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THE ASYMPTOTIC DISTRIBUTION OF A NONITERATIVE
ESTIMATOR IN EXPLORATORY FACTOR ANALYSIS!

BY Yuraka KaNo

Osaka University

This paper presents the asymptotic distribution of Ihara and Kano’s
noniterative estimator of the uniqueness in exploratory factor analysis.
When the number of factors is overestimated, the estimator is not a
continuous function of the sample covariance matrix and its asymptotic
distribution is not normal, but the consistency holds. It is also shown that
the first-order moment of the asymptotic distribution does not exist.

.

1. Introduction. Factor analysis is an important branch of statistical
science designed to analyze the internal relationship among a set of observed
variables. The definition of the factor analysis model is as follows: A family of
probability distributions of a p X 1 random vector x is called a factor analysis
model with %2 common factors if there exist a p X & matrix A anda p X p
positive definite diagonal matrix ¥ such that the covariance matrix 3, of x is
represented in the form
(1.1) Var(x) = 3 = AN + ¥,
where A and ¥ consist of factor loadings and unique variances, respectively
[see, e.g., Lawley and Maxwell (1971), page 6]. This paper deals with estimation
of exploratory factor analysis in which there is no prior information about the
number % of factors, values of A and V. Let x;,...,x, be a random sample of
size N drawn from the factor analysis model; the parameters A and ¥ are
then estimated, after choosing an appropriate %, using the sample covariance
matrix S defined as

1 N
S = ; Z (x, - X)(x, — X)',
k=1

where n =N —-1landX=(1/N)Z¥_ x,.

Many methods for estimating these parameters have been developed; these
include maximum likelihood (ML [Lawley (1940)]), the canonical factor analy-
sis of Rao (1955) and the generalized least squares (GLS) method due to
Joreskog and Goldberger (1972). Although they are statistically efficient, these
methods require iterative processes and may cause several difficulties, such as
improper solutions, starting-value problems, nonconvergence and heavy com-
putation [see, e.g., Driel (1978), Anderson and Gerbing (1984), Boomsma
(1985) and Sato (1987)]. On the other hand, Thara and Kano (1986) proposed a
closed form estimator of the uniqueness ¥, and Kano (1989) showed that the
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inverse matrix involving the Ihara—Kano (I-K) estimator can be replaced by a
generalized inverse matrix. It is a surprising result that the I-K estimator is
consistent even when the number % of factors is overestimated, which was
shown by Kano (1990a). He also showed that this property ensures the rare
occurrence of improper solutions. The traditional estimation methods (includ-
ing the ML and GLS methods) often encounter some serious difficulties when
k is overestimated: For example, the estimators are inconsistent and the
distributions of the estimators still do not have been obtained even with the
help of the asymptotic theory [see, Geweke and Singleton (1980), Section 2,
and Kano (1990a), Section 1]. These problems happen because the parameter
is not identified. These facts may also make it difficult to determine the
number of factors because the distribution theory of statistics for choosing
models, for example, Akaike’s Information Criterion (AIC), is based on the
asymptotic normality of the estimators [see Akaike (1987)].

After consistency, distributions of estimators are important because they
are used to construct confidence intervals and to test statistical hypotheses.
The case has already been treated in which the number % of factors is
correctly chosen. Thara and Kano (1986) showed that the I-K estimator with
the true & is asymptotically normally distributed, and the asymptotic variance
was given by Kano (1990b). This paper investigates the asymptotic distribution
of the I-K estimator, when % is overestimated. In this case the analysis is not
straightforward because the estimator is not a continuous function of the
sample covariance matrix S and the usual technique using derivatives is not
available.

2. Thara and Kano estimator of the uniqueness. Let X = AA' + V¥,
with A being p X &, and suppose that the parameter (A, ¥) satisfies Anderson
and Rubin’s sufficient condition for identifiability [see Theorem 5.1 in Ander-
son and Rubin (1955)]: If any row vector of A is deleted, there remain two
disjoint nonsingular submatrices of order k. The condition will be abbreviated
to the A-R condition hereafter. Note that the Anderson-Rubin (A-R) condi-
tion requires that p > 2k + 1.

Let m be the number of assumed factors. Since the (true) number % of
factors is generally unknown in exploratory factor analysis, m is not necessar-
ily equal to k. Partition A, ¥, 3 and S as follows:

Al Uy
Ay |m Yy
A= Ay |m ’ v = v,
| Ay [p—2m -1 i v,
—‘711 Sym [ 511 sym
031 2 Sa1 Sa
S = and S =
031 23 g 831 Ss2 S
| T41 Sae 343 2 | Sa1 Sz Sis Su
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We assume that m is not greater than (p — 1)/2 to enable the preceding
partition. Thara and Kano (1986) then proposed the following simple estimator

of

(2.1) A{m) =811 — 81355,'83;.

We will call J{™ the I-K estimator for ;. We can calculate estimates ™ of
Y, 1 =2,...,p, in a similar manner after interchanging the variates
X, ..., X, and an estimator of ¥ is then defined as ¥ =

" p 2 A
diag(y{™, ..., ¥{™), and inference of A is based on S — ¥™). The basic idea
of the estimator (2.1) is the direct application of the moment method based on
the relation

Yy =091 — 0'1223_210'31’ .
which holds when m = £ and 33, (= A3A}) is nonsingular (this is ensured by
the A-R condition). Thus, when m = &, consistency of §{* holds and (¥ is

totally differentiable at S = 3, which guarantees its asymptotic normality [see
Thara and Kano (1986)].

Assume that the observed vector x is normally distributed with the covari-
ance matrix 3 in (1.1), and nS follows a Wishart distribution W,(n, %). Kano
(1990b) then presented the asymptotic variance of > as follows:

(2.2) Var(z//{k)) =yf+ ("12232 V3355001 + ‘/’1)(0'13223 V,3 550, + ¢’1)
and

Var(§{?/s,,) = {Var(¢{*) - c}/ofl
for a standardized case, where ¢ = 2y2(2¢2 /oy, —

When the number of factors is overestimated, i.e., m > k&, the matrix 3, is
singular and hence the I-K estimator cannot be defined at S = 3. Kano
(1990a), however, proved that §{™ converges to i, in probability. It follows
from the property that S — ¥(™ converges to AA’ in probability, where

= [(p — 1)/2], denoting the maximum integer not greater than (p — 1)/2
(the Gauss symbol). He has used this to propose a new method for determining

the number of factors.
It is important to investigate which estimator is the best among the class of

consistent estimators §{™ with £ < m < (p — 1)/2. The aim of this paper is
to present the asymptotic distribution of the I-K estimator when m > k&; this
will also provide useful information about the choice of the best I-K estimator.

3. Main results. We shall first consider the following lemma, which also
gives notations used in this paper.

LEmMA 1. Assume that m > k and that A, and A4 are of full column
rank. Decompose the 2m + 1) X 2m + 1) submatrix
o1 sym
Oy1 g
o3 232 g3
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of 3 in (1.1) into PP’, with
P11 0 0
P=|py Py 0
Psi Ps; Py

Then there exist m X k matrices B and C of rank k and k-vectors d and e such
that P33'Py, = CB', Py,'p,; = Bd and Pg'py, = Ce. Furthermore, de + 1 =

o11/Y1

Proor. Since 2 is nonsingular, so are Py, and Pg;. From the definition of
P, we see that Py, Pj, = Ay(I, — A p;i?A1)A,, which implies that rank(P;,) =
k. Hence, there exist m X & matrices B and C Wlth P3Py, = CB’, and we
may then define

rpr ' -1 ' — ey B -1 , _
d = C'Pi3A4(ANsA3) XNppr' and e = B'PyyA,(ApA,) Aypydit
We have easily d'e = p?,u72A (I, — N\ p2ADN, = p2uit — 1. O

We use here the symbols —; , —»,, =, and =; to mean convergence in
law and in probability, asymptotic equivalence in probability and equality in
distribution, respectively. The following theorem will be established.

THEOREM. Assume that the observed vector x is distributed as N,(0,3)
and that 3 = AN + V¥, with A being p X k, which satisfies Anderson and
Rubin’s sufficient condition for identifiability. Let m, k <m < (p — 1)/2, be
the number of assumed factors and let the I-K estimator c,lr('”) be defined in
(2.1). The constants B, C, d and e are defined in Lemma 1. Then the following
holds:

(3.1) \/;((Zim) - ¢’1) - ¥z + (l//12/0'11)c1cz(Z2 + zizz/X1),

where Z, and Z,, are distributed as N(0, 1), z, and z, also follow N,, _,(0,1,,_,)
and x? conforms to a chi-square distribution with one degree of freedom,
which are all mutually independent, and where

32) ¢2=d(B'B)d+d(CC) 'd+1 and c2=e(B'B) 'e+1.
1

CoMMENT. The constants c¢; and c, are free from the choice of m X k
matrices B and C in Lemma 1. Note that the term z//z,/x; in (3.1) vanishes
when m = k, which implies the asymptotic normality of ¢{*, and then the
asymptotic variance due to (3.1) is exactly equal to that in (2.2). This will be
shown in Appendix A. When the number of factors is overestimated, the
asymptotic distribution is not normal, and the expectation of the asymptotic
distribution does not exist because that of 1/ \/;(T does not. Therefore, it
could be said that (P is the best among the set of consistent estimators §{™,
k <m < (p — 1)/2. Hence, we can recommend a,lr(k) as an estimator of ¢,
when % is known.
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Proor oF THE THEOREM. It follows from the Bartlett decomposition [see,
e.g., Anderson (1984), page 251] that

S1 sym x; O 0
n|S; Sz = PXX'P'" with X=|Xy X, O
S31 Ss2 S X3 X3 Xgs
and that
x1,/Vn —p 1
(3.3) Xzz/\/; =p I,

Vn (x%/n — 1) », Y ~ N(0,2)
\/;(Xszz’z/n - Im)a -, y~ Nm(O,‘a’a I, + aa’),

where a = Bd. Note that Y, y, x,,, X3; and Xg, are mutually independent.
Put

t, 0 0
tyy Ty, O
ty, T3 T
P11%¥11 0 0
= PX = P21%11 + PaoXyy Pyy Xy 0

Pg1Xy; + PgyXgy + PggXyy Py Xop + Py Xy PggXgg
Then the I-K estimator can be written as
‘z’{m) =81 - s1253_21531
(3.4) = (t%/n)(l + tész’z_lTs_zltal)
= Ull(xfl/n)G_l’ say,
and the matrix G is represented in the form
G =1+ 5T, Ty'ty
' ’r— -1
=1+ (D111 + PpXg1) (PogXap)' ™ '(Pap Xop + P33 Xs,)
- X(Pgi¥%yy + PaaXyy + PygXyy)

-1

(3.5)

=1+ (Bdx,; + x5;)'H (Cex,; + CB'xy; + Xg;)

in view of Lemma 1, where H™! = (X;,) " N(CB'X,, + X3,) "~
The following lemma is needed to prove the theorem.

LEMMA 2. Decompose B = Py, Dy and C = Ppy D¢, where Dy and D are
-k X k nonsingular matrices and Pg = [Pg,: Pg,] and Py =[Pp,: Pyl are

. Y, Y, .
orthogonal matrices of order m. Define | " Y‘j = P, Xg3,Pg, where Yy, is
21 22

k X k. Then the elements of P} X4, Py are independently identically distributed
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as N(0,1) and

0 0
G VrnH'- P[ _ ]P’,
L BO Y221 e

I,

ii H'C P
W e B[—Ygz%l

o

0

0
Gii) ndB'H ™ -, — yPB[O vy P4+ dDg I, — Y, YRl | PL,

Gv) Vnd(nB'H™'C - I,)

Ik -1 -1 —1 =1
L~ {Y’PB[ _y-ly. :|DB +dDg Yy — YioYs; Y1) Dj },
22 Y21

where y is defined by (3.3).

A proof of Lemma 2 will be given in Appendix B. Note that (iv) in Lemma 2
implies nd'B'H 'C -, d'. From (3.5) and Lemma 2, we have G =,1 +
x2d'B'H 'Ce =,1 + d’e, which means, in view of Lemma 1, that

g
(3.6) G—p —.

21
It follows from (3.3), (3.4) and (3.6) that §{" is a (weakly) consistent estima-
tor of i, and this is an alternative proof of consistency [cf. Kano (1990a)].

Since we have, from (3.3), (3.4) and (3.6),

2
(@ = ) = 0 (1) —we o - )
(3.7) '
‘1’12 J11
oo o=
L ¥ J11 " Uy

we may investigate the distribution of Vn (G — oy,/¢;). This can be repre-
sented from (3.5) and Lemma 1 as

\/E(G - %) = Vn {(Bdx,, + X,,)'H (Cexy; + CB'xy + Xg) — d'e}

1
(3.8) =Vnd(x3B'H'C - I,)e + Vnx;;d'BH '(CB'x,, + X3,)
+Vnx,;xy H 'Ce + Vnx, H Y(CB'x,; + Xg5,)

=I,+1,+1;+1,, say.
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Each term of (3.8) can be evaluated using (3.3) and Lemma 2 as follows:
2

X
I - d’{\/ﬁ(% _ l)nB'H‘IC +ym(nBEC-1,))e

I,
- YZ’_21Y21

(89) -, deY - y’PB[

]D,’;le
- d'D(,_'l(Yu - Y12Y2_21Y21)D1/3_ 1e’

I, =, d'B'xy + Vnx;;d B'H 'xy

(310) . 0 0 ! ry—1 —1 ’
-, dB'xy — y'Pg 0 Yy Pix3 + d'Dg ‘[Ik D €73 %) ]chap
’ Ik —1
(3.11) I; > x5, Py YL, Dy e
and
’ O 0 '
(3.12) I, > x5, Pp 0 Yl Pexs;.
22
Let
Y11] Py , [Ym] Ppgixy ,
= = Ppy, = = P.x
[y12 Py 5 Yoz Pgoxyy e
and
Y31] Pix5
= = P(x3;.
[Y32 Pioxgy

The random vectors [;’:;] and [;'z;] are independently distributed as N,,(0, I,,),
and [zi;] is also normally distributed with covariance matrix
(3.13) [ng][pgd] + (BA)(BA)I,.

We thus see that the random matrices Y,;, vectors y,; and variable Y are all
mutually independent. Substituting y,; for Ppy, PzX,; and Pixs in (3.9)-
(3.12), we then have from (3.8)

o
Vn (G - f) —, d'eY — D3y, + (dDy + €Dz')y, + d'D;lys,
3.14 - _ / /
(_‘ ) - dD;'Y,, Dy 'e + (dDg'Yy, + yip — ¥52)

XY2_21(Y21DIB_ 1e - Y32)-

Thus, we can see from (3.7) and (3.14) that the distribution of Vn (1/7{"‘) —¥y)
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converges to that of
l/I 132 Y4 'y — 'y —
0,1 {Y+ eDzly,, — (dDB + e.DB 1)3’21 - dD;lys,
11
+d'D; 'Y, Dy ‘e — (dDg'Y1, + Viz — ¥52) Yo' (Yo D5 e — ¥3o))
djl (W w,Y5,! wz) say.
0'11
Note that W, w;, w, and Y,, are mutually independent. Since Dz Dz = B'B
and D;D., = C'C, we have from (3.13),
Var(w;) = {d(B'B)d + d'(C'C) "'d + 1}1,,, = ¢?I,,_,, say
and ’
Var(w,) = {e(B'B) ‘e + 1}I,,_, =c2I,._,, say.
After some calculations we get

' o1 ? 2.2
Var(W) = (d'e + 1)® + ¢2c2 = o + cics
1

in view of Lemma 1. Let Z, and Z, be independently distributed as N(0, 1).

Then
g Y
— W=, 4,2, + | — Z,.
(0_11 a Y12, o1 C1Ca4s
Define z, = —c;'w; and z, = c; 'w,. Then z, and z, follow N,,_,(0,1,,_,)

independently. We thus obtain
wZ
(3.15) V(g™ — ¢,) >, 0, Z, + ( )clcz(Z2 + 21Y5'2,).
o

The following lemma [see, e.g., Johnson and Kotz (1972), page 144] is useful
in completing the proof.

LEmMa 3. Let x be distributed as N (0,1,) and J be a ¢ X g random
matrix, independent of x, such that J'J follows W(n R™Y). Then Vv J~'x has
a multivariate t-distribution with parameter matrtx R and v degrees of
freedom, where v=n — q + 1, that is,

\/;-J_lx =d y

Vxi/v’

where y and x? are independently distributed as N, (0, R) and x*(v), respec-
tively.

Since Y,,Y,, is distributed according to W,, _,(m — &, I,,_,), it follows from
Lemma 3 that Y,,'z, has a multivariate ¢-distribution with parameter matrix
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I,,_, and one degree of freedom. This fact and (3.15) complete the proof of the
theorem. O

Kano (1990b) dealt with the asymptotic distribution of the I-K estimator
with m = k based on the sample correlation matrix as well. We can also
obtain, in the same way, the distribution based on the sample correlation
matrix in a case when m > k.

APPENDIX A

We shall here show that when m = k, the asymptotic variance based on
(8.1) is the same as in (2.2). As stated just after the theorem, the asymptotic
distribution of vV (§{® — ¢,) is given by

¥i

(A1) iz, + (_)CIC2Z2’
o111

and its variance is

¥t +

2 2
Y1

c2cl.
o1

Note that B and C are nonsingular matrices of k X k. Then c? and cZ in (3.2)
are written as
2

(A2) C% = Pél(Pszpzlz)_lzaa(Pzzpéz)_1P21 - {P'zl(Pszpéz)_IPm} +1

and
2

(A3) Cg = P131(P22P§2)_1222(P32P2/2)_1P31 - {pél(Pszpzlz)_lpal} + 1,

in view of the definitions of B, C, d and e. We can easily check

’ ’ -1 Pu ’ ’ -1 p
(A4) le(P32P22) = ( m )"12232 ) P31(P22P32) = ( n//u )0'132231
1 1
and i
(A5) pé1(P32Pz;2) Ps1 = Y1 '01535505; = ¥1 AN,

Substituting (A4) and (A5) for (A2) and (A3) and using (Al) lead to the
asymptotic variance in (2.2).

APPENDIX B

Proor oF LEMMA 2. The elements of X, are independently distributed as
N(0,1), and Py and P, are both orthogonal. The elements of P/Xj, Py,
therefore, have the same distribution as those of Xj,. By definition of Y;; we
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see easily that
A -1 _ -1.,- _ _ _
(B1) (B stlc) = D¢ I(YH) Dg t= D¢ 1(Yu - Y12Y221Y21)D31,

(B2) (B'X5'C) 'B'X3t = D51, : — Yy, Y5!| Pe,
_ I
(B3) X3 'C(B'Xz'C) ' = PB[ JD;;I
_Y22 Y21
and
1oy 0 ’
(B4) X3 — X5'C(B'X3C) B'X3,)' = PB[ 0 vy }PC.

Now we shall prove Lemma 2 by using (B1)-(B4). We get from (3.3),
VnH™' =V (X3,) " (CB'Xyp + Xa5) ™"
= Vi (X3) " {Xa = X C(I + B'Xpp X51C) "' B X5 X55')
-1 -
(5] sl e o
=, X5 — X5,'C(B'X3C) 'B'Xz}.
This relation and (B4) imply (i). Similarly, we have

1

nH™'C =, X3;)C(B'X3'C) ",
which, along with (B3), shows (ii). Since
ndB'H™' = dB'(nl, — X;3X3,)H ' + d'B'X,5(CB' X,y + X35) "
—dIB\/__( 22 22 _Im)‘/-nTH_l

+d(I, + B'Xszgzlc)_lB'Xszgzl
- yVnH ™' + d(B'X3'C) ' B'X3}
in view of (3.3), we get (iii) from (i) and (B2). By similar calculation,
Vnd(nB'HC - 1,) = ‘/;d'{nB'Xg'z_ngzlc(Ik " B'Xszgle)_l 3 Ik}

22X2l2 X2,2 !
{dB \/‘( —Im)(‘/—;—)

x\/rT(Ik + B'X22X5210)_1
This relation, (B1) and (B3) show (1v). The proof is complete. a

X3'C + d'}
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