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IMPROVED BOUNDS FOR THE AVERAGE RUN LENGTH OF
CONTROL CHARTS BASED ON FINITE WEIGHTED SUMS

By WALTER B6HM AND PETER HACKL

University of Economics and University of Iowa

The average run length (ARL) is a key variable for assessing the
properties of process control procedures. For continuous sampling proce-
dures that are based on finite weighted sums (such as the moving sum
technique) closed form expressions of the ARL are not available in the
literature. For normally distributed random variables, Lai gives bounds for
the ARL. In this paper we derive a lower bound of the ARL that (1) does
not depend on normality and (2) in many situations is much sharper than
the one obtained by Lai. Our results also imply that Lai’s upper bound
deviates from the true value less than the number of terms in the sum.
Furthermore, we show that the applicability of Lai’s bounds is not re-
stricted to normally distributed control variables.

1. Introduction. Statistical methods of process control usually are as-
sessed on the basis of their run length (RL), that is, the number of samples
taken before an out-of-control signal occurs at a certain quality level. The run
length should be large if the process is under control, and it should be small
otherwise. Due to the complexity of the problem, only the average run length
(ARL), that is, the expectation of the run length, is discussed in the literature
for most quality control procedures. But even for the ARL, it is difficult to find
closed form expressions. For weighted sum schemes like the moving sum
technique, the mathematical treatment is made difficult by the fact that the
increments in the test statistics are not independent. For normally distributed
control variables, Lai (1974) gives upper and lower bounds for the ARL.

In this note we derive bounds which do not assume normality of the control
variables. In particular, we derive a new lower bound which allows us to assess
the quality of Lai’s upper bound. These results are based on an inequality that
is given in a lemma in Section 2.

2. An upper bound for ARL. Suppose the random variables X, X,, ...
are i.i.d. with density f(x), E{X} = 0 and Var{X} = 02 < «. We construct the
sequence Y, = X" _.c,_ (X, —0),n =k, k + 1,..., where the weights satisfy
0<c;<ofori=0,...,k—land c; = 0 for i > k. The sequence Y, Y, {,...
is stationary with mean zero and Cov{Y,,Y, .} = oL %} %c,c;,, > 0if 0 <
s<kandOif s > k. As X, X,,... areiid. random variables and the Y’s are
nondecreasing functions of the X’s, the Y’s are associated random variables
[see Esary, Proschan and Walkup (1967)].
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The quantity of interest is the run length (or stopping time) RL = inf{n > k:
Y, > h}. Let us define A, (x) = Prob{Y},,; <x,...,Y,,, <x} for n > 0, with
Ao = 1. The average run length ARL, that is, the expectation of RL, can be
written as ARL = E{RL} = k + L% _,A,(h). Define p,(x) = A,,_(x) — A (x) =
Prob{Y,,, <=x,...,Y,,,_, <%, Y,,, >x} for n > 1, that is, the probability
that the sequence Y,,Y,_,... exceeds x the first time at & + n. It should be
noted that the sequence p,(x), py(x),... is nonincreasing for any x. This can
be seen from p,(x) < Prob{Y, ,<=x,...,Y,,, 1 <=x, Y, ,>x}=p,_ ()
The last identity is due to the stationarity of the Y’s.

LEmMMA. Let Y,,Y,,,,... be the previously defined sequence of random
variables. Then for all n > k,
(1) pn(x) = An,—-k(x)pk(x)’

Proor. Let Z,, i = 1,2, 3, be the indicator functions of the events {Y},, <
.., Y, <xh {Y,,;<x,...,Y,,,_1 <x}, and {Y,,, < x}, respectively. We
can rewrite p,(x) as

p(x) =Prob{¥,, , <=x,....Y,,, 1 <x, Y., >x}
= Prob{Z, =1, Z, = 1, Z; = 0)
= Prob{Z, =1, Z; = 0} — Prob{Z, =0, Z, = 0}
+ Prob{Z, =0,Z, =0, Z; = 0}.

From independence of Z, and Z; follows Prob{Z; = 0, Z; = 0} = Prob{Z, =
0}Prob{Z; = 0}. From the fact that Y,,Y, ,,... are associated random vari-
ables, it follows that Prob{Z, = 0, Z, = 0, Z; = 0} > Prob{Z, = 0}Prob{Z, = 0,
Zy = 0} [see Esary, Proschan and Walkup (1967)]. So, we get

p.(x) = Prob{Z, = 1, Z; = 0} — Prob{Z, = 0}Prob{Z, = 0}
+ Prob{Z, = 0}Prob{Z, = 0, Z, = 0}
= Prob{Z, = 1, Z3 = 0} — Prob{Z, = 0}Prob{Z, = 1, Z, = 0}
= Prob{Z, = 1}Prob{Z, = 1, Z, = 0}
= App(x)pp(). u

For normally distributed control variables X, Lai (1974) gives an upper
bound for the average run length using the inequality (1). As a consequence of
our lemma, Lai’s upper bound also holds for any i.i.d. control variable with
finite second moment: For any probability distribution of the control variable
that has a finite second moment, an upper bound of the ARL is given by

M(h)
O

The proof of this result uses the above lemma and follows the steps in Lai.

(2) E{RL} <k +
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3. Lower bounds for ARL. Next, we give a lower bound for the ARL:
For any probability distribution of the control variable with finite second
moment, a lower bound of the ARL is given by

M(R)
Pk(h) =L

This can be proved as follows: For k <n < 2k, we can make use of the
inequality p,(h) < p,(h) which is fulfilled for all n > k; applying the definition
of p, leads to

(4) A(R) = A, (k) —py(h) fork <n <2k
For n > 2k, we obtain p,(h) < A, _o;.(R)p,(R): ‘
p.(R) = Prob{Y,,, < h,...,Yk+n_1 <h,Y,, >h)
< Prob{Y,,, <h,. k+1<h 1 <h,. .Y o 1<h,Y . .=h}
= Prob{Y,., <h,. —he1 < h}
XProb{Y, ., <h,. ..,Yn+k 1 <h,Y, . ,=>h}
= An—zks1(h)pr(h).

The transition between the last two lines makes use of the independence of
Y,,; and Y, for i > k. This leads to

(5) Af(R) 2 A, 1(R) = Ay gpi(h)pp(h) for n > 2k.

(3) | E{RL} > 1 +

Adding the sum over (4) for all n =k,...,2k — 1 and that over (5) for all
n > 2k gives

L (B2 T A(h) = (k= Dpy(h) = pulh) T A,()

n=k+1

or

d Ax(h)
k+ nglAn(h) > o (h)

This completes the proof, since E{RL} = k& + L% _;A,(k). As we made no use
of further assumptions, this lower bound is valid for any distribution of the
ii.d. control variables that has a finite second moment.

A related lower bound L.,

+ 1.

(6) E{RL} > k + [1 - A4(h)] Xk‘. An(h) = Ly,
n=1

can be derived as follows. Taking the association of the Y’s into account, one
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can show that A,(x) > A,_,(x)A,(x) for all n > k& and for all x. This leads to

E{RL} =k + f A(R) =k + f An(h)[l +20,(R) + A (R)+ ---]
n=1

n=1

k
=k +[1=2(R)] 7" L Au(R).

n=1

A similar lower bound Lj; = k[l — A,(h)]"! is given by Lai (1974). It is
obtained from L, by replacing ¥ %_,A,(h) by kA,(h) so that Ly < L, for all
k > 1. In most cases the improvement of L, on L, is rather small.

The relative merits of L; and L, or L; depend on the ratio A,(h)/A,_,(h).
If the process is out of control and this ratio approaches zero, L, and L,
converge to k (they are “asymptotically sharp’’), whereas L; tends to 1, which
underestimates the true ARL. If the process is under control or only slightly
disturbed and this ratio is near 1, L, and L show large deviations from the
true ARL. However, in all cases the difference L, — L, is always k — 1. This
implies that L, cannot exceed the true ARL by more than 2 — 1 and L,
cannot fall short by more than £ — 1. Therefore, the value of the bound L, is
twofold: First, it shows that the upper bound L, is a rather sharp one as it
deviates at most by £ — 1 from the true ARL. Second, it is a considerable
improvement on other lower bounds; this fact is particularly useful for in-con-
trol or nearly in-control cases.

It should be noted that the necessary effort for computing L, is less than
that for L,. Only A,(h) must be known for L, whereas A, (h), n =1,...,k,
are involved in computing L,.

4. A numerical illustration. Here, we consider the cases k£ = 2, 3, and
4 with weights ¢p = -+ =c¢,_; =1 and ¢; = 0, i > k: The sequences of the
Y’s consist of overlapping moving sums of two, three, and four terms each,
respectively. Table 1 gives, for normally distributed control variables (o2 = 1),
the upper and the three lower bounds of the average run length. Numerical
integration by means of the NAG FORTRAN subroutine DO1FCF, using an

TaBLE 1
Bounds for the ARL of a sequence of weighted sums of normally distributed random variables for
k=23, and 4, and weightscy= - =c,_;=1landc;=0 fori 2 k;02=1
k=2 k=3 k=4

k L L L L h L L L L h L L L L
2 u 1 2 s 3 u 1 2 s Tz u 1 2 3
3 788.6 787.6 764.5 764.0 3 872.4 870.4 822.1 821.8 3 966.8 963.8 894.2 893.3
2 533 523 48.7 483 2 64.0 62.0 555 552 2 75.0 72.0 63.7 629
1 98 88 82 79 1 129 109 100 98 1 161 131 124 118
0 40 30 33 30 0 57 37 42 41 O 74 44 56 52




IMPROVED BOUNDS FOR AVERAGE RUN LENGTH 1899

adaptive subdivision algorithm, was used to compute the bounds. The accuracy
in evaluating the integrals was chosen so that the values of the ARL bounds
reported in the table are exact.

Table 1 makes clear that the knowledge of the lower bound L, increases the
information on the ARL considerably. The lower bound L, is preferable to the
bounds L, and Lg, even for small values of h. The superiority of L, over L,
and L, is increased with increasing k. There are no great differences between
the bounds L, and L.
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