) and Levin and Kline (1985)]. In this case f, represents the unknown
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baseline level of malformations. An application in process control is detection
of a change in variability. In contrast to problems of detection of a change in
the mean, there typically is no target value for the variance, which should be
as small as the process permits; but the attainable value must usually be
determined empirically [e.g., Wilson, Griffiths, Kemp, Nix and Rowlands
(1979)].

In order to focus on the essential features of this problem, we consider only
the simple case that f, and f, are normal density functions with unit
variance, differing only in their means. Specifically, we assume that «x,,..., x,
are independent N(u,,1) and x,,,,... are independent N(u, + w,1). The
parameters v, u, and u are all unknown, but u is assumed to be positive. We
also assume that for some known value v,, 0 < v, < v, we have available a
training sample x,,...,x,, which is the basis for our initial knowledge
about u,.

In Section 2 we introduce three different detection schemes. For the first we
use an invariance reduction and apply the Shiryayev—-Roberts procedure along
the lines suggested by Pollak and Siegmund (1985) to the sequence of maximal
invariant statistics. The second is a minor modification involving a mixture of
likelihood ratios of maximal invariants. For the third procedure we apply a
CUSUM test to the process of recursive residuals [Brown, Durbin and Evans
(1975)]. For each of these procedures we show that the P -expected run length
is approximately the same as for an analogous procedure in the case of known
Wo- See (6), (9) and (12).

In a recent unpublished manuscript, McDonald (1989) describes an interest-
ing nonparametric method for detecting a stochastic increase in distribution,
when the original distribution is completely unknown. We make a few remarks
about his method at the end of this paper.

Section 3 gives some asymptotic theory for the expected delay, E (T — v|
T > v). Its general flavor is that if both v and E(T — v,) are large, then
E (T — v|T > v) is approximately the same as for an analogous procedure in
the case of known wu,, provided u is not too small. We also find an expression
for the difference between the asymptotic expected delays in the cases of
known and unknown u,, which can be used to select an adequately large
training sample. The asymptotic theory which we have developed does not
suggest a strong preference for any of the three procedures.

Section 4.compares the three procedures by means of a Monte Carlo
experiment. The results are consistent with the asymptotic theory for large v,
and suggest a definite preference for the Shiryayev-Roberts procedures when
v, is small or early detection of small values of u is important.

Technical aspects of the proofs of our principal theoretical results are
sketched in two appendices.

2. Three procedures. Let x,,...,x, be independent N(u,,1) and
X,,.1,... independent N(u, + u,1), with u > 0. Let S, =x, + -+ +x, and
S* =8, — nu,. Suppose for the moment that w, is known. For any v, <i <n
the likelihood ratio statistic based on x, ..., x,, for testing H,: v = © against
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H:v=i,u=295Iis
exp[&(S,:" - 8*) - 8%*n - i)/2].
Let .
n—1

R:(8) = ¥ exp[5(S;) —8*) - 8%(n —i)/2].

i=vy

The Shiryayev—Roberts procedure [Shiryayev (1963) and Roberts (1966)] is
defined by the stopping rule

(1) N* =inf{n: n > vy, R¥(8) = B}.

The positive constant & is some value of the change u which is deemed
important to detect rapidly. From the likelihood ratio structure it follows that

R;(8) — (n — o)
is a P_-martingale and hence that
E(N* —v,) = E[R}.(8)] = B.
A more precise approximation [Pollak (1987)] is that as B — «,
(2) E(N*—v,) ~B/h(5).
Here & is a special function defined by

h(x) = 2x 2%exp| -2, n'1¢(—xn1/2/2)], x>0,
1

and given to a good approximation by the local expansion
(3) h(x) = exp(—px) +0o(x%), x-0,

where p = 0.583. .. [cf. Siegmund (1985), Chapter 10].

Suppose now that u, is unknown. The problem of detecting a change from
o t0 mg+ u > pu, is invariant under addition of a constant ¢ to each
observation x;, x,, ... . An invariant function of the x’sis y; = 0, y, = x5 — x4,
Y3 = X3 — Xy,..., whose joint distribution depends on v and x but not on u,.
For any v, <i < n, the likelihood ratio of y,,...,y, for testing H,: v = =
against H,: v =i, u = § is easily calculated to be

exp[8(iS,/n — S;) — 82%i(1 —i/n)/2].
In analogy with (1) we define

n—-1

(4) R,(8) = ¥ exp[8(iS,/n - S;) — 8% (1 —i/n) /2]

) i=vq
and
(5) N =inf{n:n > v, R,(§) = B}.
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Here R,(5) — (n — v,) is a P,-martingale, so

E(N -vy) = E.[Ry(8)] = B;
and it is shown in Appendix 1 thaf as B — « we have
(6) E(N - v,) ~B/h(3).

The procedure defined by (5) should perform well if u is close to the
hypothesized §, but may be poor otherwise. To compensate for this weakness,
it may be helpful to put

(7) R, = [(R,(5)dG(3), n>w,,
0
for a suitable probability G on (0, ) and let
(8) T = inf{n: n > v,, R, = B}.
Again E(T - vy) = B, and now as B — o,
(9) E(T - v,) ~B/j°°h(a) dG(5).
0

The corresponding modification of (1) in the case of known u, was considered
by Pollak and Siegmund (1985), whose calculations indicated that this modifi-
cation does not offer substantial advantages over (1) unless B is extremely
large. We shall see that (8) compares favorably with (5), especially if the true
change u is substantially smaller than the hypothesized §.

Our third procedure is a CUSUM test defined in terms of recursive residu-
als [Brown, Durbin and Evans (1975)]. In the present context the recursive
residuals are

Z,=[i/Gi+ )] (%0, - %), i=12,...,

where x; = S;/i. The Z; are independent and normally distributed with unit
variance. Also
0, i <v,

(10) E(Z) = {V/.L/[i(i + 1)]1/2, i>v.
Put §, =2, + -+ +Z,, and for fixed positive numbers 5,b let

T= inf{n: n > v, S[Sn_l -8(n—-1)/2

o — min 1(Sk —5k/2)] zb}.

vo<k<n-—

According to Siegmund (1985), Theorem 10.16, a good approximation to
E(r — v,) is provided by

E (7 —vy) =257 %[exp(b + 2p8) — (b + 2ps) — 1]
+o0(871), 5—-0,
where p is the same numerical constant that appears in (3).

(12)
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For large § a slightly better but substantially more complicated approxima-
tion was obtained by Siegmund (1975).

ReMARK. It is easy to think of still more procedures. For example, one
could define a Shiryayev—Roberts procedure in terms of recursive residuals or
a CUSUM test in terms of the invariant process iS,/n — S;, n =1,2,...,i =
1,...,n — 1. We have in fact performed some simulations for this latter
process and have found that it behaves similarly to those defined above.
However, the random walk theory which allows one to obtain an approxima-
tion to the P -average run length in the case of known u, does not apply to
the invariant process.

3. Asymptotic theory for E (T — v|T > v). " In this section we examine
the asymptotic behavior of E (T — v|T > v) for large B and v for the stopping
rules (5), (8) and (11) of Section 2. Our results take the form of a comparison
of the expected delay when u, is unknown to the expected delay of the
analogous stopping rule for the case of known u,. Analytic approximations for
the expected delay in the simpler case of known u, have been given by various
authors, for example, Pollak and Siegmund (1985, 1986b), Pollak (1987) and
Siegmund (1985), Chapter 10.

We begin with the almost trivial observation that as B — o, for u > /2
and vy =v =0,

(13) Eo(N*) ~ [8(n — 6/2)] 'log B.
In fact, by (1)

n-1

log R} (8) =88 — 82n/2 — log| ¥ exp{-8S;* + 8%i/2}|.
0

Under P, the series converges with probability 1 and hence makes no contri-
bution to the first-order asymptotic behavior of log R (). The result (13)
follows from

Ey{log R}(8)} ~log B
and by Wald’s identity
" Ey(887. — 82N*/2) = 8(u — 8/2) Eo(N*).

A slightly more complicated argument shows that (13) continues to hold if the
left-hand side is replaced by E,(N* — v|N* > v).

The following theorem provides approximations for E,(N — »|N > v) in
terms of E (N* — y|[N* > v) for u > /2 and sufficiently large v.

THEOREM 1. Let N be defined by (5) and N* by (1). Suppose that B and
v — ® in such a way that for some 1 < ny, gy < ®,

(14) (log B)™ < v < By + v,.
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Then for any u > 6/2,
E,(N—-vIN>v) - Ev<(N - »)*/N|N > V}

(15)

—E(N* —vIN*>v) -0,
and hence
(16) E(N—-vIN>v)=E,(N*—-v|IN*>v)

+ v IE2(N* — vIN* > »)(1 + o(1)) + o(1).

ReEMaRks. (i) In view of (13), we see that the left-hand inequality in
condition (14) requires that the time before the change occurs should be large
compared to the expected time required to detect the change after its occur-
rence. The right-hand inequality in (14) is purely technical. We believe it is
unnecessary.

(ii) A proof of Theorem 1 is given in Appendix 2. Later in this section we
sketch a proof of the related but much simpler Theorem 3.

(iii) The term v 'E2(N* — yIN* > v) in (16) can be interpreted as the
asymptotic cost of ignorance of u, in the favorable situation that » and u are
large enough that we do about as well as if we had known u,. It converges to 0
if v/(log B)? > x,

Theorem 2 makes a similar comparison between the stopping rule T defined
in (8) and .
(17) T* = inf{n: n> Vo,f R*(8) dG(8) = B}.
0

THEOREM 2. Suppose G has a positive, continuous density G' such that
lim; o G'(8) exists and is positive. If condition (14) holds, then for arbitrary
w >0, (15) and (16) hold when N and N* are replaced by T and T¥,
respectively.

The proof of Theorem 2 is similar to that of Theorem 1, but is technically
more complicated. The details have been omitted. For asymptotic approxima-
tions to E,(T*), see Pollak and Siegmund (1985) and Pollak (1987).

In order to make a similar comparison for E (7 — v|r > v), we introduce

(18) 7* = inf{n: n>v,, S[S: —-én/2 — nsnrsl (Si* - 8i/2)] > b}.
vo<i<n
THEOREM 3. Suppose b — » and for some n > 1,
(19) v > b".
Then for any n > 6/2,
E (7 —-vir>v)
(20) =E/(t*—vlt*>v) +1
+ u[2v(u — 8/2)] 'E2(7* — vir* > v)(1 + o(1)) + o(1).
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REMARK. The factor (u — 6/2)~ ! appearing on the right-hand side of (20)
suggests that 7 may perform poorly when p is close to §/2; and the simula-
tions reported in the following section substantiate this expectation. It should
be noted, however, that the source of this factor is the recursive residuals, not
the CUSUM statistic. It would have appeared in Theorem 1 if we had used
recursive residuals to define the Shiryayev—-Roberts stopping rule.

We conclude this section with a heuristic proof of Theorem 3, which is
substantially easier to make completely rigorous than the proof of Theorem 1
given in Appendix 2. To simplify the notation, we suppose v = v,. By renewal
theory applied to the excess over the boundary and Wald’s identity, for 7*
defined by (18) we have

b + asymptotic expected excess + o(1)
- EVO{S[S;’; — 8% = 8(7* — v4) /2]

—8 min [S* S*—b‘(z—vo)/Z]}

v0<l<‘r
= 5(n — 8/2)E, (% — vy) — Eo{b‘omin (S - 8i/2)} +o(1).
<1<™

For the recursive residual process the asymptotic expected excess will be the
same. Hence by (10)

b + asymptotic expected excess + o(1)
= EV0<8[S,_1 — 8, — 8(r— vy —1)/2|

-5 min [§; - Svo—a(z—yo)/z]}

vo<i<t—1
= SEVO{WO Y LGE+D)] = 8(r —vo - 1)/2}
vo+1

- Eo{ﬁogllm (87 - 8i/2)} +0(1)

= SE,,O{;WO log[1 + (7 —vo — 1) /ve] —8(7 — vy —1)/2}
— Ey{6min(S}* — 5i/2)} + o(1)

= 8(u — 8/2)E, (7 = vo = 1) = (8n/2v0) E, (7 = v,)*(1 + o(1))
- Eo{ﬁmin(Si* - 8i/2)} +0(1).

-Comparing these two asymptotic equations, we see that
E,(7- ve) =E, (7% —vy) +1

+ u[2vo(n — 8/2)] T'E, (17— vo)*(1 + 0(1)) + o(1).
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TaBLE 1
Expected delay for 6 = 1

Vo

m 150 ¢ 75 40
1.0 11.3 + 0.2 12.3 + 0.2 16.4 + 0.9
104 + 0.2 11.8 + 0.2 183+ 1.0
0.5 59.4 + 3.6 109.9 + 7.7 202.6 + 12.8
753 + 3.0 1549 + 6.6 259.7 + 94
1.5 6.5+ 0.1 6.8+ 0.1 72+ 0.1
55+ 0.1 57+ 0.1 6.0+ 0.1

Since to first order asymptotically, E,,O(T —v) ~ E, (7% - vy), r=1,2, and
E,(v* — vo)? ~ Efo(f* — v,), Theorem 3 follows.

4. Monte Carlo. In this section we describe the results of a Monte Carlo
experiment designed to check the insights obtained from the asymptotic theory
of Section 3 and to provide comparative information for small ».

We recall that for known u, Pollak and Siegmund (1985) have shown that
the Shiryayev-Roberts procedure (2) and the CUSUM test (18) perform
similarly. The CUSUM test is somewhat better at detecting large changes and
changes which occur immediately (v = 0). The Shiryayev—-Roberts procedure is
better at detecting small changes and changes which occur at large values of ».
In spite of its better asymptotic performance, the mixture stopping rule (17)
seems inferior to the fixed § rules unless B is very large.

In Table 1 we compare (5) and (11) for 6 = 1. The values of B and b were
chosen so that the P, -average run lengths were about 792. For example,
according to (6) and (3), for the stopping rule N defined by (5) we should take
B = 442. Similarly, by (12) b = 4.83. Those values were checked by simulation
and found to yield the desired average run length to within the range of
sampling error.

Initially we consider only the case v =v,, that is, the change occurs
immediately after the end of the training sample. Guided by the results for
known u, described above, we expect that this choice will favor the CUSUM
test, which is relatively better at detecting early changes.

In each cell of Table 1 the first entry is a Monte Carlo estimate based on
n = 2500 replications for E, (N — v,), where N is defined by (5). The second
entry concerns 7 defined by (11). Each estimate is given +one estimated
standard error. As in the case of known u, the CUSUM test does slightly
better for large w, while the situation is reversed for small u. As suggested in
the remark following Theorem 3, the use of recursive residuals leads to
comparatively poor performance for the CUSUM test when u = 0.5 = §/2.

It is interesting to compare the Monte Carlo estimates in Table 1 with the
theoretical approximations provided by (16) and (20), but for this we must
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evaluate E,(N* —vy) and E, (7* — v,). It follows from Siegmund (1985),
Theorem 10 16 and Pollak (1987) that reasonably good approximations in the
case of known pu, can be obtained as follows. We use the appropriate expres-
sions for a Brownian motion process [Pollak and Siegmund (1985), cf. also
Appendix 3], but with the boundary level, B or b, adjusted to give the same
P_-average run length as the discrete time process. For example, to approxi-
mate E, (N* — v,) for N* defined by (2) with § =1 and B = 442, so that
E(N* — v,) = 792, we use Brownian motion results with § = 1 and B = 792.
Although it is probably too optimistic to expect the resulting composite
approximations suggested by (16) and (20) to be especially accurate, they
should provide an indication whether our training sample is sufficiently large
that we do about as well as when u, is known.

The results appropriate for Table 1 of this paper can be borrowed directly
from Table 1 of Pollak and Siegmund (1985) (or see Appendix 3). For example,
for p =1, E,(N* — v,) = 10.8 and hence by (16) we see that E, (N — v,) is
approx1mately 10.8 + 0.8 =11.6,10.8 + 1.6 = 12.4 and 10.8 + 29 = 13.7 for
vy = 150, 75 and 40, respectively. For v, = 150 and 75 the second term is
small compared to the first, so we expect that v, = 150 or 75 is an adequate
size for the training sample. For v, = 40 the second term is about 25% as large
as the first term, which suggests that the training sample is too small. These
diagnoses are consistent with our simulations. Unfortunately a training sam-
ple adequate to detect a change of size u = 1 may not be adequate to detect a
smaller change. In fact, even the sample of size v, = 150 is too small to detect
efficiently a change of size u = 0.5, as both our simulations and diagnostics
indicate.

In Table 2 we compare all three stopping rules: (5), (8) and (11). For variety
and to simplify the simulations slightly, we put 8 = 2 and consider stopping
rules which have been modified to detect two-sided changes. For (5) this means
we replace exp[8(iS,,/n — S;)] by cosh[8(iS,,/n — S;)] in the definition (4) of
R, (3). For (8) we take a distribution G on (—®, «); in particular for Table 2, G

TABLE 2
Expected delay for 6 = 2 (two-sided)

Yo

n 150 75 40
2.0 3.5+0.0 3.5+ 0.0 3.7+ 0.0
3.2+ 0.0 3.3+0.0 3.4+ 0.0
46+ 0.0 4.7+ 0.0 4.9 + 0.0
1.0 151 + 0.4 244+ 1.4 479 + 2.8
17.2 + 0.5 339 + 2.1 72.3 + 3.4
13.3 + 0.2 14.8 + 0.3 17.8 + 0.3
3.0 2.0+ 0.0 2.0+ 0.0 2.0+ 0.0
1.8 + 0.0 1.9 + 0.0 1.9 + 0.0

2.7+ 0.0 2.7+ 0.0 2.8+ 0.0
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is the standard normal distribution. For (11) two CUSUM tests are run
simultaneously. One is designed to detect a change of u = 6 > 0, the other to
detect a change of u = —§; and the composite test stops as soon as at least one
of these one-sided tests stops [cf. Siegmund (1985), page 27ff.]. The values of B
and b were chosen to make the P -average run lengths about equal to
0.5 X 792 = 396. For the two-sided version of (5) with § = 2, B = 123, while
B = 265 for (8) with G the standard normal distribution, and b = 5.04 for the
two-sided CUSUM test. The three entries in each cell of Table 2 are estimated
average delays (n = 2500) for these two-sided modifications of (5), (11) and (8),
respectively.

The comparison between (5) and (11) in Table 2 is much the same as in
Table 1. The most striking feature of Table 2 is that (8), which for large |u| is
somewhat inferior to (5) and (11), is substantially superior for u = §/2 and
small v,. Another experiment, not reported here, gives similar results for
8 = 1. This is even more remarkable in view of the fact that (8) does not
depend on the somewhat arbitrarily chosen value of §. It appears that if early
detection of a change as small as one-half the targeted 6 is important, the
stopping rule (8) may be preferable to both (5) and (11).

Up to now we have considered only the case v = v, where a change occurs
immediately after the end of the training period. Consider for a moment the
other extreme, where v is much larger than v,. The training period is now
effectively of length v. In addition, if the procedure has not yet stopped, at
time v the process is not in its fixed initial state but is in a (random)
quasistationary state. The effect of a longer training period can be inferred
from the results already presented, which included different values of »,. The
effect of starting from a quasistationary state is probably much the same as in
the case of known u,. This situation was studied by Pollak and Siegmund
(1985), who found that the decrease in expected delay when v is large is
greater for a Shiryayev-Roberts procedure than for a comparable CUSUM
test. The upshot is that the advantage enjoyed by the CUSUM test in detecting
changes of magnitude greater than or equal to 5 when » is small more or less
disappears when v is large. For a specific example, suppose that in Table 1 we
have v, =0 and v = 150. Monte Carlo estimates of E,(N — »|N > v) and
E (r — vlr > v) decrease to 9.7 and 10.1, respectively, when wx = 1 and to the
common value 5.3 for both stopping rules when u = 1.5.

McDonald: (1989) has recently proposed a nonparametric CUSUM test to
detect a stochastic increase from an initially unknown distribution. He forms a
CUSUM statistic from the process of sequential ranks, which, as long as there
is no change of distribution, are independent and uniformly distributed on
their sets of possible values. His numerical results indicate that his procedure
does extraordinarily well in comparison with the parametric competitor (18)
for the range of conditions he explores. A simple computation of expectations
indicates that McDonald’s statistic can be expected to behave qualitatively like
the recursive residual CUSUM test defined in (11). In particular, its perfor-
mance may deteriorate dramatically when the time and magnitude of the
change are small. McDonald’s standard numerical example has a change
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occurring after 500 observations, which is quite large in comparison with the
cases we have considered and may conceal this possible defect in his procedure.

APPENDIX 1. The limit of E(N)/B as B — .

THEOREM 4. For N defined by (5), uniformly in v,
lim EN — v,)/B = 1/h(5).

Proor. We begin by recalling the result of Pollak (1987) for the related
stopping rule N* defined by (1). Without loss of generality we can assume
ko = 0,80 S5 = S,. For simplicity we write R} and R, for R}(5) and R,(5).
Since R, — (n — v,) is a P_-martingale having mean 0, we have

E(N* - v,) = BE(R}./B).

Pollak (1987), under the unessential restriction that v, = 0, has shown that
R}./B converges in law and is uniformly integrable, and has identified
limg ., E{R}./B} as 1/h(8) [cf. (2)].
Since R, — (n — v,) is also a P,_-martingale with mean 0, we have

(21) Eoo(N_ VO) =BE0°(RN/B)'

To complete the proof of Theorem 4, we show that R, is sufficiently close to
R for all large n for which R, or R} is large, so that with overwhelming
probability N = N* and Ry/R}« = 1. The desired result then follows from

Pollak’s theorem.
More precisely, let £ > 0 and put

A, ={N=N*>Be+vy,l —e<Rpy/R¥.<1+¢}.
Obviously,
E(Ry) =E(Ry;A,) + E(Ry; AS),
and hence by the Schwarz inequality
(1-¢)E(R}+; A,) < E{Ry)
<(1+¢)E (R} A,) + [E.RLP(A)]
By Lemma 2 below E_R% < const. B%; and by Lemmas 3 and 4
limsupP(A¢) - 0

Box

(22)

as ¢ > 0. The theorem now follows from (21) and Pollak’s result by first
letting B — o, then ¢ » 0. O

) LEMMA 1. Let a > 1. There exists C; > 0 such that for all 0 <y < a8,

c,, ifa >0,

Em{exp[y(x1 - a)]lxl = a} s {2exp(a282/2 - (Xaa)7 ifa <0.
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Proor. The proof is a straightforward calculation, which is omitted. O

LEMMA 2. Let a > 1. There exists C, > 0 such that for all B and v,,
E(R%) < C,B“.

Proor. Observe that R, increases in x,, and
R, =exp[on(n + 1) (x,01 — %) — 8%n(n + 1)7'/2]
n—1
(23) + Y exp[8(kx, — S,) — 8%k (1 — k/n) /2]
k=v,
Xexp{sk(n + 1) N2, — %,) —82%2/[2n(n + 1)]},

where X, = S,/k. Letting Fy_, denote the o-field generated by N,
X1,...,%y_1, Wwe have from (23)

E(R3|Fy_,) < Ew(l(xN>xN_1)RaNIFN—1) +(1+B)°
<E(R%|Fy_1, xy > Xy_1) + (1 + B)".

Suppose we are given x,,...,%,, N >n and x,,; > X,. There exists a unique
A =A(n,xq,...,x,) such that N =n + 1if and only if x,, . ; — X, > A. There
are two cases to consider: A > 0 or A < 0. We first suppose A > 0, which is the
more difficult case. If x,,, — X, were replaced by A in (23), the resulting
expression would equal B, and hence if x,,; — X, = A,

R, <exp[d(x,., — %, — A)]B.
Hence by Lemma 1, when A > 0,
E(R%, |1, %0, N>n,%x,,, 2%, +A)
C,B*, ifx, +A>0,
<
= | 2exp[a26?/2 — ad(X, + A)|B*, if%,+ A <0,
< B"‘{C1 + 2exp[a282/2 + aSmaf:I:Eil]}.
1>
If A < 0, the condition N = n + 1 is implied by x,,; > X,,, and hence by (23)
E(R%, \|x,...,%,, N=n+1,x,,,>%,)
<E, {exp[a&(xn+1 -%,)](1+B) g, ., %, g > a?,,}
This in turn, by Lemma 1, is bounded by
C,(1 + B)“, ifx,>0,
2exp|a282/2 — d%,|(1 + B)®, ifx, <0,
<(1+ B)“{Cl + 2exp[a282/2 + aﬁmafilfil]}.
1>

The final inequality follows by taking expectations. O



406 M. POLLAK AND D. SIEGMUND

LemMa 3. Forany 0 <e <1,
P{N-vy<eB} <e and P {N*-v,<eB} <e.

Proor. Since R, is a nonnegative submartingale and E_R, = n — v, for
any integer m > 1,

P(N-v,<m} <B'E {Ry; N —v,<m) <BE(R,,,} =B 'm.
The proof for R} is the same. O

LEMMA 4. For any & > 0 there exists n(e) —> 0 as ¢ = 0 such that for all
large B,

P{N=N*>eB+vy,l1—-e<Ry/Rf»<1+¢e}=1-n.

Proor. Let 0 < B < 1 and observe that

(24) BL=Qn+(Hn_Qn)+Un+Zl,n,

R: Vn + 22,,‘
where
nB
H,= Y exp{8(kS,/n—8S,) — 8% (1 —k/n)/2},
k=vy
B
Q,= X exp(-8S, - 8% /2),
k=vy
n—nf
U,= Y exp{8(kS,/n—S,)—8%(1—-k/n)/2},
k=nPvuy,
n—nh
Vn = Z exp{‘o‘(Sn - Sk) - 82("’ - k)/Z},
k=v,
n—1
r = Y exp{d(S,—S,) - 8% (n - k)/2}
1,n kE=(n—nP)vy,
xexp{8(n — k)[6(1 —k/n)/2 - S,/n]}
and
n—1
Y= XL exp{d(S,-8,) —8%n—k)/2}
2,n k=(n—-nP)vy,

In these expressions a sum is understood to equal 0 if the lower index of
summation exceeds the upper.
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It is easy to see that (uniformly in v)
nB

H, - = -85S, — 8%k /2
(25) n Qn kguoexp( k /)

X [exp{8kS,/n + 82k%/(2n)} — 1] >0
with probability 1, while @, is bounded with probability 1, that is,

(26) Q, < ¥ exp(-5S, — 8% /2).
0
Since
n—nﬂ
Y exp[—8%(1 - k/n)/4] < nexp(—62nf/8) > 0,
k=nPvy,
we have
n—nf
P {U, > nexp(-6°nf/8)} < Y, P.{kS,/n—S,=08k(1—-k/n)/4)
k=nﬂVV0

< 9(27) %5 'nexp(—5%n"/40)

and hence by Borel-Cantelli,

(27) U, - 0 with probability 1.
Similarly,
(28) V, = 0 with probability 1.

Finally, it is easy to see, for example, by the law of the iterated logarithm,
that

(29) r /X -1
1,n/ 2,n

with probability 1.

It follows from (24), (25), (26), (27), (28) and (29) that with probability close
to 1 if either R, or R is large, say > B/2, then the ratio R,/R;’ is close to
1. According to Pollak (1987), Ry +/B has a continuous limiting distribution
as B — « and hence except for the unlikely event that Ry+/B is close to 1,
N = N*and Ry/R - is close to 1. This together with Lemma 3 completes the

proof. O

APPENDIX 2. Asymptotic behavior of E (N — v|N > v).

In this appendix we give the essential ingredients of the rather technical
proof of Theorem 1. The crucial tool is Lemma 12, which provides a precise
coupling of log R, and log R). Without loss of generality we assume u, = 0.
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Note that
exp{8(n — v)[S, — (n —v)u]/n}(R,/R))
= Tr-lexp[8(S, = S,) — 8%(v — k) /2]
Xexp{&n_l[%(S(n -k’ - (w-k)S, —u(n - V)2]>
L-texp[8(S, — S,) — 8%(v — k) /2]
This is an average of exp{én~{38(n — k)2 — (v — k)S,, — u(n — v)?]} weighted

by exp{6(S, — S,) — 8%(v — k)/2}. We shall show that only terms with % close
to v contribute significantly to this average. Observe also that

sn-1[28(n — k)2 = (v — &) S, — u(n - »)

= -8(n—38/2)(n—v)*/n
+(v — k){8%(n — k) /(2n) — 8(n — 8/2)(n —v)/n
-8[S, — (n —v)u]/n}.

Because of the lower bound imposed on » by (14), the important values of
n — v are O(log B) (cf. the discussion of Theorem 3 given above), and hence
for & close to v all but the first term on the right-hand side of (31) can be
neglected. The result, stated more precisely in Lemma 13, is that outside an
event of small probability, uniformly for n in an interval of values which
contains N with overwhelming probability

logR, =log R} —8(u —58/2)(n —v)’/n
—8(n—-v)[S, - (n—v)u]/n+o(1).

Integrating (32) on a suitable event and arguing along established lines of
nonlinear renewal theory [e.g., Siegmund (1985), Chapter 9, Siegmund (1986)
and Hogan (1984)], we have

log B + asymptotic expected excess + o(1)
= E,{log RN > v} - 8(n — 8/2)E,[(N - »)*/N|N > v
—8E{(N -v)[Sy— (N —v)u]/N|N > v}.
By the definition of R} and Wald’s lemma we have
E,{log R}|N > v} = 8(u — 8/2) E,(N — vIN > »)

(30)

(31)

(32)

+ E,,[log{ Vilexp[‘o‘(S,, -8,) — 38%(v — k)]
0

+ Elexp[—S(Sk - 8,) + 36%(k — v)]} N> V].

Under P, the argument of the logarithmic term on the right-hand side of this
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equation converges to @, + @,, where @, and @, are independent, @, has the
P_-distribation of L 7exp[8S, — 36%k] and @, has the P,-distribution of
Y5 expl—38S, + 38%k]. It follows from the results of Appendix 1, a uniform
integrability argument and Pollak’and Siegmund (1986a) that

E(log R}|N > v} = 8(u — 8/2)E,(N — vIN > v)
+ E{log(Q, + Q5)} + o(1).

From this point the argument is much like that sketched for Theorem 3,
except for the crucial observation that

(33) E{(N -v)[Sy— (N —v)u]/N|N > v} =0.
This result follows from the observation that
(n=»)[8, = (n = v)ul/n = {8, =8, — (n—v)u)
+{8, - v[S, = (n —v)u]/n},
n=v,v+1,...,

is the sum of two mean zero martingales, the first relative to the o-fields .7,
generated by the x’s and the second relative to the smaller o-fields <, =
o(xy — x1,...,%, — x7). In fact,

v[S, = (n=v)ul/n -8, =EfS, -8, - (n - v)ul%)

with probability 1 for n > v. Since N is a <,-stopping time, it is also an
&, -stopping time, and (33) follows.

ReEMARK. The first inequality in (14) requires that sufficient data to esti-
mate u, accurately are available by time v. The second inequality is purely
technical and probably can be eliminated. Under P, the distribution of N — v,
is approximately exponential with mean B/h(8) when B is large. This follows
from the proof of Theorem 4, where it is shown that N = N* with arbitrarily
large P.-probability. Since R is Markovian and has a limiting distribution,
the waiting time for it to enter a set of states having small probability is
well-known to be approximately exponential. Hence the right-hand inequality
in (14) guarantees that P{N > v} = P,{N > v} is bounded away from 0, so we
do not have to condition on an event with vanishingly small probability. In
practice the condition is not restrictive, since if v is large compared to B, the
procedure will most likely terminate before the change occurs. However, for
Theorem 3, where the process is Markovian and has a P, -quasistationary
distribution, no a priori upper bound on v need be assumed.

“We now present some of the details useful in turning the preceding argu-
ment into a rigorous proof. To simplify the notation, we take v, = 0.

Our first result is an easy consequence of standard arguments. Its proof is

omitted.
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LeEMMA 5. Let ¢,{ > 0. There exists y = y(£,{) > 0 such that for every m,
P {IS,| = {n'/%*¢ for some n = m} < exp(—ym?)
and

Pm{maXISnl > §m1/2+§} < exp(—ym?*).
n<m

In what follows ¢ denotes a numerical constant, the value of which does not
concern us and indeed may change from one appearance to the next. Let
N,(k), D(k) denote the term indexed by % in the numerator and denominator
of (30), respectively. Note that the denominator is bounded away from 0, since
D(v) = 1.

Let 0 <ky<1, k>0, ng=v+ (1 — ky)log B)/[6(n —6/2)] and n, =
v + (1 + «)(og B)/[6(n — 6/2)]. Also put b = log B.

LEmMA 6. Let 0 < a, B < 1. There exists a constant ¢ > 0 such that for all
large B,

o v+(ng—v)®
P,,{ Y D(k)— Y D(k) =exp(—b°)} < exp(—b°).
k=0 k=v—pP
Proor. Observe that
(v —k)S[(S, - S, /(v —k) —5/2], for k < v,
log D(k) = {—(k - v)8[{S, =S, — (k —v)u}/(k—v) +n—-6/2],
for k. > v.

Any easy application of Lemma 5 with ¢ = 1/2 completes the proof. O

LEMMA 7. Let 0 < p < 1. There exists ¢ > 0 such that for all large B,

(1—-pwv
P,,{ Y N,(k) =B~ ° forsomen > no} <B~°.
E=0

Proor. For 0 <k < (1 — ply,
log N(k) = —88, +8%(n—v)/2-68(S,—S,) —8(6/2—-S,/n)k
+8%k2/(2n) +8(n —v)[S, — (n — v)u]/n
—8(n-v)[n-8/2-{S, -8, —(n—v)u}/(n—-v)] - 88,
+ 8k[u(n —v)/n+8(1—p)v/(2n) —5/2
—{S, = (n —v)u}/n] + 8(n —v)[S, = (n —v)u]/n.

IA
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By Lemma 5, for any { > 0 there exists ¢ > 0 such that for all large B,
(84) PfIS,-S,—(n—v)ul={(n —v)forsomen >n,} <B°,

(35) P{|S, — (n — v)ul = {n forsome n > ny,} <B~°,
(36) P{IS,| = ¢{(n,— v) forsome k <n,—v} <B~°
and

(37) P{|S,| = ¢k forsome ny — v <k < (1 —p)v} <B~°.

Choosing ¢ to be sufficiently small, we obtain the lemma by bounding log N, (%)
from above on the intersection of the complements of the events in (34)-(37)
and summing over 2 < (1 — p)v. O

LEmMMA 8. Let 1< B <1, 0<p <1. There exists ¢ > 0 such that for all
large B,
V_VB

P Y N,(k) = exp(—b°) forsomev <n <n,} <exp(—b°).

14

k=(1—-p

ProoF. From the equality
log N,(k) = 8(8, —8,) —8(n —8/2)(n —v)
(38) —3(v = B)[S, - (n = v)ul/n
+ 8k[(n — 8/2)(n —v)/n — 8(v — k) /(2n)],
we obtain for all (1 — p)v <k <v — v,
log N (k) <8(S,-S,) —8(v —k)[S, — (n—v)u]/n - 8%Pk/(2n).
Let { <86(1 —p)/4. If

(39) IS, — Sl < {vf forall(l-p)v<k<v—vP
and
(40) IS, — (n —v)ul <{vP forallv <n <n,,

then Xz;zf _pyw No(k) < exp(—b°) for some ¢ > 0, and an application of Lemma
5 to the events in (39) and (40) completes the proof. O

LEMMA 9. Let 0<B,<1 and max{B,/2, B, — 3} < B, < By. Then for
some ¢ > 0 and all large B,

v—vh1
Y N,(k) =exp(—b"°) forsomev <n <n;; <exp(—b°).

k=v—vh2

P

v

ProoF. Let 0 <& < B, — B, + 3. From (38) we see that for all v — v#2 <
E<v-—vh

log N,(k) <8(S,—8S,) —8(v —k)[S, — (n —v)u]/n — 8%vP1/(2n).



412 M. POLLAK AND D. SIEGMUND

Ifforall v —vP2 <k <v —vP, ny,<n <n, we have
IS, — Syl < vP1/2*B2/4 and |S, — (n — v)u| < v1/2*e,
then for some ¢ > 0, £%2%" s, N, (k) < exp(—b°) for all v < n < n,. Another
appeal to Lemma 5 completes the proof. O

LeEmMA 10. Let 0 < B < 1. There exists ¢ > 0 such that for all large B,
V—VB
P,,{ Y. N,(k) = exp(—b°) forsomen,<n < nl} < exp(—b°).
k=0
Proor. We apply Lemma 9 repeatedly until 8, < B8 and combine the result
with Lemmas 7 and 8. O

LEMMA 11. Let 0 < a < 1. There exists ¢ > 0 such that for all large B,

v
k=v+(nyg—v)*

n—1
P{ Y N,(k) > exp(—b°) for somev <n < nl} < exp(—b°).

ProoF. Let 0 <& < 3. We write
log N,(k) = —(k — v)[8u — 8%k/(2n) + 8{(S, — S, — (k — v)u}/(k — v)]
—d(n—8/2)(n—v)(n—-k)/n
—5(v = B[S, — (n - v)u]/n.
If for all v + (ny, — v)* <k <n < n, we have
18y = S, = (k= v)ul < (k- v)**
and
IS, = (n —v)ul <v'/2*e,

then for some ¢ > 0 and all v <n <n,,

n—1
Y N,(k) <exp(-b°).

k=v+(nyg—v)*

Yet another application of Lemma 5 completes the proof. O

LEMMA 12. For somec > 0,

P{|log(R,/R}) + 8(u — 8/2)(n = v)"/n + 8(n = v)[$S, - (n- v)u]/n|

> exp(—b°) for somen, <n < nl} < exp(—b°).

PrOOF. Recall (30) and the lines following. Let 0 < @ < min{},n, — 1},
0 < B < min{},(n, — /7,}, and consider (31) for v — v# <k <v + (n, -



CHANGE IN A NORMAL MEAN 413

v)* For any ¢ < min{; — a/n;,3 — B}, if IS, — (n — v)u| < »¥/2*¢ for all
ny < n < n, the final term on the right-hand side of (31) is negligible. Hence
from Lemmas 5, 10 and 11 we obtain Lemma 12. O

LemMmA 13. For large enough «,, E[(N — v)I{N > n.}IN > v] - 0.

Proor. For n > v,
log R, >8(vS,/n—S,) — 8%w(n —v)/(2n).
Since S, is independent of {N > v},
P{N>nIN>v} <®{[b-8(p —8/2)v(1 - v/n)]/8[v(1 - v/n)]"?.
Hence for large enough «,, ‘
(41) BP{N > n,IN > v} - 0.

Now let v < m < n and write

m—1

R,= ¥ exp[8(kS,/n —8;) — 38°%k(n — k) /n]
0

n—1
+ Y exp{8[kn"X(S, - S,,) + km~'S,, — (S, — S,,) + S,,.]

—38%k(n — k) /n}.

Let R, denote R, but with u subtracted from each x, for £ > m, and
observe that R, < R,. Let %, be the o-field generated by x,,...,x,, and
note that conditional on %, the P, joint distributionof R,,n =m +1,...,
equals the P, joint distribution of R,,n =m + 1,... . Let m = n,. Then on
{N > n,},

E(N-v%)=(n,-v)+ f P{N>n|%Z, )}

n;

=(ny,-v)+ YL P{R,<Bforalln, <k <n|%}

ny

<(n,-v)+ f,Py{Rk <Bforalln, <k <n|%}

n;

=(n;-v)+ L P{R,<Bforalln, <k <n|%]}
=(n,—v) +E(N - n,|%,) < (n, —v) + E(R\|F,).

An application of (41) and the proof of Lemma 2 complete the proof of Lemma
13. O
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LEMMA 14. For any € > 0 there exists ¢ > 0 such that

Pflog R, >log R} + &b forsome v <n < no} < exp(—b°).

ProoF. Since

P n—1 Evt(n_o—u)"‘/\(n—l)N k
R, <R} Y N,(k)+ ¥ N,(k) + —=2 v — (%)
k=0 Z2:=Ol)k

k=v+(nyg—v)*

xexp{ —6(n — v)[S, — (n — v)r]/n},
the result follows from appropriate modifications of Lemmas 7 and 10 to cover
the range v < n < n,, Lemmas 8, 9, 11 and the proof of Lemma 12. O
LeEMMA 15. For any £ > 0 there exists ¢ > 0 such that for all large B,
P{R} > B°’|N > v} <cB~".

Proor. Observe that
PR} > B°|N > v} < P,{R} > B*}/P.{N > v}.

From the upper bound imposed on v by condition (14) and the results of
Appendix 1, we see that

P.{N > v} > P,{N > Bny} ~ P,{N* > Bny} > exp(—h(8)n;) as B > .

Also, under P, R* has the same distribution as
v—1
Y exp(8S, — 6%k/2),
0

which is dominated by

(42) Y exp(8S, — 6%k/2).

0
According to Kesten (1973), Theorem 5, the tail of distribution of (42) goes to 0
at the rate 1/x. O

APPENDIX 3. A remark about Pollak and Siegmund (1985).

In several places we have referred to Pollak and Siegmund (1985), who were
concerned with detecting a change in the drift of Brownian motion when the
initial drift w, is known (say w, = 0). Two of their results are a double
integral giving the expected delay for a Shiryayev-Roberts procedure when
v = 0 (Proposition 2) and a precise asymptotic expression for the expected
delay when v is large (Theorem 1). Here we observe that as B — o, the
difference between these expected delays converges to an infinite series, which
is often easily evaluated. Hence in many cases the double integral given by
Pollak and Siegmund (1985) can be approximately evaluated by hand.
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Let W(2), 0 <t < , denote Brownian motion with drift 0 for £ < » and
drift u > 0 for ¢ > v. Let 8, B > 0 and define

T= {nf{t: '/:exp[‘o‘{W(t)*— W(s)} — 82%(t - s)/2] ds > BI}.

THEOREM. For any u > 0, as v, B —> o,
(43)  Ey(T) -E(T—vIT>v) 52672 [k(2a -1+ k)],
1

where a = n /8.

REMARK. Special cases of interest are a = 1,1/2,3/2, 2. The series on the
right-hand side of (43) is 1, LTk~ 2 = w2/6, 3/4, and 11 /18, respectively.

Proor. From the argument given in Appendix B of Pollak and Siegmund
(1985), we see that as v, B —> o,

E (T —vIT >v) +0(1)

- A 2a—1 _ _
(44) _ 26 210 {[1-(x/8) | /(2 1))exp(~1/x) dx/x, a+1/2,
26—2fA10g(A/x)exp(—1/x) dx/x, w=1/2,
0

where A = 52B/2. The expression for E,(T) given in Proposition 2 together
with some routine calculus yields

E,(T) = 23‘2f‘4w_1f‘é1z'2" exp(1/z) dzu"**exp(—u) du.

We now expand exp(1/z) = L%_,2 */k! and integrate term by term. The
k = 0 term is exactly the right-hand side of (44); and the remaining terms
converge as A — » to the series appearing on the right-hand side of (43). O
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