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J. H. Friedman presents the new recursive method of regression estimation
for high dimensional data. This method is very interesting and has very good
perspective. The main idea is an adaptive and recursive construction of the
system of basis functions. The proposed estimation method has good flexibility
and it is convenient for computer realization. We think that this approach is
applicable for other nonparametrical estimation problems, for instance in the
spectral density estimation for stationary Gaussian data.

The interesting problem connected with the proposed method is the theoret-
ical study of quality of this method for different classes of smooth regression
functions. (The reasons for consideration of the classes of smooth functions lie
not only in practical importance of such constraints. From our point of view
the most important theoretical results are established for these functional
classes.) Let us recall some known results in this direction.

1. The best in minimax sense order of the rate of convergence of the L,
1 < p < «, risks to zero for the regression function of the smoothness of g
in R* is equal to n=#/@f*k [Ibragimov and Hasminskii (1980) and Stone
(1982)].

2. Speckman (1985) and Nussbaum (1985) found regression estimators which
cannot be improved, not only in the sense of order of the rate of conver-
gence but also in the sense of constant. Impossibility of improvement (in
minimax sense) of this constant for special case ellipsoids in the Sobolev
spaces and integrated mean-squared error was proved by Nussbaum (1985),
who used the results of Pinsker (1980).
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3. Recently, Golubev and Nussbaum (1991) have constructed the estimator,
having the best constant and the best order for a priori unknown ellipsoid
in the Sobolev space. This estimator is adaptive in this sense and it uses
adaptive choice of basis, too. The family of Demmler and Reinsch (1975)
bases {¢?} is used for different orders of smoothness 8. The estimator has

the form
. n i \B
= L1 () | Eeobretio.
=1 w +
Here
1 n
-
t7, 1 =1,...,n, is equidistant observation design. The values of 8 and band-

width W are chosen adaptively on base of data.

We think that the interesting thing in the theoretical sense question is:
Have Friedman’s estimators or some of their modifications analogous asymp-
totical properties or not?

In conclusion, we would like to repeat that Friedman’s estimator is very
attractive for applications independent of the answer to this question.
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