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EXPONENTIAL FAMILIES AND REGRESSION IN THE
MONTE CARLO STUDY OF QUEUES AND RANDOM WALKS'

BY SOREN ASMUSSEN

University of California, Santa Barbara

An importance sampling method studied by Siegmund and Asmussen
in the case of waiting time probabilities is extended to the mean and other
functionals. The ideas involve exponential families of queues and control
variates (regression), and it is found both from theory and practice that the
method is dramatically better than standard tools like regenerative simula-
tion or sample-mean estimation, not least under heavy traffic conditions.

1. Introduction. First passage time probabilities for a random walk {S,}
come up in a variety of contexts in applied probability and statistics. In
sequential analysis, a basic problem is to evaluate quantities associated with
m(a,b) =inf{n > 1: S, <a or S, > b}, where a < 0 <b. In insurance risk,
the emphasis is on the one-barrier problem and the ruin probabilities
P(r(u) < »), where 7(z) = inf{n > 1: S, > u}. In queueing theory, the quan-
tities of main interest are the waiting time distribution P(M < u) = P(r(u) =
®), where M = max,, ., S, and (even more) functionals like the mean waiting
time EM.

Explicit expressions are, however, typically not available and simulation
evaluation has therefore become a widespread and popular tool. However, the
methods which are in use in practice tend to be crude and not always efficient.
For example, in the queueing setting, it has been noted repeatedly (e.g., [13],
[4] and [22]) that heavy traffic conditions present a particular challenge and
that the standard methods may here require exceedingly long simulation runs
to perform satisfactorily.

One frequent argument against more sophisticated variance reduction
methods is that the ideas may work beautifully in oversimplified settings like
the Monte Carlo evaluation of simple integrals, but it is most often not clear
how to adapt such lines in more complex and realistic situations. There may
often be some truth in this, nevertheless, some investigations have appeared
which show that a more careful analysis of the specific structure of the
problem in question can sometimes be exploited with great advantage. We are
here concerned with one such particular technique, which was introduced by
Siegmund [17] in the sequential analysis setting and was further studied by
the author [1] for compound Poisson ruin probabilities. The method is based
upon likelihood ratio identities for exponential families of stopped random
walks and yields a very substantial variance reduction. From the queueing
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point of view, a main drawback is, however, that it is not apparent how to deal
with quantities like the mean waiting time rather than the waiting time
distribution, and this seems a must in that framework.

The purpose of the present paper is to present one possible approach for
resolving this problem. The additional ideas involve a certain randomisation
(which avoids estimating infinite integrals) as well as the method of linear
control variates, which in turn is closely related to standard linear regression
(also further regression schemes will be shown to be of possible relevance).

Though, essentially, we are dealing with a random walk problem, some of
the main applications seem to be in queueing and the details will therefore be
worked out in that setting. We start in Section 2 by introducing the basic setup
and suggesting our Monte Carlo approach. Section 3 contains some empirical
investigations of the efficiency of the method, which show that the variance
reduction compared to standard methods may be very substantial (for exam-
ple, it is indicated that in some particular settings the gain amounts to a factor
of several thousands compared to the regenerative method). Section 4 then
contains a theoretical study of the estimation method. The basic performance
measures are evaluated, it is shown that in marked contrast to established
methods the efficiency increases under heavy traffic conditions and we give
some results helpful to find the most efficient way to carry out the randomisa-
tion step. In Section 5, we discuss the idea of analysing the simulation output
by means of a weighted regression with normally distributed errors. Finally,
Section 6 contains a reinspection of the empirical material of Section 3 in light
of the theoretical insight obtained, as well as some concluding remarks, and in
particular we outline an example of the applicability of the method outside the
simple random walk setting.

2. The Monte Carlo method. We use throughout the notation of [2], so
that U,, U,, ... are the service times and B(u) = P(U < u) is the service time
distribution. Similarly, the interarrival times are T,, T},..., the interarrival
distribution is A(¢) = ®(T < ¢) and thus the traffic intensity is p = EU/ET.
We assume p < 1 so that a steady-state limit W of the waiting-time process
exists, and it is a standard fact that W is distributed as the maximum
M = max, ., S, of arandom walk S, =X, + --- +X,_,, where X, = U, —
T,. That is,

P(W>u)=P(M>u) =P(r(u) <),

where 7(z) = inf{n > 1: S, > u}. The moment generating functions are de-
fined by A(s) = Ee°T and B(s) = Ee*U and we assume that B has enough
exponential moments to ensure that a solution y > 0 of A(—y)B(y) = 1 exists
(this equation is of fundamental importance in random walk theory and we use
notation corresponding to the name Lundberg equation in common use in risk
theory). Under heavy traffic conditions, which are the typical setup of this
paper, v is close to zero. For example, for M/M /1 with arrival intensity p and
service intensity 1, which will be used for illustration in much of the paper,
vy = 1 — p. We define new distributions B; and A; of service and interarrival
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times by
er* —yx
B;(dx) = x—B(dx), A;(dx) =
) = gy B Add) =775
Letting P, and E; refer to a queue with these distributions of service and
interarrival times, we have ([2], Chapter 12) that P;(7(x) < ©) = 1 and

P(W>u) =e "E e "B®

A(dx).

where B(u) = 8,,, — u. This relation is exploited for simulation purposes in
[17] and [1] by noting that an unbiased simulation estimate of P(W > u) can be
obtained as the sample mean of replications of e~"*e~"2®) drawn according to
P,. The reason that this is efficient is that e 7®® is close to 1 and, in
particular, has a small variance which at least for large or moderate u is even
further damped by the factor e ~?“. For example, for M/M /1 with p = 0.9 and
u chosen such that P(W > u) = 5%, a test run reported in [1] yielded a
variance reduction by a factor of 432 compared to the regenerative method.
The objective of the present paper is to make these ideas work also for the
evaluation of functionals like the mean, the second moment, exponential
moments and so on. As a simple and fundamental example, consider the mean

(2.1) w=py=EW= waP’(W> u)du = fwe_“’“IELe‘VB(") du.
0 0

Our main idea is now to avoid estimating an infinite integral not by truncating
at a fixed large value but rather at a moderate random value L which is
independent of the queueing process and which for the moment we take to be
exponential, P(L > u) = e~ **. To avoid introducing bias, we then must correct
by 1/P(L > a) and arrive at

(2.2) Y= fLe"”‘e‘“’“e_"B(“) du
0

as an unbiased (w.r.t. P;) estimator of pu.

This idea is not particularly useful in itself because the variance of Y is
rather large. In fact, in test runs the standard method of regenerative simula-
tion was somewhat superior to simple Monte Carlo application of (2.2). How-
ever, inspection of (2.2) indicates that the variability of Y might to a large
extent be explained by the fluctuations in L. For example, if we let « = y and
note that typically y is small, it is suggested that Y is close to L. This suggests
applying the method of control variates (see, for example, [16] and also [8],
which has extensive references to queueing applications as well as discussion
of nonlinear control variates which become of importance in Section 5). We
apply here what are sometimes called regression-adjusted control variates.
That is, we define C by replacing yB(u) by zero in (2.2),

(2.3) C= /Le"‘“e"/” du,
0
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and perform n replications to produce observations (Y;,C)),...,(Y,,C,). Let
s = o}  Ooyc
- 2
Oyc Oc¢

be the covariance matrix of Y,C, z = oy/0y/0- the correlation coefficient,
S the empirical covariance matrix and Y,C the empirical means. Then
Y — 0yc/02(C — pc) is asymptotically the minimum-variance linear unbiased
estimator of u based on Y, C — u, and if we replace the unknown oy and o
by the empirical estimates, we arrive at an estimator with the same asymptotic

properties,
(24) B, =Y = 5y0/54(C — ne) = N(u,v?/n) where v? = 03(1 — 2%).

Note that, formally, this is equivalent to a regression of Y upon C and that
the control variate estimate i, in (2.4) is the level of the regression line at u.
However, (2.4) is valid also without assumptions like normality of E(Y|C) being
linear in C (but of course the efficiency of the method hinges on the presence
of such linear structure).

From the practical programming point of view, it is necessary to rewrite the
definitions of Y, C in a more tractable form. Consider for simplicity the case
a =y, which will turn out to be of paramount importance. Then C just
reduces to L. For Y, note that the paths of {B(u)} are piecewise linearly
decreasing with jumps of sizes, say, 5(0),5(1),... at u(0)=0<u(l) < ---,
that is,

B(u) =b(k) — (u—u(k)), u(k) <u<u(k+1).
From this it follows easily that

(2.5) Y= ¥ 9731 -e "®) -y (1 — e 7BD),
k:u(k)<L

3. Some empirical examples. A single test evaluation of the estimator
ft, in (2.4) in the M/M /1 case with n = 100 and traffic intensity 0.9 (so that
1 = 9.0) produced some highly encouraging results. We obtained %, = 9.030,
62 =102.7 and 2 = 0.999395. Thus, an asymptotic 95% confidence interval is
1/2

&, + 20/n'/2 =9.030 + 2(102.7(1 — 0.999395%) /100) "~ = 9.030 + 0.071.
The observations are plotted in Figure 1, which shows a very strong linear
dependence between Y and C, corresponding nicely to the rather remarkable
high value of z.

Since y =1 — p = 0.1, P, corresponds to arrival intensity p + y =1 and
service intensity 1 — y = 0.9, i.e., a transient M/M/1 queue with traffic
intensity 1.111111. The estimate £ of z = oy/0y/0- Wwas computed using the
estimate s of o, even though o, can be computed explicitly in this case. Our
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main reason for this is avoiding values greater than 1 which would otherwise
have occurred in a number of our test runs.

For further illustration and comparison with established methods, a num-
ber of further test runs were performed for some standard simple queues with
traffic intensity 0.9. In addition to (2.4), also the standard regenerative esti-
mate and the Minh—Sorli estimate ([13]; see Section 6 for more detail) were
recorded. In each table, the parameters were chosen so as to make expected
execution times (defined as the number of customers taken through the
system) roughly equal. All computations were done on a Macintosh™ SE 20
using Lightspeed™ Pascal and a Pascal version of the portable random
number generator on page 215 of [5] (no attempt was made to optimize the
programs in terms of execution time).

We first once more considered M /M /1 and obtained the results of Tables 1
and 2 (the only difference is that the sample size in Table 2 is 9 times as large).

TABLE 1
Method Parameters Confidence interval Execution time (min)
(2.4) a=7y/5n=20 8.967 + 0.102 8
(2.4) a=1vy,n =100 9.030 + 0.071 9
(2.4) a = 5y,n =500 9.029 + 0.119 17
Regenerative 1000 cycles 8.723 + 2.543 8

Minh-Sorli 1000 cycles 9.004 + 0.087 7
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TABLE 2
Method Parameters Confidence interval Execution time (min)
(2.4) a=7v/5n =180 8.992 + 0.040 80
(2.4) a=1vy,n=900 8.993 + 0.025 83
(2.4) a = 5y, n = 4500 9.002 + 0.138 130
Regenerative 9000 cycles 9.491 + 1.983 81
Minh-Sorli 9000 cycles 8.993 + 0.033 67
TABLE 3
Method Parameters Confidence interval _Execution time (min)
(2.4) a=1vy,n=100 4.511 + 0.007 4
Regenerative 1000 cycles 3.501 + 1.131 4
Minh-Sorli 1000 cycles 4.593 + 0.071 4

For M/D /1 with service periods of unit lengths and arrival intensity 0.9,
one has u = 4.500 and y = 0.207147. Thus P, corresponds to arrival intensity
1.107147 (and unit service periods). The simulation results are in Table 3.

For D/M/1 with interarrival periods of lengths 1,/0.9 = 1.111111 and
service intensity 1, one has u = 4.179 and y = 0.193100. Thus, P, corre-
sponds to service intensity 0.918011 (and unit interarrival periods). The
simulation results are in Tables 4 and 5 (the difference is as before a factor 9
in the sample size).

It is seen from Tables 1-5 that the estimator (2.4) in all cases is much
superior to regenerative simulation. For example, for D/M/1, Table 5 indi-
cates a variance reduction by a factor of 0.5572/0.032% = 303, corresponding
to a reduction in computer time by the same factor to obtain a given precision.

TABLE 4
Method Parameters Confidence interval Execution time (min)
(2.4) a=1vy,n=100 4.213 + 0.067 2
Regenerative 1000 cycles 5.280 + 1.907 4
Minh-Sorli 1000 cycles 4.186 + 0.009 3

TABLE 5
Method Parameters Confidence interval Execution time (min)
(2.4) a=1vy,n=900 4.166 + 0.032 25
Regenerative 9000 cycles 4.513 + 0.557 27
Minh-Sorli 9000 cycles 4,181 + 0.003 21
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For M/M/1 in Table 2, the corresponding figure is 6292, and for M/D/1 in
Table 3 it is 26105! In some cases the method performs also somewhat better
than the Minh-Sorli method, in some cases it is somewhat inferior. For the
moment, we take these observations as sufficient motivation for a closer study
of the estimator (2.4) and return to a more detailed discussion of Tables 1-5 in

Section 6.

4. Performance evaluation. We first generalize the setup somewhat. In
the same way as in [18], [19], [1] and [2] (Chapter XII) we think of the given
queue imbedded corresponding to § = 6, in an exponential family {P,} of
queues, where P, corresponds to traffic intensity 1. That is, if A,, B, are the
interarrival and service time distributions corresponding to P,, then E,T = E,U
and

eex e—Hx
By(dx) = =——B,(dx), Ay(dx) = —
H( ) 30(0) 0( x) 0( x) Ao(_o)
Further, y = 6, — 6, where 6, > 0 is the solution of
Ao( _90)30(90) = Ao( _OL)BO(OL)'

Limit theorems as 6, 10 (or, equivalently, y | 0) then provide approximations
for the given queue. As a main example of fundamental importance for the
following, note that yW is approximately exponentially distributed with rate 1.
In particular, m =~ y! = 4, and this provides one way of explaining the
efficiency of the Monte Carlo method: In some sense we are using the heavy-
traffic approximation as control and are simulating only the correction.

We shall consider functionals more general than the mean, which, in view of
the heavy traffic limit theorem, it will be convenient to represent as mg =
E®(yW). Thus, for example, u = y~'m4 with ®(x) = x. We assume without
loss of generality that ®(0) = 0 and let ¢ be the derivative of ®. Then,

Ay(dx).

mo=ER(yW) = [ $(u)P(yW > ) du
(4.1) 0
= Aw¢(u)e‘“ELe‘73("/7)du.

We also allow L to have a general distribution by writing L = V/y, where
g(t) = P(V > t) is arbitrary [except that g(¢) > 0 for all ¢ < x]. The definitions
(2.2) and (2.3) are then in an obvious manner generalised to

(42) Y= fvzb(u)g(u)_le‘"e"’B("/” du, C= quS(u)g(u)_le‘“ du.
0 0
We have uy = m4 and, provided the relevant second moments exist,

(4.3) Mg =Y = sy¢/584(C — ne) = N(mg,v?/n),

where v? = ¢2(1 — 2?) with z = oy /0y/0C.
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We are now ready to state some of our main theoretical results. They
involve constants B, 72 defined in the proof of Proposition 2 (which can be
expressed in terms of the P,-ascending ladder height distribution but the
expressions are of less importance in the present context; an example is in
Section 6). The following regularity conditions are assumed throughout:

Al. There exists @ > 0 such that ¢(u)g(u)™! < e,
A2. The distribution of X = U — T is strongly nonlattice.

This seems a little restrictive: Since W has an exponential tail, moments
corresponding to ¢(u) increasing faster than exponentially are infinite, and if
g(u) decreases slower than exponentially, then it is easily seen that the
variances of ¥ and C are infinite. A2 is needed for uniform exponential
convergence rates in the key renewal theorem (see [18] for details) and holds,
for example, if either U or T is spread out ([2], Chapter VI.2).

The first result gives the heavy-traffic behavior of the asymptotic variance
in (4.3):

THEOREM 1. As 0,10, it holds that
vi=0Z(1-2%) = y3r2fw¢(u)2g(u)_1e_2“ du.
0

The implication that the variance v2/n decreases at rate y3 for a fixed
number n of replications is somewhat deceiving since it is also relevant to note
that on the contrary, the expected computer time i needed to create one
replication increases. As in [1] we define i as the expected number of cus-
tomers needed for one replication and take 72 = iv? rather than »? as the
main performance measure. Up to a constant, the interpretation is as the
variance on the estimator per unit computer time, and the following result
shows a decrease at rate y.

THEOREM 2. For some constant ¢,, i = ¢y~ 2wy, and hence

w2 =iv? = ye,k(g) 72 where k(g) = fwg(t) dt/w(b(u)zg(u)_le_z" du .
0 0

In contrast, it is shown in [4] that the similar performance measure for the
regenerative method increases at rate y~2 so that indeed the empirical com-
parisons of the two methods in Section 3 are confirmed by theory. The present
estimator also performs better than the one obtained by averaging Y =
&(U)e "BU/Y) where U is exponential with unit rate and {B(¢)} is simulated
from P, [this estimator is suggested from (4.1) by analogies to the area of
Monte Carlo evaluation of infinite integrals]. Indeed,

72 = Var Y = Var (U)(1 — yB(U/y)) = y? Var ¢(U)Var B(x),

and thus #2 = {72 = c,,.
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In the proofs of Theorems 1 and 2 we concentrate on the steps needed to
check the form of the constants and expressions and omit the verification of
regularity conditions like uniform integrability since arguments of this type
follow established lines of the references of this section. A fundamental

observation is the following:

ProposITION 1. As 6,10, it holds that the conditional distribution of Y
given C or, equivalently, V is asymptotically normal with mean (1 — yB)C and
variance

vor? [T b(u)’g(u) e > du.
0
Proor. Let b,(0) = lim, ., E,B(¢)}, B = b,(0),

Ji= [ "o(w)g(w) e (B(u/y) — b,(6,)) du,

and let 72 be the limiting P -variance of ¢~/%/¢{ B(u) du which exist according
to the CLT for cumulative processes (cf. [2], Chapter V.3). Letting ¢ denote
standard Brownian motion, it follows from a suitable version of the functional
CLT (e.g., [7] and references therein) that

{ [((Busy) - ble))du}T - {y [ (Bw) - ble))du}T

20

= {y1é(T/7)}rs0
= {771/2§(T)}T20'

20

Hence,

Y= f()v"’(“)g( u)"'e™*(1 - yB(u/y)) du + O(v?)
N Lv‘b(“)g( w)le (1 — yby(6,)) du — yJ,

14 _
~(1-yB)C - yfo o(u)g(u) ‘e ryV2dé(u),
which has the asserted conditional distribution. O

ProoF oF THEOREM 1. By an obvious extension of the proof of Proposition
1, it follows that

(4.4) Y=p(y)C + ZS (—1)'y'/ild; + o(v®)
i=1

where

3 N
p(y) =1+ gl(—l)’v"/i!b,-(%)-
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Now A2 implies that |[EB(u/y)' — b,(0)| < ce™** for some &, ¢ (18], Lemma 5),
and thus

ECC = e) i =[E(C = ) [ 8()a(u) e+ (EB (/)" - bi(8,)) da

~[E(C - o) [ o800 e (EB (/) - Bi(01))

(4.5) .

<EC - ,Lbclf d(u)g(u) "e “ce™* du
v

<(1+e/y- a)_llE(IC — pelee=a7ev/7)
= 0(y)o(1)

(using Al in the fourth step). Hence, up to o(y?) terms,

o = p(y)*0d + v® Var J; — 2yp(y)E(C — pc)dy,
(4.6) ayc =p(y)oé — yE(C — nc)dy,
o3c = o[ p(v)°0d = 2yp(Y)E(C = uc) ] = ogof — y* VarJy],

(4.7 22=1-vy3Vard,/oi=1- y372fw¢(u)2g(u)_1e_2“ du/oi.
0
From this the desired estimate for »?2 follows. O

PrOOF OF THEOREM 2. The number of customers needed to generate Y,C
is 7(V/y). It is a standard fact (an easy consequence of Wald’s identity) that,
for each v, E;7(v/y) = ¢,y %v. Hence

i=Er(V/y) = [Ecﬂ’_zV = 017_21-'«Vs

and from this the estimate for 72 follows by combining with Theorem 1. O

An obvious question is to look for an optimal V, i.e., for the form g(¢) of the
tail probability which minimises «(g) in Theorem 2. To this end, we first note
the following.

ProprosITION 2. For any strictly positive function g on (0, %) it holds that
k(g) = c2, where c; = [gh(u) du, with h(u) = ¢(u)e™*. Equality holds if and
only if g(u)/h(u) is constant a.e. on the set {h > 0}.

ProOF. Assume first that c¢; < «, let H be a random variable with density
h(u)/cy and define K = g(H)/h(H). Then, by Jensen’s inequality,

1 <EKEK '= fo “g(t) /ey dt fo “o(u)’g(u) e ey du = (g) /¢,

with equality if and only if K is a.s. constant, which shows the claim in this
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case. The case c; = » is treated by truncating ¢ and using monotone conver-
gence. O

ExamPLE 1. Consider simulation of the mean so that ¢(u) = 1. It then
follows from Proposition 2 that the choice g(x) = h(u) = e, i.e., V exponen-
tial with rate 1, is asymptotically optimal in heavy traffic.

ExampLE 2. Consider simulation of an exponential moment Ee?" which
(e.g., [2], page 269) exists if and only if 8 < y. Then Eef¥ = am4 + 1, where
®(x) = (e** — 1) /a, with a = B /. Corresponding to this ® we have h(u) =
¢(u)e™* = e~ D“ and it is suggested to simulate by taking V to be exponen-
tial with rate 1 — a. .

ExaMPLE 3. Consider simulation of a higher order moment EW*, 2 > 2, or
equivalently, EW* /&, which corresponds to h(u) = ¢(u)e™ = u*le % Tak-
ing g proportional to A is not feasible since . is not nonincreasing, and the
problem of minimizing k(g) in the class of nonincreasing functions appears
much more complicated. Nevertheless, Proposition 2 may guide the choice of a
suitable (though not optimal) g. In fact, if we look for a g with the same tail
behavior as A, an obvious candidate is the Erlang(%) distribution where

glu)y=e*(1+u+u/2+ - +utl/(k - 1))).

Consider % = 2,3,4. Then the global minimum cZ of «x(g) is 1, 4 and 36,
respectively. If, motivated by Example 1, we try g(u) = e™%, we get k(g) = 2,
24 and 720, whereas the Erlang(k) distribution leads to 1.2, 5.7 and 58.8
(these figures were computed by numerical integration). Obviously, this is a
substantial improvement of the exponential case and of the same order of
magnitude as c3.

Note that in these examples computationally convenient forms like (2.5) can
be found for Y and C and that the computer generation of random variables
distributed as V is straightforward. In general, this may of course present an
added complication in the choice of g.

5. Weighted regression and ratio control. For simplicity, we shall
confine the discussion of the rest of the paper to the case of the mean u and let
Y, C be defined as in Section 2 with @ = y so that C = L (that is, we do not
normalise by y as was done for mathematical convenience in Section 4). Some
results of Section 4 then need some slight translation. In particular, note that
v?2 = yr? and that Var(Y|C) =~ y272C.

When applying the estimation method discussed so far under heavy traffic
conditions, the number n of replications could in many cases be rather small.
This is so not only because each replication is time-consuming, but also
because a high precision is obtained already for quite small values of n.
Assume, for example, that in the M/M/1 example with p = 0.95 we want an
estimate with a relative precision of 1%. For p = 0.9, Table 1 indicates that
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this is achieved for n = 100, and Theorem 1 therefore suggests that n =
100,23 = 13 should be sufficient for p = 0.95. However, the considerations
leading to confidence intervals are based upon large-sample properties, for
example, the CLT for Y,C, and that the variance on the control coefficient
does not contribute substantially to the variance on the estimator. One might
therefore ask whether in such cases it would not be more appropriate to base
the choice of method on the fact that 1 — p is small rather than on n being
large.

To this end, note that, according to Proposition 1, it holds asymptotically in
heavy traffic that

(5.1) Y; = aCi + Cil/zei,

where the ¢; are i.i.d. N(0, A?) for some A% (in fact, a = 1 — yB and A? = y272),
Thus, u = py = pca, and one might consider estimating a by maximum
likelihood estimation in the weighted regression (5.1) (with the C; treated as
constants), which leads to 4 = Y/C, and use ¥ = u,Y/C as a heavy-traffic
estimator of . This procedure is of course also motivated by empirical
findings like the beautiful linear dependence in Figure 1 (it is of some interest
to note that u = uoa =y~ ! — B is Siegmund’s [18] corrected heavy-traffic
approximation, in the form incorporating the first-order correction term, see
further the discussion in Section 6).

For confidence intervals, we may treat the C; either as random variables,

see to this end Proposition 3, or as constants. In the constant case we have
4 = N(a, 2/(nC)), where the standard estimator for A% is (n — 1)A% =
3(Y; — aC;)?/C;, and we are lead to the asymptotic 95% confidence interval
(5.2) A% £ 23uc/(nC)%,
To investigate whether these ideas present any improvement, we simulated 47
and (5.2) 100 times in the preceding M/M/1 situation with p = 0.95 and
n = 13, evaluating also fi,, and the control variate confidence interval. In 57
cases (1 were closer to the true value 19 than i, (however, the difference was
in most cases minor) and the coverage figures for the two confidence intervals
were 88 and 79, respectively.

Treating the C; as random variables, one may consider % as an instance of
ratio estimation (e.g., [15], [9]), but the estimator is probably more naturally
viewed within the framework of nonlinear control variates (see, e.g., [11] and
[8] and references therein. The following result gives the large-sample proper-
ties and shows that these, for all practical purposes, seem equivalent to those
of ii,:

PROPOSITION 3. (a) As n — o with 0, fixed, it holds that fF = u,Y/C is

asymptotically normal with mean uy = u and variance w?/n, where

2 _ 2., .2 -2 2 -1
w* =0y + uypc ol — 2uyhc Oyc.

(b) Let v2 be defined as in Theorem 1. Then v? < w?.
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(¢) As n —> » with 0, fixed, it holds that p, — uf = 6(C — pe) =
N(0, 8202 /n), where 8 = pyuc' — oyc/0é-
(d) The constant & in (b) satisfies 8 = O(y?), 6, 10. In particular, v?/w? =

1+ O(y). . _
(e) If n > = and 0,10 at the same time, then Apc/CV?% = yr2, b2 = y72

Proor. Letting f(y,c) = pucy/c and noting that
flup,ne) =, flby.me) =1, flpy,pe) = —pyrc’
it follows by Taylor expansion that
af =f(¥,C) \
(53)  =f(uy,ne) + f(ny: m)(¥ = ny) + felpy, ) (C = pe)

~Y - pyrc(C—ne),

from which (a) follows and also (c) by noting that syc/s& = oyc/0é. For (b),
just note that by (a) and Theorem 1, 0 — 2 = g26? (alternatively, as noted in
[8] in a more general setting, (b) is a consequence of (5.3), the optimality of the
control coefficient oyc/0f and syc/s% = oyc/0d). For (d), we proceed by
small variants of the proofs of Theorems 1 and 2. As in (4.5), EJ; = O(vy) and
thus, by (4.4), py = p(y)uc + O(y?), whereas (4.6) yields oyc = p(yaé +
O(y?), from which & = O(y?) follows. The estimate for v2/w? is then obtained
by noting that »2 = 0(y®), w? — v* = 0(8%) = O(y*). Finally, (e) is immediate
from earlier estimates. O

The content of (d) is that the loss of efficiency given by (b) for the ratio
control method is asymptotically negligible, whereas (e) indicates that in
situations like p = 0.95 and n = 500, (5.2) should be close to the control
variate confidence interval. This was nicely confirmed by a test run for
M/M/1 (where p = 19 when p = 0.95), which gave 18.997 + 0.026, respec-
tively, 18.996 + 0.029, for the two methods.

We would tend to conclude that from a practical point of view the choice
between the linear control variate method considered so far and ratio control
[possibly with the confidence interval (5.2)] seldom matters much, but that
there may be some special situations where one would feel that ratio control is
based on more solid theoretical ground.

6. Concluding discussion. We first reinspect the empirical material of
Section 3.
For the M/M/1 case, it is of interest to compute the constant 72 of
Theorem 1 in the optimal case a = y. To this end, notice that P, corresponds
to both arrival rate and service rate equal to (1 + p)/2 which in heavy traffic is
conveniently replaced by 1. It is then easily seen from the standard variance
formula for cumulative processes that 72 = 2. An alternative check of this is
provided by an explicit calculation of the constants o2, o and oy of
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Section 2, which gives
oG =(1-p)7%

-2
Oyc =pog =p(1—p) 7,

. P { 2(1 - p)° }
oy = {1+ 5 3 (>
(1-p) 1+(1-p)-(1-p)"—(1-p)
z2=(1+ 2(1—p)2 5| -

1+(1-p)-(1-p)" - (1-p)

(The derivation of the expression for o2 is tedious but elementary and is

omitted.) Taylor expansion yields 1 — 22 = 2(1 — p)® and comparison with
(4.6) reconfirms that 72 = 2. In particular, for p = 0.9, the exact value of 1 — z
is 0.00091, the heavy-traffic approximation [as given by replacing o2 by oZ in
(4.7) and taking the square root] is 0.00100 and the empirical value reported
for the first test run is 1 — 0.999395 = 0.00060.

The implication of Example 1 that the choice a = y is close to being optimal
is also confirmed by Tables 1 and 2. Since the sample size in Table 2 is 9 times
as large as in Table 1, we expect the confidence intervals to be 3 times as
narrow. This also roughly holds with the exception for the case (2.4) with
a = 5y. The explanation for this is simply that here all variances are infinite.
Nevertheless, the estimator is still consistent and seems to perform reason-
ably well.

Siegmund’s [18] corrected diffusion approximations are of course highly
relevant in the present context for a number of reasons. For example, the
underlying mathematical methods are the ones providing the foundation of the
performance evaluation in Section 4. As noted earlier, they provide an intuitive
motivation for the regression scheme (5.1) and, finally, they of course provide
an alternative to simulation which is potentially attractive since the precision
is high, not least when the O(y) term, say 7, is included. As pointed out by an
editor, it should be noted that the version u = y~! — 8 including only the
first-order correction is always easy to use for GI/G/1 queues since 8 can be
evaluated by a simple numerical integration. For n this scheme has, however,
not yet been implemented.

We next turn to the comparisons with the Minh—Sorli method, which is
based on the relation ([2], page 186) wu = uy = (ux2 + wxprz/m)/2un _x,
where I is the idle period and X = U — T. Here, only u;2/u; needs to be
simulated. This is an instance of ratio estimation, and for the M/M/1 case
where I is exponentially distributed with rate p, it is easily seen as in (5.3)
that the large-sample variance on the ratio estimate of w;2/u; is w%/n, where

- 2 - —_ -
o} = pilop + phugtof — 2ppp op = 8p72

Normalising by the correct value yields the sample variance uy2w?/4n on the
Minh-Sorli estimator. Since the mean number of customers needed to produce
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one replication is just the mean number of customers (1 — p)~! served in a
busy cycle, it follows that the performance measure similar to w2 is
(1 - p) up?w?/4 = 2(1 — p) (in the general case, we get similarly a behavior
like c,y for some constant c,). For the method of the present paper, we get
w2 = (1 - p)r?2 = 2(1 — p). That is, in the M/M/1 case the present method
and the Minh—-Sorli method have equivalent heavy-traffic properties. Neverthe-
less, for moderate values of p, it follows both from Tables 1 and 2 and from
theory that the present method is mildly better. Thus, in Table 2 we observed
a width of the confidence interval of 0.025, whereas the preceding explicit
formulas lead to expecting 0.028. For the Minh-Sorli method we observed
0.033, whereas the exact formulae lead to expecting 0.037. The heavy-traffic
approximation is 0.030 in both cases.

For M/D /1 in Table 3, the present estimator performs even better than the
Minh-Sorli estimator, whereas for D/M /1 in Table 4 (confirmed by the more
precise Table 5) the opposite is the case. We have not gone into theoretical
calculations to confirm these observations, but consider the empirical findings
to be intuitively reasonable. More precisely, much of the variance on i, is due
to the variability of B(x), which, in turn, we roughly expect to increase as the
variance of the service time distribution increases. Similarly, the variance on
the Minh—-Sorli estimate comes from the variability of I, which, in turn, we
roughly expect to increase as the variance of the interarrival distribution
increases.

More than from the fact that the present method is slightly superior to the
Minh-Sorli method for some simple queues, we would, however advocate its
advantages by the greater flexibility. As a first example, it has already been
seen that the method is not restricted to integral moments. We have also
performed some test runs for simulating the transient behavior, more specifi-
cally the mean waiting time of the Nth customer in the M/M/1 case with
p = 0.9 (in the definition of Y one then has to replace the upper limit of the
integral by C A My, where My is the Nth partial maximum of the random
walk). The variance reduction compared to crude simulation was substantial; a
factor of 3.2, 5.2 and 12.5 for N = 50, 100 and 200, respectively. The reason
that this, nevertheless, is less dramatic than for the steady-state case is simply
that Y need not be close to C if M, is substantially smaller than C (corre-
spondingly, the correlation was only 0.60, 0.70 and 0.84). It would seem
appealing to take the fluctuations in My into account by using Sy as a
further control as in [6] but we have not carried this out.

Finally, but least, we should like to point out that also a number of models
more complex than GI/G /1 queues can be treated. Some remarks on random
walks with spatial inhomogeneity are given at the end of [1], and we shall
outline here how to treat random walks with Markov-dependent increments
(Markov additive processes), a class of models which is becoming increasingly
important in applied probability (a brief introduction is in [2], Chapter X.4-5
and extensive bibliographies are in [3] and [14]; in the statistical literature,
the closest reference we know of is [10]). Here the random walk S, =
X, + - +X,_, is governed by a Markov chain {dJ,},_o ;... with state space

PN
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E in the sense that the X, are independent given {J,} with X, having
distribution depending only on J,,dJ,,, say, P(X, <x, J,., =jlJ, =i) =
F@)(x). We assume for simplicity that E is finite (though this is not crucial),
write P, = P(-|J, = i), p(i, j) = P,(J; =) and denote by F(a) the matrix with
ijth entry F¢/X(a). The Lundberg equation then becomes spr(#(y)) = 1, and if
h = (h(i)), < g denotes the positive right eigenvector of F(y) corresponding to
the eigenvalue 1, the P, -distribution of the Markov additive process is given by

h(J)
k(%)
Letting M = max, S, .,, 7(u), B(u), etc., be defined as before and P, ; =
P,(-|J, = i), Wald’s likelihood ratio identity becomes

e~ YBw)
T(7(2)) )

(see, e.g., [12] or [20]), and it is thus suggested to estimate E; M by simulating

F@)(dx) = e?*F)(dx).

P,(M>u) = h(i)e‘“"‘[EL;i(

c e~ YBW)

Y="h( ——du
D, 3o
(with C exponential with rate y) from P,.; and using C as control variate.
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