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MAXIMUM STANDARDIZED CUMULANT DECONVOLUTION
OF NON-GAUSSIAN LINEAR PROCESSES

By QIANSHENG CHENG
Peking University

A linear process is represented as a driving white noise convolved with
a system response sequence. The concept of natural peakedness of a system
response sequence is defined and its properties are investigated. Utilizing
natural peakedness, the convergence theory of maximum standardized
cumulant deconvolution is established and the uniqueness theorem of
non-Gaussian linear process representations is proved. In addition, autore-
gressive models on a countable abelian group are defined and the relation
between cumulant deconvolution and autoregressive models is given.

1. Introduction. Let G represent a countable abelian group, let w =
{w},c¢ be a square-summable sequence and let u = {u,},c; be an indepen-
dent and identically distributed random series with Eu, = 0, Eu? = 02 and
Elu,|™ < » for some m > 2.

(11) xt = (w * u)t = Z uswt—s

seqG
is called a linear process; u and w are called the driving noise and the system
response sequence, respectively.

Throughout this paper we shall make the following assumptions:

(1.2) 0< Y lwl? <o
teG@

and the Fourier transform of w,

w(y) = ¥ wy(-s), vyeT,
seq@

satisfies
(1.3) w(y) #0, dyas.,

where T is the dual group of G which consists of all complex functions y(¢) on
G satisfying |y(¢)| = 1 and y(s + ¢) = y(s)y(?), s,t € G; dy denotes the Haar
measure on the group I' [see Rudin (1962)].

We note that when G is the set of integers Z, x is a linear time series, and
when G is the set Z2 of pairs of integers, x is a linear random field.

The objective of linear process decomposition is to estimate the driving noise
(deconvolution) and to estimate the system response sequence (system identi-
fication) from x,. In this paper we shall study a kind of deconvolution which is
called maximum standardized cumulant deconvolution.
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The m-th cumulant of the random variable x, is defined by

m

cn(x,) = (—i%) log( Ee’s¥¢)

s=0
Set

x, — Ex,
(Ex2)

The standardized m-th cumulant is defined by

%

MEN

k,(x,) =c,(&) = W

For x, satisfying (1.1),

Zz(wt)m
(14) km(x,) =km(ut)W, m > 2.

Here we write ¥, in place of ¥,.s. This result can be found in Granger
(1976).

Now we define maximum standardized cumulant deconvolution operator.

Let S;,cS,c -+ c8§,C --- denote an increasing sequence of finite
subsets of G with the property that for every finite subset F of G, there exists
a positive integer n, and a ¢{, € G such that F ct, + S, . Because G is
countable, such sequences always exist. For instance, we can take S, =
{0,1,...,n) when G=Zand S, ={(i,j): 0 <i,j <n}when G = Z2

We denote by g = {g{™)} a sequence satisfying

(1.5) gm =0, tes,.

h™ is (not necessarily uniquely) defined as the maximum standardized m-th
cumulant deconvolution operator of x if it satisfies

(1.6) (5 2),)] = max k(g #2),)]-

We briefly explain why A exists. By the formulas (1.4), (2.1) and (2.14),
for any nonzero constant «, the m-th standardized cumulants of g and
ag™ have the same absolute value. So we can assume that g™ satisfies

Y e -1

teS,

Then |k, (g™ *x),)| is a continuous function with respect to g{™, t € S,
(note that S, is a finite subset). Hence, there exists at least one 2™ such that
(1.6) holds. Of course, it is possible that A is not unique. We shall pay more
attention to the limit property of such a deconvolution operator. When m = 4,
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by (1.4), we have
th?
ky(x,) = ky(u,) W .

Then (1.6) becomes

maxk,((g™ *x),), when c,(x,) >0,

(n)
k(R xx),) ={ ©
R ) m(il)lk4((g(n)*x)t)’ when ¢,(,) <0.
gn

In this case, a maximum standardized cumulant deconvolution operator is
just a kurtosis deconvolution operator [see Cheng (1988)]. In fact, minimum
entropy deconvolution is a special case of the maximum standardized cumu-
lant deconvolution [see Cheng (1988) and Wiggins (1978)].

The objective of this paper is to establish the convergence theory of maxi-
mum standardized cumulant deconvolution and to prove the uniqueness theo-
rem of non-Gaussian linear process representations.

In Section 2 we present the concept of natural peakedness of a system
response sequence and study its properties. Section 3 proves the uniqueness
theorem of non-Gaussian linear processes. In Section 4 we give the conver-
gence theorem of maximum standardized cumulant deconvolution; in addition,
we define autoregressive models on a countable abelian group and discuss the
relation between cumulant deconvolution and autoregressive models.

2. Natural peakedness of a system response sequence. We define
the natural peakedness of system response sequence w,

_ Et(wt)m
(2.1) q(w) = " > 2.
Let
1/2
(2.2) lwlly = (z wf)
1/m
(2.3) lwll, = ( Y |w,|m)  m>2

In order to derive the properties of natural peakedness, we introduce the
absolute peakedness, defined as

lwll )m

(24) plw) = ( ool

LemMa 2.1.  For any constant a # 0 and any ¢, € G,

(2.5) p(w) = p(aw) = p(8“*w),
where §¢0 = {0}, §{0) = 1 for t = t, and zero for t + t,,.
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The proof of Lemma 2.1 is immediate.

LEMMmaA 2.2.
(2.6) 0<p(w) <1.

If p(w) = 1, then w = ad®, where a is a nonzero constant and t, is an
element of G.

Proor. Set
w=—uw,
to ~
where |w, | = max, . glw,|. From Lemma 2.1, we have
p(w) =p().
Since
o, <1, |w,|=1, lwlz=< lwll3,

we get

0 <p(w,) <lwlz"? < 1.
If p(w) = 1, then ||@l|l; = 1. This means , = 0 for ¢ # ¢,. Thus, @ = §° and

w =w, . O

LEmMMA 2.3. Let w™ and w be system response sequences and let

(2.7 lw™ —wllz >0, n - w.
Then
(2.8) p(w™) > p(w), n-

Proor. By the property of norms,
Hlw™llz = llwllz| < llw™ —wl; >0, n— oo
It follows from Lemma 2.1 that

lw™ — wl, < lw™ — wlg;

then
Nw™lm = lwllm| < lw™ —wl, -0, n- o
Hence
lw™lm  llwln
n)y — —
p(w™) = - =p(w) n — o, o
w3 lwll5 ’

LEMMA 2.4. Let w™ be system response sequences. In order that

(2.9) p(w™) -1, n- o,
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it is necessary and sufficient that

(2.10) @™ — 8%y -0, n -,
where

2.11 WM = w®,  |w™| = max|w®)|.
e = el Ju] = maxui)

Proor. Necessity: It follows from the proof of Lemma 2.2 that
p(w™) = p(&™) < lw™|~ "2 < 1.

Since (2.9) holds, we obtain

lo™N3 =1+ ¥ @™ -1, n- .
t#t,
Therefore,
2.12 lw™ — §¢n)|3 = ™12 >0, n-
t
t+t,

Sufficiency: Lemma 2.3 yields this immediately. O

We now discuss the property of natural peakedness. The following lemma is
evident.

LEMmaA 2.5.
(2.13) 0<q(w)<p(w) <1,
(2.14) q(aw) = g(w) = q(8“ *w),

where a is a nonzero constant and t, is an element of G.

LEMMA 2.6. Let w™ be system response sequences. In order that
(2.15) g(w™) 51, n-w,
it is necessary and sufficient that

(2.16) p(w™) -1, n- o,

Proor. From (2.13), necessity holds. Sufficiency follows from (2.1), (2.14)
and (2.12). O

The following theorem follows immediately from Lemmas 2.5 and 2.6.

THEOREM 2.1. Let w'™ be system response sequences. In order that

(2.17) q(w™) >1, n- o,
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it is necessary and sufficient that
(2.18) o™ — 8¢l > 0, n— o,

where W and t,, are defined in (2.11).

3. The uniqueness theorem of non-Gaussian linear processes. In
this section we prove the uniqueness theorem of non-Gaussian linear pro-

cesses.

Let H denote the Hilbert space of all random variables with finite variances
and with inner product defined by covariance. Let x, u, and ' be random
processes on G, and let H,, H, and H, denote the linear closed subspaces of
H generated by x,, u, and u}, ¢t € G, respectively.

LEmMA 3.1.  Let x, satisfy (1.1). Then
H =H,.
Proor. It is obvious that H, c H,. So it suffices to show that any y =
L, cqUsu, in H, with the property

(3.1) o 2Ex,y= Y v,_v,=(wxv),=0, ¢teaq,
se@

must be 0. We denote by W(y) and V(y) the Fourier transforms or the
Plancherel transforms of w and v, respectively.
As the Plancherel transform, we have

(3.2) (w*v), = /F y(£)W(y)V(y) dy.

(3.1) and (3.2) yield
W(y)V(y) =0, (dyas.)

[see Rudin (1962) pages 26 and 27]. Applying (1.3), it follows that V(y) = 0, dy
a.s. Hence v, = 0, for all s € G,and y = 0. O

THEOREM 3.1 (The uniqueness theorem). Let
(3.3) x, = (wru), = (w'=u), teaq,
where {u,) and {u)} are i.i.d. and w and w' are system response sequences
satisfying (1.2) and (1.3). If ¢,,(x,) #+ O for some m > 2, then
1
(3.4) Uy = QU;_y, w; = ;wt+t0’

where a is a nonzero constant and t, is an element of G.

Proor. By Lemma 3.1, we have
H,=H =H,.
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Hence, there exist sequences ¢ = {c,} and d = {d,} such that
(3.5) u =c*u, u=d=+u'.
According to the relation (1.4) and the definition (2.1), we have
b (ul = |kn(ulg(c),  lkn(u)l=Ik,(u})lg(d).
Thus,
(3.6) q(c)q(d) = 1.
It follows from (3.6) and (2.13) that

q(c) =p(c) = 1.
Applying Lemma 2.2 yields
(3.7 ¢ =ad"o,
(3.7), (3.5) and (3.3) imply (3.4). O

Theorem 3.1 shows that if we ignore the scale and shift, the representation
(1.1) of non-Gaussian linear processes is essentially unique.

CoroLLARY 3.1.  Let {u,} and {x,} be i.i.d and x = w=u. Ifk,(x,) # 0 for
some m > 2, then

— t
w = adto,
where a is a nonzero constant and t,"is an element of G.

The proof of the corollary is immediate.

Donoho (1981) discusses the problem of uniqueness, using the concept of a
partial order which describes the relation between probability distributions of
random variables. Rosenblatt (1985, 1986) studies the uniqueness under the
additional assumption that L |¢| |lw,| < © (when G = Z). When G is any count-
able abelian group, we cannot make the additional assumption. Under the
condition that x, has moments of all orders, Findley (1986) gives a different
proof of the uniqueness result in the case G = Z. He seems to have payed
more attention to the property of Gaussian distributions (the m-th cumulant
is zero, for all m > 3) and overlooked the fact that his proof only needs the
condition, as does ours. At any rate, from the proof of Theorem 3.1, we see
that natural peakedness is a simple and powerful instrument.

4. Maximum standardized cumulant deconvolution. We have de-
fined the maximum standardized m-th cumulant deconvolution operator in
Section 1. Now we give the convergence theorem of maximum standardized
cumulant deconvolution.

THEOREM 4.1. Let ¢, (x,) # 0, for some m > 2, and let h be maximum
standardized m-th cumulant deconvolution operators of x. Let t,, be an element
of G such that |(h™ * w), | = max, . gl(h™ * w),|, and set a,, = 1/(h™ * w), .
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Then
(4.1) lim E|a, (8 ™ x x), — ut|2 = 0.

Proor. From (1.4), (1.6) and (2.1), A satisfies
(4.2) g(h™ * w) = maxq (g™ * w).
g(n)

It follows from Lemma 3.1 that there exist /, € G and sequences g =
{8™), . satisfying g™ = 0if t ¢ 1, + S, such that

E|(g™+x), — u,|” = E|(8™xw*u), - (69 u),|”
wy  EEPeR = ) )

Eu2|g™*w — 8O >0, n -
Applying Lemma 2.3, we have
lim p(g™ *w) = 1.

By Lemma 2.6,
lim q(&™*w) = 1.

Note that 8¢~ x (™ satisfies (8¢ * §™), = 0 if ¢t ¢ G. From (2.13) and (4.2)
we get

q(g(n) * w) - q(g(ln) * g(") * w) < q(h(") * w) <1.
Therefore,

lim q(A™ *w) = 1.

From Theorem 2.1,

(4.4) lim @, (8% % B™ xw) — 8@, = 0.
(4.4) and (4.3) yield (4.1). O

Theorem 4.1 shows that when some m-th cumulant of the process is not
equal to zero, we can extract the driving noise and the system response
sequence only from a non-Gaussian linear process.

We now turn to the autoregressive model on G.

A linear process x satisfying (1.1) is regarded as obeying an autoregressive
model on G if there exists a finite set F € G and a sequence a = {a,}
satisfying a, = 0 if ¢+ ¢ F such that a *w = 8. Such an x is denoted by
AR(F); a = {a,} is said to be the sequence of autoregressive coefficients of x.

We take an integer n, and ¢, € G such that F c ¢, + S, . The following
theorem gives the relation between cumulant deconvolution operator and
autoregressive coefficients.
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THEOREM 4.2. Let x be AR(F), let a = {a,} be the autoregressive coefficients
of x and let t, and ng satisfy F cty + S, . Let ¢,,(x) # 0 for some m > 2 and
let ("9 be the maximum standardized m-th cumulant deconvolution operator.
Then

(4.5) A0 = A6 x g,

where t is an element of G and A is a nonzero constant.

Proor. From the definition of AR(F), we know that a * w = §®. Then,
q(a*w) = 1.
We note that §“° xa satisfies (6“0 *a), = 01if t ¢ S, . By (4.2) and (2.13),
gla*w) = q(8%*ax*w) < q(h™0x« w) <1
Hence,
q(h?xw) = 1.
It follows from (2.13) and Lemma 2.2 that

h(nO) * w = A6(t1).

Since

8@ = §CD 4 §O = §(D 4 g % w,
we have
(4.6) R0 % = AW xq * w.

The condition (1.3) and the relation (4.6) yield (4.5). O

Theorem 4.2 shows that maximum standardized cumulant deconvolution
operators for autoregressive processes are just rescaled and shifted versions of
the autoregressive coefficients.

Finally, we point out that maximum standardized cumulant deconvolution
is a nonlinear problem. It is possible to find a good algorithm by combining
maximum standardized cumulant deconvolution and an autoregressive model
and choosing a suitable initialization procedure.
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