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HOTELLING’S THEOREM ON THE VOLUME OF TUBES:
SOME ILLUSTRATIONS IN SIMULTANEOUS
INFERENCE AND DATA ANALYSIS

BY SOREN JOHANSEN AND IAIN M. JOHNSTONE

University of Copenhagen and Stanford University

We illustrate with contemporary examples Hotelling’s geometric ap-
proach to simultaneous probability calculations. Hotelling reduces the eval-
uation of certain normal theory significance probabilities to finding the
volume of a tube about a curve in a hypersphere, and shows that this
volume is often exactly given by length times cross-sectional area. We
review Hotelling’s result together with some recent complements, and then
use the approach to set simultaneous prediction regions for some data from
gait analysis, to study Andrews’ plots in multivariate data analysis, and to
construct significance tests for projection pursuit regression. A by-product
is a numerical criterion for tube self-overlap, relevant, for example, to
uniqueness of certain nonlinear least squares estimates.

1. Introduction and summary. Harold Hotelling (1939) proved that the
volume of a tube about a smooth closed curve in Euclidean space or a
hypersphere exactly equals the length of the curve multiplied by its cross-sec-
tional area, so long as the tube does not overlap itself. Although Hotelling’s
intended application lay in hypothesis tests, his striking result has had far
greater influence in geometry, largely through its far-reaching extension in the
companion paper by Weyl (1939). Within statistics, the methods and motiva-
tion of Hotelling’s paper have stimulated work on “volume tests” of signifi-
cance [Diaconis and Efron (1985) and references therein] and on the order of
singularities in sampling distributions of ¢, F and r [e.g., Bradley (1952),
Siddiqui (1958) and Mulholland (1965, 1970)]. However, the explicit tube
result itself appears to have been little used by statisticians.

Our purpose in this partly expository paper is to set forth some contempo-
rary examples in simultaneous inference and data analysis where we have
found the tubes method to be helpful. With the exception of Section 6, the
focus is on situations involving curves in spheres. Knowles and Siegmund
(1989) give an exposition with statistical extensions and applications of Weyl’s
result for surfaces in spheres, concentrating on the two-dimensional case.

The expository section, Section 2, reviews Hotelling’s result and an impor-
tant complement of Naiman (1986). We then describe some classes of applica-
tions: testing for a nonlinear parameter, simultaneous confidence and
prediction bands and then how these are reduced to the Hotelling—Naiman
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results. Some simple upper bounds follow and finally a simple form of Weyl’s
result tailored for use in Section 6.

The succeeding sections present diverse variations on Hotelling’s theme.
The unifying thread is the data-analytic or probabilistic interpretation of the
distance of a unit vector to a curve (or surface) in a higher-dimensional sphere.

Section 3 tests Hotelling’s theory on some gait data analyzed at length by
Olshen, Biden, Wyatt and Sutherland (1989). These authors use bootstrap
methods to develop simultaneous prediction regions for diagnosing abnormal
gait in young children. Hotelling’s approach can be readily adapted, and in all
cases tried, a simple analytic approximation reproduces the tail of the boot-
strap distribution tolerably well.

Hotelling’s formula is only exact for tubes of sufficiently small radius that
no self-overlap occurs. Otherwise, as Naiman (1986) shows, the method leads
only to an upper bound. For applications to simultaneous confidence and
prediction regions, Hotelling’s formula must be averaged over all tube radii, so
that overlap is unavoidable in these cases. What, then, is the largest radius for
which the formula is exact? One cannot expect to say much theoretically in
general, but for any given application, Section 4 derives an easily computed
bivariate function whose minimum yields the desired critical radius.

The overlap formula is illustrated in the course of a discussion of Andrews’
(1972) plots in Section 5. The Andrews plot represents points in high-dimen-
sional space R by graphs of trigonometric polynomials. We regard the plot as
a simple-to-analyze forerunner of more recent ‘“‘grand tour” methods for
projection pursuit explorations of data and ask what fraction of possible
projections are seen, assuming a given ‘‘squint angle’”’ for the data analyst.
The squint angle determines the radius of the tube whose volume we compute
via the Hotelling formula. A simulation experiment shows the Hotelling
formula to be useful even for some radii considerably above the threshold for
overlap, especially in higher dimensions. There is also a simple expression for
the distance of the furthest (unseen) projection from the curve in odd dimen-
sions.

The final section presents a prototype for application of the tubes approach
to construction of significance tests in projection pursuit. Projection pursuit
methods involve extensive “data dredging” in the search for interesting views,
so it is important to be able to discriminate real from spurious structure. The
search over directions usually involves the maximization of a projection
index,” which can sometimes be interpreted in terms of the distance of the
data from a surface. As a concrete example, we take a version of projection
pursuit regression based on orthogonal polynomials and Gaussian independent
variables. Weyl’s extension of Hotelling’s result is needed since the high
dimensions of projection pursuit entail replacing curves by manifolds of higher
dimension (but relatively simple structure). We give an approximate formula
for the significance level of a simple test of the null hypothesis of zero
regression (a limit theorem gives the precise statement). While this particular
example may not be suited to application, similar methods are being used by
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Sun (1989) in the context of Friedman’s (1987) practical implementation of
exploratory projection pursuit.

There are a number of other applications of tube methods that we do not
discuss here. Knowles (1987) shows how they may be used to derive some old
and new bounds for the distribution of suprema of smooth Gaussian processes
and fields. Simultaneous posterior credible regions can be derived for conjugate
priors in the linear model settings described in Section 2.

In combination, these and other examples to be reported elsewhere, suggest
that Hotelling’s method remains relevant because it provides a heuristic for
illuminating an increasing number of techniques that involve maximally
selected inference. These methods often involve the selection of a projection, or
variable, or view a to maximize an objective 7%(a). Under an appropriate null
model, the distribution of T2(a) for fixed a can be related to a spherical cap
C(a) and a significance level or P-value is tied to the volume of C(a). Thus,
calibration of max, T'%(a) involves the volume of U ,C(a), which is often
exactly or approximately a tube (or tubes) in the sphere. Depending on
whether the setting is parametric, or nonparametric, the heuristic can yield
either careful numerical approximations [as, e.g., in Knowles and Siegmund
(1989)] or rough guidelines, as in the projection pursuit setting of Section 6.

Finally, we establish some notation. S¢~! = {x € R%: |x| = 1} denotes the
(d — 1)-dimensional unit sphere embedded in R®. It has (d — 1)-dimensional
volume (““surface area”) w,_, = 27?/2/T'(d /2). Here I'(r) denotes the gamma
function and I'(3) = V7. The d-dimensional unit ball {x € R?: |x| < 1} has
d-dimensional volume Q, = 7¢/2/T(d/2 + 1). These quantities are related
via Q,; = wy_,/d.

2. Hotelling’s formula, Naiman’s bound and principal applications.

A. Hotelling’s formula and Naiman’s bound for tubes in spheres. Let
I =[a,b] € R be a closed interval and y: I » S9! a regular [continuously
differentiable with nowhere vanishing derivative y(¢) = dy/dt] curve lying in
the unit sphere S9! c R%. We demand that y have no self-intersections,
excepting possibly y(a) = y(b), in which case we further require that
v(a+) = y(b—) and v is said to be closed. Abusing notation, we also denote
the image of y by y. The length of vy is |y| = [;|y(#)| dt. The distance of a point
u € S9! to the curve vy is the distance to the closest point of y: d 2u,y) =
inf, [u — y(#)|? = 2(1 — sup, u'y(¢)). Define the tube of angular (geodesic)
radius 0 about y in S¢~! by (see Figure 1)

y? = {u € S¥ ! sup, u'y(¢) > cos 6}
={ueSd_1:d(u,y) s(2(1—w))1/2}, w = cos 6.

Let V(y?) denote the volume (in S¢~1) of the tube v°.
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digu)=(2(1-w))™

Fic. 1. Tube of angular radius 6 about curve vy, and a cross-sectional view.

THEOREM 2.1 (Hotelling). Let y be a regular closed curve in S?~ with
length |y|. If 0 is sufficiently small,

(2.1) V(¥°) = 71Qq_5 sin?"2 6.
If v is not closed, then the right-hand side of (2.1) has an extra term,
(2.1) wd_2j1 (1-22)9"¥2 g,

cos 6

Here Q4_, = w¢™2/2/T(d/2) is the volume of the unit ball in R?"2, and
wg_y =274 V2 /T((d — 1)/2) is the (d — 2)-dimensional volume of S~ 2.

Thus the volume for closed curves equals the length of the curve multiplied
by the volume of a (cross-sectional) ball of dimension d — 2 and radius
(1 — w?)'/2 = sin 0. For nonclosed curves, the tube y® includes hemispherical
“caps” of dimension d — 1, subtending an angle 6 at each end. Hotelling notes
that a necessary condition for the result to be exact is that there be no local
self-overlap of the tube, i.e., sin# < p, where p is the minimal radius of
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curvature of y considered as a subset of R?. He also notes that for exactness
there must be no self-intersections of the tube—an essentially global prop-
erty. Section 4 discusses a numerical method for determining the largest
radius for which no overlap occurs.

An analogous formula holds for the volume of tubes about closed curves
a: I - R? in Euclidean space: If a” denotes the tube of radius p about a, then
in the absence of overlap V(a®) = |a|Q,_;p?" !, with an extra term in Qp?
for nonclosed curves. Although it is simpler to state and prove [e.g., Johnstone
and Siegmund (1989)], this formula has fewer statistical applications
than (2.1).

It is often convenient to express the volume V(A) of a set A c S9! in
terms of probabilities for a random vector U uniformly distributed over the
surface of S?~1. Thus, V(A) = V(S¢ " )P(U € A) = w,_,P(U € A). The pro-
Jection of U on the closest unit vector in the curve y leads to a new random
variable,

(2.2) W = supy(¢)'U.

tel
Since the event {W > w = cos 6} is equivalent to {U € y°}, results about tube
volumes are equivalent to tail probability statements for W.

CoroLLARY 2.2. If y is a nonclosed regular curve in S®~, then for w close
to 1,

2 2’

where B(1/2,(d — 1)/2) is a random variable following the beta distribution.
If vy is closed then the second term on the right-hand side is dropped.

(23) P(W>w) = %(1 —w?) P2 lP(B(l d—;—l) > w2)

Denote the “‘caps-adjusted” right-hand side of (2.3) by b,(w). Using a
method quite separate from that of Hotelling, Naiman (1986) has shown the
remarkable result that this is always an upper bound.

THEOREM 2.3 (Naiman). If vy is a piecewise regular curve of finite length in
S9-1 then for all w € [0,1], P(W > w) < b, (w).

Note that the caps are needed for validity of the bound at all radii, even if y
is a closed curve (consider a large tube about a circle of small radius in S2). Of
course, this implies that b, (w) cannot be sharp for closed y and w near 1. We
therefore reserve the term ‘Hotelling probability” & ,(w) for the expression
that is exact for small radii,
7l d-2/2
—(1 — w?

(2.4) ho(w) =] 2027
b (w) if not.

if vy is closed,
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If the curve has corners, then (2.4) is not exact, even for arbitrarily small
radii. The error in (2.4) induced by a single discontinuity at y(s) may be shown
to be O(¢3) as ¢ = cos X (y(s—)y(s+)) — 0, and hence will not be large for
small kinks.

The analogue of Naiman’s inequality for tubes about curves in Euclidean
space had in fact been derived, as a technical ingredient of a larger calculation,
by Estermann (1926). Hotelling’s argument does not yield the Estermann-
Naiman inequalities, nor do the methods of Estermann and Naiman allow one
to obtain the exact volume of tubes of small radius. Johnstone and Siegmund
(1989) present unified derivations of the results of Hotelling and Naiman via
two distinct approaches.

B. Three areas of application. Theorem 2.1 applies directly to significance
tests of a nonlinear parameter in regression, Hotelling’s original setting. Here
the sphere has dimension one less than the sample size. The second and third
applications are to the related topics of simultaneous confidence and prediction
bands. In these cases, the curves lie in a sphere of dimension one less than the
number of parameters. Here the Hotelling—Naiman bound must be integrated
against a y? or F distribution over all tube radii. We recall these settings here:
succeeding subsections connect to the tubes viewpoint and discuss the conser-
vative bands that result.

(i) Significance tests for a nonlinear parameter in regression. Hotelling
considered models of the form

(2.5) Y, =a'z; + BA(7) + €, i=1,...,n

where a, B, 7 are fixed unknown parameters, A,(-) are known functions and e;
are iid. N(0,0?). Examples for A,(7) include A,(7) = e™ (Hotelling) and
(1) = x,/(7 + x;) [Johansen (1984), Chapter 6]. The null hypothesis is ab-
sence of the nonlinear term, 8 = 0. Hotelling shows how to reduce (2.5) to a
model in which the linear term a'z; is absent, so we shall assume for simplicity
that this has been done. Hotelling fits the parameters by least squares and
arrives at the test statistic

_T(Y - B
(2.6) L= 113f Y7 ,

which is also the likelihood ratio test statistic for the indicated null hypothesis.
Here B, = Y'M(7)/|A(7)|® is the regression of Y on A(7) for fixed 7, so (2.6)
becomes A

L=1- sup

.
Under the null hypothesis, U = Y/|Y| is uniformly distributed on S™~! and
y(7) = A7) /|A(7)| describes a curve in S™~1. Thus, the likelihood ratio test,
which rejects when L < ¢, is equivalent to a test based on (2.2), namely,

AD)Y \? .
(lA(T)l |Y|) =1- s‘:p(‘Y(T),U) c
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W = w,. Thus, the null hypothesis is rejected if U = Y/|Y| falls in a suffi-
ciently small tube about the curve y(7) = A(7)/|A(7)| (Figure 1). The P-value
associated with such a tube can be calculated exactly for large w, and,
furthermore, can always be bounded above by Theorem 2.3.

Keeping (1951) discussed the example A7) = e™i, complete with bounds
for nonoverlap of the tube. [Note, however, an apparent error at (7.2).] The
detailed calculations could now, of course, be handled by numerical integra-
tion. Knowles and Siegmund (1989) treat A,(7) = (x; — 7),, which arises in
change-point models in regression.

(ii) Simultaneous confidence bands in regression. Consider the Gaussian
curvilinear regression model

d
(2.7) }’l= ZBJaJ(tl)+€l, i=1,...,n(> d),
=1

where the components of B = (B4,..., B,;) are fixed unknown parameters, the
components of a(z) = (ay(t),...,a,(¢)) are known real valued functions, {¢,}
are fixed real numbers and {e;} are i.i.d. N(0,o?) measurement errors. For
31mp11c1ty, assume that o2 is known: Section 2E lists the minor changes when
o2 must be estimated. Assume also that the n X d design matrix A = (a,(¢,)
has full rank, so that the least squares estimate B ~ N,(B,02%3), where
3, = (A’A)~L. A natural example is polynomial regression, for which a ;@) =
t/~! [e.g., Wynn and Bloomfield (1971)].

Many authors have constructed simultaneous confidence bands to take
advantage of constraints on the predictor variables. Naiman (1986, 1990) lists
some key references and gives a brief survey. In particular, Knafl, Sacks and
Ylvisaker (1985) derive confidence bands via a discrete upcrossings method: Its
relation to the tubes approach emerges from the upcrossings formulation of
the latter in Johnstone and Siegmund (1989).

We focus on simultaneous confidence bands for the regression function
B'a(t) over a fixed interval I C R. Scheffé-type bands have the form B'a(t) +
ca(a(tyZa(t))!/? for t € I. The positive constant c is to be chosen to make the
coverage probability

(2.8) Py, 5(|Ba(t) - Ba(t)| < co(a(t)Za(t)*Viel)

close to some prespecified level, regardless of the value of 8 and o2 If C =
{a(t): t € I}, then (2.8) becomes

(2.9) P; , s(T < co),
where
(2.10) T =T(B,B) = su I (B-#)|

aec (a3a)V?

We pursue this form further in 2C below.
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(iii) Prediction bands in random coefficient regression. Consider a model
of the form

d
(2.11) Yl= ZlBjaj(tl)+El’ i=1,...,n(> d).
j=

For example, {Y;} might be measurements of blood pressure on a single patient
at n different times {¢;}. Let the measurement errors {¢;} be i.i.d. N(0, o-2), the
coefficients B = (B, ..., B,) be random and distributed as N,(B, "), and let
B be independent of {¢,}. As before, the components of a(¢) = (ay(?),..., a4 t))
are known real functions, {¢,} are fixed points in a particular interval I c R of
interest, and the n X d matrix A = (a,(¢,)) is taken to have full rank.

The vector of coefficients B characterize the individual, and their random
variation describes the variation in the population (of patients in our example)
of the individual mean functions. Since Y = (Y,,...,Y,) ~ N (AB, ATA' +
o?I), its components are correlated even though the measurement errors (e;}
are independent.

The basic reference to such models is Rao (1965); for a recent survey see
Spjgtvoll (1977), for a bibliography, Johnson (1977, 1980) and for a simple
exposition, Johansen (1984).

Motivated by the gait analysis illustration in Section 3, we assume that
many patients in the population have been investigated in the past and so the
parameters (B, I, o2) are considered known. Now a new patient arrives: Is her
blood pressure versus time relation consistent with the “normal’’ population?
One approach estimates the new patient’s mean function B'a(¢) using least
squares estimates 8 from the new data {(¢;,Y;)} and model (2.11). If B ~
N,(B,,T) for the new patient, then B ~ N,(B;,3) has two components of
variance, 3 =T + 02(A’A)™ . Plot her estimated mean function along with
the prediction bands B'a(?) + c(a(¢)Za(¢))'/? and flag the patient as abnormal
if B'a(?) lies outside the prediction bands at any point ¢ € I. We choose ¢ to
control the chance of incorrectly flagging a normal patient and so need to
calculate

Py o[ Ba(t) € Ba(t) £ c(a(t)Sa(t))* Vi 1],

essentially (2.8) occurring in the confidence interval problem!

The prediction regions here and in Section 3 are admittedly ad hoc. How-
ever, the resulting random variable T'(3, B) of (2.10) arises also as the likeli-
hood ratio test statistic of the null hypothesis that g, = B8 versus B, = B +
p2a, for some a € C and p € R. Although this formulation yields a perhaps
unnatural alternative, it does exhibit the kinds of departures from normalcy to
which this approach is sensitive.

C. Reducing the applications to Hotelling—Naiman. To proceed with the
last two examples, suppose that X is distributed as N (¢, 3) with 3 known.
Let C c R? denote a set of vectors specifying linear combinations of interest to
us: In our applications, C' will usually be a curve. We want to make simultane-
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ous confidence statements about {a'¢, a € C} and to form prediction sets for
the random variables {a'X, a € C}.
In either case we start from the random variable

a(X—¢)
aeC( 'Sa )1/2

If we can find the P, s distribution of T, we can construct a 1 — € confidence
set Ry,

(2.12) T=T(X,¢) =

RX = [{alf}aeclT(X, f) < cl—e]7

where ¢, _, is the 1 — € quantile in the distribution of T'. It is easily seen that
the random set Ry covers the point {a'¢}, . with P, 5 probability 1 — e.
Similarly a 1 — € prediction set,

R,= [{a'X}aec|T(X,f) = C1—e],

contains the random point {a'X}, . with P, 5 probability (1 — ¢).
The variable T' of (2.12) decomposes into

(2.13) T = RW,
where R%2 = (X — ¢)S X - ¢) and
up a'(X - §)
acC ('Sa) V(X - £)3-Y(X - £))72
(3Y%a) 373X - §)

" eeo FVAR[[ETAX -9
If we define
1/2
v(a) = éﬁ
and
g ETVHX-p)
|Z7VH(X - 6)|’

then y = y(C) is a subset of S~ ! and U is uniformly distributed on S¢-1.
The distributions of R and W do not depend on ¢, 3, (except through v), so for
the remainder of this section we write simply P for P, 5. The random variable
R? is independent of W and follows a xX& dlstrlbutlon Thus,

(2.14) P(T > c) =j P(W > cr~Y)P(R € dr).

In particular, when v is a curve, W is a random variable of the form (2.2), to
which the Hotelling—Naiman results apply.
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Formula (2.14) says explicitly that as c¢ increases, the tube in S?~! gets
narrower as the confidence/prediction bands become wider. Thus, narrow
tubes do not correspond to narrow confidence bands.

D. Upper bounds and their accuracy. For the next two subsections, y
denotes a curve. Naiman employs his bound b,(w) defined in (2.3) to bound
(2.14) above by

(2.15) [ min{b,(cr™1), 1}P(R € dr).

Knowles (1987) relaxes the constraint 1 in (2.15) and integrates (2.14) exactly,
obtaining the less sharp but simpler bound

(2.16) P(T>c) < %e-cm +1 - d(c),

where ® is the standard Gaussian cumulative. We will employ (2.16) in
Sections 3 and 6. All these upper bounds use the caps-adjusted version (2.3)
whether or not the curve vy is closed. Knowles [(1987), page 33] shows that
(2.16) may also be derived from the theory of upcrossings for Gaussian
processes.

Analogous calculations are clearly possible for the two-sided tail probability
P(|T| > c). These are based on the inequality P(|W| > w) < 2P(W > w) and
hence are conservative to the extent of overlap of the tubes y® and —v° A
numerical method for calculating the radius of this first overlap appears in
Section 4.

Let us turn to the accuracy of these bounds in the tails (as ¢ — «). We
exploit the exactness of the Hotelling formula for small tubes. Suppose that it
is known (from the methods of Section 4, for example) that the first self-over-
lap of the tube y? occurs at w, = cos 6,. For both closed and nonclosed curves,
the bound

(217) P(T>c) < [k (cr")P(R € dr) + j°/° b(cr-)P(R € dr)

incurs an error 7, [b (cr™") — P(W > cr~DIP(R € dr). This error is easily
bounded by (27)~ 1|y|e—°°/2 +P(Z, >c, |Z| = ¢c;), where Z =(Z,,...,Z,;) ~
N0, I) and ¢, = ¢/w,. Thus, for a closed curve,

|‘YI —p2 2 -C d-2 —n2 2w2
(2.18) P(T>c)=—e 2 +0[(|— e /20|,
277 wo

E. Unknown o2 Let X ~ N(¢,02%3) with 3 known and let V2 be an
independent estimate of o? satisfying vV?/0? ~ xZ,. In the definition of Cyx
and R,, replace T by T/V and the distribution P,y by P, 3,0 In the
decomposition T' = RW, now RZ = (X — ¢)3 (X - g)/V2 and R 2 /d follows
an F distribution on (d, ») degrees of freedom independently of W. With this
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change in (2.14) (the case actually considered by Naiman), (2.16) becomes

I (,  e*\
P(T>c)s§ 1+ — + P(t,, 2 c),

where ¢, denotes a ¢-variate on v degrees of freedom. Formulas (2.17) and
(2.18) have corresponding extensions.

In these simultaneous confidence and prediction problems, a conservative
procedure can always be obtained by Sheffé’s method: replace the set y = y(C)
by all of S?~1. We would thus expect useful reductions in width of the bands
—smaller choices of ¢, _.—when v is a sparse subset of S¢~1, for example, if
|v| is small or d is large, as occurs in polynomial or trigonometric regression. A
crude upper bound for the reduction in ¢, _, comes by comparing the Scheffé
value ¢, . = [dF, (1 — €)]'/? to the ¢ statistic value ¢, _, = £,,(1 — ¢€) that
would apply if y reduced to a pair of antipodal points.

F. A special case of Weyl’s result. Hotelling proposed the application of
tube methods to extensions of (2.5) containing two or more nonlinear parame-
ters. The associated volume problem for small tubes about manifolds without
boundary was then solved by Weyl (1939) in a paper of considerable influence
in differential geometry.

Briefly, Weyl’s result is as follows. Let C be a k-dimensional manifold
contained in 8¢~ !. Let u = d — 1 — « denote the codimension of C in S,
As in Section 2, the tube of geodesic radius 0 about C in S¢~! is defined by
C’={ue8S% " sup,ccu'y 2 cos 6} = {uec S du,C) < @1 - w)?,
where w = cos 6.

THEOREM 2.4 (Weyl). If C is a smooth k-dimensional manifold (without
boundary) embedded in S¢~1, then for sufficiently small 0,

(2.19) V(C) =w, ; X kJ(0), w=d-1-k,

O<e<k
e even

where J(0) is defined by

(2:20) p(n+2) (n+e-2)d(6) = [ *(sin p)***"(cos p)* ~* dp

and k, are certain integral invariants of C, with k, in particular being the
k-dimensional surface area of C. [If e = 0, the coefficient of J,(0) is 1.]

Hotelling’s formula for closed curves is the case x = 1. Knowles and
Siegmund (1989) present an account of Weyl’s theorem tailored to statistical
application, extensions to (two-dimensional) manifolds with boundary and
detailed numerical examples. Naiman (1990) extends Weyl’s theorem to spher-
ical polyhedra of the kind occurring in multiple regression. Weyl’s formula is
related to, but distinct from, the Steiner formula for the volume of a parallel
translate of a convex body [Santalé (1976))].
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For sufficiently small angles 6, the leading term (e = 0) dominates in Weyl’s .
formula (2.19). This approximation involves only the surface area of the
manifold, and we express it in a form convenient to our applications to
projection pursuit regression in Section 6. As in (2.3), division by the volume of
89-1 converts (2.19) into a probability statement about a uniform random
vector U on S~ 1. If W = sup, . y'U, then

W,

P(W > cosb) ~
w

1 k
L ?0_[1 2 (1 — w)"/? &+ /2-1 gy a59 — 0,

cos“ 0

where we have set u = cos? p. The integral is proportional to the tail of a
Beta((k + 1)/2, u/2) distribution. Since U? + -+ +U2 ; ~ Beta((x + 1)/2,
1 /2), we obtain the following, after collecting constants.

COROLLARY 2.5. Under the conditions of Theorem 2.4,

k
P(W > cos ) ~ w—OP(U12 + - +UZ2, > cos?0) as6 — 0.

3. An illustration in gait analysis. Olshen, Biden, Wyatt and
Sutherland (1989) have used bootstrap methods for simultaneous prediction
regions as part of an extensive study of normal and abnormal gait in children.
The purpose of this section is to show, using some of Olshen et al.’s data, how
Hotelling’s approach approximately reproduces and illuminates the bootstrap
analysis in three particular cases.

To study the walking cycle of a child, markers are placed on the pelvis and
lower limbs to identify bony landmarks. For example, markers at the hip, knee
and ankle define knee flexions. The child walks, and the motion is recorded
using cine film or video. Measurements of various ‘‘joint rotations” are
measured over one or more cycles. One goal is to characterize walking patterns
in normal children and to develop diagnostic measures of abnormal gait.
Further details of the data collection and modeling are given by Olshen et al.
Measurements of, say, knee flexion for a particular child are assumed to follow
the model

p
(81) Y,=Ay+ Y Ajcos(jt;) + B,sin(jt;) +e¢;, i=1,...,k.
j=1

The points ¢; = 27(i — 1)/k, i = 1,..., k divide the step cycle into % equal
parts. In Olshen et al., 2 depends on the rotation being measured, but is at
least 16. The measurement errors are assumed to be i.i.d. with mean zero and
variance o2 As in Section 2B(iii), the vector of coefficients = =
(Ay, Ay, ..., A, By...,B p) is regarded as characteristic of a particular child
and walk, and hence random, with mean ¢ = (@, ay,...,a,,B;,...,B,) and
covariance matrix I', which is usually not diagonal. The errors {e,} and
coefficients E are assumed independent. Our theory further requires that {e;}
and E follow Gaussian distributions—Olshen et al.’s use of bootstrap methods
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deliberately avoids this assumption, placing in its stead greater reliance on the
data at hand.

Suppose now that (¢, T, 02) are known for a population of “normal” chil-
dren: In practice these are estimated from a learning sample. A new child, with
his own unknown value of E in model (3.1), produces data {(¢;, Y;)}. To decide
if this child is normal, Olshen et al. compute least squares estimates E =
(AO, cieh Ap, B,,..., B, of E (with p = 6). In practice the variability of A, is
so large that it is found helpful to separate it from the remaining harmonic
coefficients. Henceforth, we consider only X = (A,,...,A,, By,..., B,). Let
a(t) = (cost,...,cos pt,sint,...,sin pt). The child is flagged as abnormal if
the estimated curve a(¢)'X lies at any point ¢t € [0, 27] outside the prediction
bands
(3.2) a(t)'é + cvl/?(t).

Here v(¢) is the variability that would be expected for a normal child, v(¢) =
Var (a(tY X|¢, T, 02) = a(t)[T}, + 202k~ Ila(t), where T}, is the submatrix of T
corresponding to the harmonic components. The scaling factor ¢ is chosen to
yield a prescribed probability (such as 0.05) that a normal child [with coeffi-

cients chosen according to (¢, T, 02)] will be incorrectly flagged as abnormal.
Hence, we need to evaluate probabilities such as

(8.3) P oo{la(t)(X - ¢)l <c(a(t)Za(t))*forall t €[0,27]},

where 3, = I, + 202k~ !1. This is precisely an expression of the form (2.9) and
(2.10) for I = [0, 27] and can be studied as described after (2.12).

Olshen et al. compute ¢, 5 via the bootstrap approximation to the P . 2
distribution of T\ (X, £) = sup, c 40, 2, |¢'(X — £)| /(a’Za)"/? based on a learn-
ing sample of 39 normal children. (The subscript ts denotes two-sided.) We
invoke the Gaussian assumptions and the decomposition T = RW of (2.13) to
study cgo; theoretically. We have R? ~ x&,, and, independently of R, W =
SUp, c (o, 2, |Y#YU|, where y(t) = 3'/%a(t)/|2'/%a(?)| and U is uniformly dis-
tributed on S'! c R'2,

The two-sided version of the Hotelling-Naiman—-Knowles bound (2.16) is

(3.4) P(T,<c)>1- 2{%e—02/2 +1- @(c)}.

The right-hand side of (3.4), which we shall denote %.(c), is readily com-
putable. As an example, we use the data (i.e., mean and covariance matrix) on
left ankle dorsi-plantar flexion for 39 normal 5-year-olds obtained by Olshen
et al. This measurement was chosen for ease of comparison with the plots
presented by Olshen et al. (cf. their Figure 7). The covariance matrix 3, is far
from diagonal: Consequently, the norm of y'(¢) oscillates between 1.44 and
4.28 for ¢ in [0, 27]; crude numerical integration yields a total length |y| /27 =
2.496.

The second column of Table 1 presents some representative values of %.(c)
corresponding to the right tail of the distribution of T.,. By linear interpola-
tion we arrive at a value of c,,, = 3.05 as an approximation to the 95th
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TaBLE 1
Simulated and approximate distribution of Ty, = RW,, for the 5-ygar-old left ankle dorsi-plantar
flexion example. k.[(c) denotes the Knowles lower bound (3.4), F(c) the estimated distribution
function of Ty from 500 replications, as described in the text, 26(c) the corresponding approxi-
mate half-width of the symmetric two-sided confidence interval for F(c).

c ki (c) F(e) 24(c) c k(c) F(e) 26(e)
2.6 0.821 0.861 0.015 3.4 0.984 0.986 0.003
2.7 0.863 0.891 0.013 3.5 0.989 0.990 0.003
2.8 0.896 0.915 0.011 3.6 0.992 0.993 0.002
29 0.922 0.935 0.009 3.7 0.994 0.995 0.002
3.0 0.942 0.951 0.008 3.8 0.996 0.997 0.001
3.1 0.957 0.963 0.006 3.9 0.997 0.998 0.001
3.2 0.969 0.973 0.005 4.0 0.998 0.998 0.001
3.3 0.977 0.980 0.004

percentile of the distribution of T,,. Figure 2 plots the resulting normal-theory
prediction regions together with the corresponding bootstrap prediction re-
gions obtained by Olshen et al. (the bootstrap 95th percentile, ¢y, = 3.22).
The apparent close agreement suggests that in at least this setting Hotelling’s
theory provides a reasonable approximation. (Of course, the shapes of the
prediction regions are prescribed by the mean and covariance matrix—it is the
widths of the regions that concern us here.)

(Here the bootstrap percentile is obtained by interpolation from the
quadratic regression fitted to the bootstrap frequencies of 0.89, 0.93, 0.97, 0.99
at ¢ = 2.75, 3.00, 3.5, 4.0 provided by E. Biden. Since the bootstrap frequen-
cies are themselves Monte Carlo estimates based on a relatively small number
of replications, we do not attempt any refined analysis of the quality of
approximation of ¢, and c,,.)

The computations leading to Figure 2 were repeated for two other measure-
ments on the same 39 normal 5-year-olds: left knee flexion and left hip
flexion /extension. In terms of agreement between bootstrap and tube 95th
percentiles, the knee flexion is closest (¢, = 3.05 < 3.06 = ¢},,), and the hip
flexion least close (¢, = 2.95 < 3.15 = ¢p,ot)- Of course, the tube method as
applied here does not make allowance for the variability in the estimates of
(¢,T, 0?) that Olshen et al. compute from the learning sample of size 39%. To
do so would presumably lead to slightly wider bands, although in the predic-
tion setting this is a lower-order effect (asymptotically in the size of the
learning sample, here at least 16 X 39 = 624).

What happens at other percentiles? Moving in from the tails, the bound
k. (c) will become more conservative due to self-overlap and mutual overlap of
the tubes y? and —y°. We want to compare the bootstrap distribution to the
normal theory benchmark F(c) = P(T, < c). Of course, the exact value of
F(c) is unknown, but can be efficiently simulated because of the decomposition
T, = RW,,. Indeed, if W,,..., Wy are ii.d. observations on W, and G(y) =
P(x%3 > ), then an unbiased estimator of F(c) is given by 1 —
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N~13NG(c*W;2). Columns 3 and 4 of Table 1 present unbiased estimates and
half-widths of approximate 95% two-sided symmetric confidence intervals for
P(T,, < c) based on N = 500 simulations. For ¢ > 3.0 (corresponding to tail
probabilities of 0.05 or smaller), the lower bound k.(c) lies within the
confidence interval. In interpreting Table 1, it is important to note [from the
definition of F(c)] that the rows are positively correlated, perhaps strongly so.
Note, of course, that these results depend on the particular curve y (and in
this example on the covariance matrix for the left ankle measurements).

We conclude with a purely qualitative observation. Figure 3 shows the
bootstrap distribution of T\, obtained by Olshen et al. together with the
simulated normal-theory distribution of T, obtained as described above.
Although most of the plot lies out of the intended range of application of
approximation (3.4), it does show that the sigmoidal shape noted by Olshen
et al. corresponds to the sigmoidal shape of the x5 distribution function
scaled by the random multiplier W,, which in this case had 95% of its mass
concentrated in the range 0.37 to 0.81.

4. When do tubes overlap? We have seen that Hotelling’s formula
provides an expression for the volume of a tube that is exact for sufficiently
small tube radii and an upper bound for all radii. Further, a bound for the
error in Hotelling’s formula when averages are taken over all radii can be
derived from knowledge of the critical radius p. at which self-intersection
occurs. Since p, depends on global features of the curve, it must generally be
found numerically. This section shows how this computation is reduced to a
relatively simple bivariate (sometimes univariate) optimization. Examples are
given in Section 5. Although we are chiefly interested in curves embedded in
spheres, we begin with the Euclidean case for simplicity.

Curves in R%. Suppose that a: [0, c] » R? is a regular closed curve. The
tube of radius p about « is denoted by a” = {x € R?: min, |x — ,| < p}. The
cross-section of the tube a” at «, is defined by

C(a,) ={x€a’x—a,la}

(dots denote differentiation with respect to ¢). We often omit the subscript p.
A point x € a” lies in at least one cross-section: At a minimum of the
function ¢ - |x — ;% one has (x — a,)'- @, = 0. Thus

(4.1) a*= |J C(a,).

te[0,c]

We shall say that no self-overlap of the tube occurs if the union in (4.1) is
disjoint. The critical radius p, of first overlap is defined as

p. = inf{p > 0: self-overlap occurs}.

(The infimum need not be attained, consider an ellipse in the plane.) It is
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shown in Johnstone and Siegmund (1989), that the Hotelling formula V(a?) =
la|Q,_1p? ! is exact if p < p,.
p. may be expressed as the minimum of a bivariate function.

PROPOSITION 4.1. If a: [0, c] = R? is regular and closed,

42 .f |(xs_(xt|2 A.fdz
(4.2) Pe = ot 2Py (@, — )| st 2L°

where P, . denotes orthogonal projection on the hyperplane normal to d,.

Proor. If p > p,, there exist s, ¢t and x € C(a,) N C(a,). By shrinking p
and relabeling if necessary, we may assume that |x — a,| = p and that g, the
projection of a onto the hyperplane through «, normal to &,, is nonzero (see
Figure 4). Now alter x such that x — a, is collinear with B — a,, giving
x=a,+p(B—a)/|B — a,: As this only moves x closer to a,, we still have
|x — a,| <p. We use abbreviations d = o, —«a,|, L = |8| = |Pss(ag — a,),
p=|x—a| and V = |a, — B|. Since overlap occurs, |x — «a,|® =
V2 + (p — L)? < p% Since V2 =d? — L2, this is algebraically equivalent to
d? < 2Lp. Thus, if p > p, then p > d2/2L, which shows that p, > I, the
infimum occurring in Proposition 4.1. Conversely, if I < p,, there would be
points «,, a, with d?/2L = p’ < p,. We would construct x as in Figure 4 with
|x* — ;| = p’ and by reversing the algebra above, |x — a,| = p’. Since overlap
cannot occur at radius p’ <p,, it follows that I = p_, which completes the
proof. O

Some feeling for the content of (4.2) can be obtained from the special case in
which the infimum is attained at two points s, ¢ such that a, — @, is perpen-
dicular to both &, and «,. It is now natural to take x = (a, + a,)/2, since
d = L in Figure 4.1, d?/2L reduces to the value we would intuitively expect,
namely d /2. This is an example of nonlocal overlap and should be contrasted
with the local overlap case in which the tube radius p exceeds the radius of
curvature p(s) of a at point a(s). Formula (4.2) must include this situation
also, and indeed one may check that

2
(4.3) lim —— =p(s).

These considerations suggest the following more perspicuous formula for p,.

PROPOSITION 4.2. Suppose that a: [0,c] - R® is regular, closed and C?2.
Let E ={(s,t): s+t and (s,t) is a critical point of the function (s,t) —
la, — a,|%). Then

P = min{infp(s), iIElf|as - a,|/2>.
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F16. 4. Schematic for proof of Proposition 4.1.

This version exhibits local and global components quite explicitly. However,
it is doubtful whether this formula is easier to implement computationally
than (4.2).

Proor OF PROPOSITION 4.2. Property (4.3) shows that the right side is
an upper bound to p.. If p, = p,(:=inf, p(s), then equality is immediate,
so it remains to consider the case in which p, <p,. In this case, any
global minimum (s, ?,) of the lower semicontinuous function ¢(s,t) =
2|oz - a,|%/|P, +(a; —a,))| has s, # t, and it suffices to show that one such
minimum (s, to) €E.

We choose p, | p, and (s,, ¢,,x,) such that x, € C,(a, ) N C,(a, ) and
(using the method of Proposition 4.1) ¢(s,,¢, )< Pn- By compactness and
lower semicontinuity of ¢, a limiting triple (s, ¢, x) exists for which ¢(s,t) = p,
and s # ¢. Further (x — a,)a, = 0 and |x — a,| < p, < p(s), which shows that
s is a strict local minimum of the function u — |x — a,|%. A similar conclusion
holds for ¢, so there exist local maxima u; (i = 1,2) between s and ¢ for which
lx - auil 2p* > pc'

As in the proof of Proposition 4.1, we may assume that x — «, lies along
P,.(a; — a,). We argue by contradiction that (a, — ,)d, = 0. If not, consider
the triangle with vertices a,, @,, and x. Move x along the perpendicular to
a; — a, to a point £ with ¥ — a(s)| <p, and |£ — a(?)| < p, but with £ — x|
small enough that |£ — a(u;)| > p,. Hence, there must be two distinct local
minima §,f of u > |% — a(u)|2 with values less than p?. Thus, £ € C(a(3)) N
C (a(?)) for some p < p,, which contradicts the definition of p,. By reversing
the roles of s and ¢, we also have (a; — a,Ya, = 0, which completes the proof.

0O

The extension of Proposition 4.1 to cover smooth nonclosed curves is
straightforward. The argument there works for ¢ € (0, c) and s € [0, ¢], and so

symmetry considerations dictate that it is only necessary to check |a, — a,|
also.
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PropOSITION 4.1".  If a: [0, c] —» R? is smooth but not closed, then

. inf d? |a0 - acl }
p,=min{ inf —, ———},
¢ s,t€[0, c]? 2L 2

Curves in spheres. We turn now to smooth closed curves y:[0,¢] » S9-1.
The tube of radius w = cos 6 is denoted by

v = {y € S9! sup y'y, > cos 0} = {y € 8% Liinf |y — y,| < [2(1 - w)]l/z}.
t t

(Recall Figure 1). The cross-section of y? at v, is defined by
C(y,) ={yeS? iy =1y,cos¢ + vsin ¢,
where0 < ¢ <fand|v|=1,v Ly, v L7y}

As in the Euclidean case, v’ = U, C(7,), and we say that self-overlap
occurs if the union is not disjoint. The critical angle of the first overlap is
6, = inf{6 > 0: self-overlap occurs}, and the spherical version of Hotelling’s
formula is exact iff 6 < 6,.

To give an expression for all §,, let P, denote projection onto the subspace
M, spanned by vy, and y,.

PropoSITION 4.3. If y:[0,c] = 8¢~ is regular and closed,
1- ys,P Ys
(4.4) cot? 6, = sup - T M 5 2 suph(s,t).
s,t (1 - ’Ys,’yt) S,t

If v is not closed, 6, must be reduced to 27 cos™'(v}y,) if the latter is smaller.

Proor. The argument is similar to that for Proposition 4.1. If > 6, then
pick s, t and y € C(y,) N C(y,) such that y = y,cos § + v cos 0, with |[v| =1
and v € M,* . There is no loss in assuming also that v is chosen to minimize
ly = ¥?, which forces v, = Py,7v,/|Pu,¥,|. By assumption |y — v,* <
2(1 — cos 0), and some algebra reveals that this inequality is equivalent to

cos (1 — v;y,) < sin 0|Py. .
The argument is completed in the same fashion as for Proposition 4.1. O
A case of nonlocal overlap occurs when the supremum in (4.4) is attained at
two points s, ¢ with y, — v, perpendicular to y, and y,. In this case one expects

[and can verify from (4.4)] that y/y, = cos 26,. To see the connection with the
local quantities, it is entertaining to compute that

limh(s,¢) = k2(s),
t—s

where kg(s) is the squared geodesic curvature of y at s, given explicitly by
k2(s) = |(I = Py )7,/ 17|*. Since both numerator and denominator of (4.4)
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are O((t — s)*) as ¢t — s, it is useful in numerical work to use kg(t) approxi-
mating h(s, t) for ¢ near s.

REMARK. Although our main interest in S¢~! is in angles rather than
radii, we may rewrite (4.4) in a form similar to (4.2), since
|Ys - 7t|2

~1/2 _
" (s:0) 2|PMtl('Ys_'Yt)|.

Shift-invariant case. Formula (4.4) simplifies to a univariate minimization
in the special case when v,y, = g(s — ¢). Indeed, 7.y, = g'(s — t) and |y,|® =
—g"(0) = r~, say. Then h(s, t) = k(s — ¢t), where

1-g%(u) - r(g'(w))?

4.5 k = ’
“9 ) [1-g(u)]?

and

(4.6) k(0) =k; =g5%g, - 1,

where g; = g”(0) and, in particular, g; = 0.

Antipodal tubes. In two-sided problems, we also wish to know when y°
first intersects its reflection —vy°. A slight change to the proof of (4.4) shows
that this angle 8, arises as the solution to

1—v/P
4.7 cot? 0, = sup ———Lzs £ suph,(s,t),
s, (L+9y,) 5.t

that is, by changing the sign of vy, in (4.4) and by changing [1 — g(u)]? to
[1 + g(w)P in the denominator of (4.5) in the shift-invariant case.

REMARK (Projections of points and uniqueness of nonlinear least squares
estimates). Define the projection 7(x) of a point x in R onto a curve « in R¢
as any point a(¢) minimizing ¢ — |x — a(¢)|%. Propositions 4.1 and 4.1’ imply
that if |m(x) — x| < p,, then 7(x) is uniquely defined. Similarly, for y € §9¢-1
and a curve y in S%°1, the projection w(y) is a value y(¢) that minimizes
geodesic distance to y or, equivalently, maximizes sup, y(¢)y. Proposition 4.3
gives a sufficient condition for the projection to be unique. These results lead
to sufficient conditions for uniqueness of least squares estimates in the model
(2.5) of Section 2. Again for simplicitly, assume that the o'z term is absent. If
B is known, then the least squares estimate # is unique if |Y — BA(F)|? < P2,
where we consider the curve a: 7 — BA(7). If B is unknown, then by arguing
as in Section 2A(ii), we find that the least squares estimator (8, ) is unique if
(y(#YU)? = cos® 9, where 0, [defined in (4.7)] is determined from the curve
¥(7) = M7)/|A(7)| and U = Y/|Y|. Some practical examples involving kinetic
data to which these considerations are relevant appear in Johansen [(1984),
Chapter 6]. Projections of points on curves and their uniqueness are also basic
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to the study of principal curves, a nonlinear extension of principal components
[Hastie and Stuetzle (1989)].

5. Tours through multivariate data: Tubes illustrated on Andrews’
plots. A natural way to view high-dimensional data is through low-dimen-
sional projections, and when these projections are changed continuously, a
curve in the space of projections results. If we allow that nearby projections
yield similar views, then Hotelling’s tube method offers a way to assess the
fraction of all possible views that may be scanned using a particular curve.

An early example is the plot proposed by Andrews (1972), in which each
data point x = (x4, ..., x,) is mapped into a trigonometric polynomial,

t) =22 +x,sint +x,c08¢ +x,8n2¢+ -,
x 1t X, 3 4

containing d terms, and this polynomial is then plotted for ¢ € C = [0, 27).
The mapping is an isometry of R onto a subspace of LZ0,27) spanned by
{t > 2712 ¢t >sint, t > cost,...}. For a fixed ¢, Andrews notes that the
collection of values {f,(¢)} as x runs through the data is a projection of the
original data onto the unit vector y(¢) = w,(¢)/|w,(¢)|, where

(5.1) wy(t) = (2712 sint,cost,...,sin kt) if d = 2k is even

(5.2) = (2712 sint,cos t,...,sin kt,cos kt) if d = 2k + 1is odd.

The Andrews plot can be seen therefore as a projection pursuit method [see,
e.g., Friedman and Tukey (1974) and Huber (1985)] as it is used to look for
multivariate structure by searching among a (subset) of one-dimensional
projections.

More recently, strategies for interactively ‘touring’ through a curve of
projections have been described by Asimov and Buja, [see Asimov and Buja
(1983), Asimov (1985) and Buja and Asimov (1986)]. For one-dimensional
projections, the curve lies in a sphere, for two dimensional projections (ulti-
mately of greater practical interest), the curve lies in a Grassmannian mani-
fold. For simplicity, we confine the analysis to Andrews plots here, though the
methods extend, at least in principle, to the newer cases. Asimov (1985) gives
bounds and simulations of similar flavor for a number of touring methods,
though the tubes approach is not used.

We study the amount of information captured (or missed) by the Andrews
plot by asking what fraction of all possible one-dimensional projections are
represented. This admittedly crude approach ignores information obtained by
going beyond the individual one-dimensional projections to look at the entire
two-dimensional plot. However, such “ensemble information” will be harder
to extract when the individual projections are presented sequentially and then
removed, as in the ‘““grand tour’” methods.

Projections of data onto unit vectors u and v that are close will produce
similar results—thus it is not necessary (or possible) to look at all projections.
Suppose that we deem it unnecessary to use projection directions v which
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TABLE 2
Percentage of projections ‘‘seen” using an Andrews plot for the curves y(t) in S2%*
for squint angles 5°(5)20°.

2P(W, = cos ¢) 1 2 3 4 5 6

5° 0.142 0.0019 ~0
10° 0.284 0.0148 0.0006
15° 0.425 0.0490 0.0046 0.0004
20° 0.559 0.1132 0.0187 0.0028 0.0004 0.0001

make an angle less than 6 with a chosen direction u [Huber (1985) terms this
the “squint angle”’]. If we employ an Andrews plot, the percentage of possible
projections that we see for a squint angle 0 is just the ratio of the volume of
the tubes of radius /2(1 — cos 6) about +y(C) to the volume of S¢~1. (Both
+u and —u are counted since a projection in direction —u is just a reflection
of that in direction u). Thus, Hotelling’s formula immediately applies.

Consider the case of odd dimensional data, d = 2k + 1. The closed curve of
projection directions is thus y(¢) =[2/(2k + D]'/2 (2712, cos t,sint,...,
cos kt, sin kt) in S2* for ¢ € [0, 27]. Calculation shows that |y,12 = (k2 + k)/3:
in particular, y has constant speed. Thus the length |y| = 27[(k2 + £)/3]'/2.
Ignoring overlap (which we may, for the angles listed, as shown below), the
percentage of projections seen for a given squint angle 6 is given, from (2.3)
without caps, by

(5.3) 2P(W > cos 8) = 2[(k2 + &) /3] 12 Gn2k-1g.

Squint angles greater than 10° may be unrealistic [indeed, as discussed in
Huber (1985), page, 437ff, it is easy to miss the planes produced by the
notorious RANDU random number generator]. Thus, Table 2 shows that for
even low dimensions (k¢ = 2, 3), Andrews plots give only a sparse sampling of
the possible projections and suggests that more extensive touring of projec-
tions may be needed.

Angles of first overlap. To ensure that the values of Table 2 are exact, we
need to know the critical radii 6, and 6, at which the tube y° first intersects
itself and —v°, respectively. A convenient feature of the constant speed curve
y is that y/y, = [1 + 2L % cos j(¢t — 5)]/(2k + 1) = g(¢ — s) is shift invariant.

Thus, 6, and 6, can be found by univariate maximization of (4.5) and its
two-sided analog. Using a grid on [0, 27) with 30% points, the values of cot? 6,
and hence w, and 6, were obtained numerically and are displayed in Table 3.
The values of ¢, hover close to 45°: This is not unexpected since y,y, is close
to zero [actually 1/(2k + 1)] for most values of s — ¢. Hence, the half-angle
between v, and v, is about 45°. From the values of 6,, one can calculate the
volume of the largest tube for which Hotelling’s formula (2.3) is exact: This is
listed as P(W > w,).
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TABLE 3
For curve v in S2*, 8, = angle (°) of first local overlap, . = cos 0, defines the angle of first global
overlap. P(W > w,) = percentage of S2* in largest non-self-overlapping tube, 0, = angle of first
intersection of tubes about 'y and —vy, 2P(W > w;) = percentage of S** in largest nonintersecting

tubes.

k 0, w, o, P(W>w,) 0, 2P(W > w,)
1 54.7 0.578 54.7 0.666 35.3 0.943
2 50.1 0.776 39.2 0.358 37.8 0.653
3 49.1 0.761 40.4 0.230 38.3 0.367
4 48.7 0.757 40.8 0.132 38.5 0.186
5 48.5 0.754 41.0 0.071 38.6 0.091
6 48.4 0.754 41.1 0.037 38.6 0.042
7 48.4 0.753 41.2 0.0189 38.6 0.0189
8 48.3 0.753 41.2 0.0093 38.7 0.0084
9 48.3 0.752 41.2 0.0045 38.7 0.0037

10 48.3 0.752 41.2 0.0022 38.7 0.0016

11 48.3 0.752 41.2 0.0010 38.7 0.0007

12 48.3 0.752 41.3 0.0005 38.7 0.0003

13 48.2 0.751 41.3 0.0002 38.7 0.0001

14 48.2 0.752 41.3 0.0001 38.7 0.0001

15 48.2 0.751 41.3 0.0001 38.7 ~0

16 48.2 0.751 41.3 ~0 38.7 ~0

Using (4.6), we calculate the (constant) squared geodesic curvature of y as
{8Bk2% + 3k — 1)/[5k(k + D]} — 1, which implies angles 8 , of first local over-
lap, as shown in Table 3. Aside from the somewhat exceptional case & = 1,
these are always strictly larger than 6,, so it follows that nonlocal overlap
occurs before (i.e., for smaller tubes than) local overlap.

The values of 6, for overlap of y® and —v° are similarly obtained and
stabilize at 38.7° (as %k increases). Since this easily exceeds the tube radii used
for Table 2, we conclude that these values are exact.

Quality of approximation when overlap occurs. For tube radii larger than,
but close to 6,, it seems possible that the Hotelling formula (2.4) would
continue to provide a useful approximation. We ran a small simulation to
investigate this for the curve y in S2* corresponding to (5.2) For £ = 2(2)12,
we drew 10,000 points U, from the uniform distribution on S2*. The volume
of the tube y’ about vy, equivalently G(8) = P(W > cos 0), is estimated by the
fraction of W, = sup, y(¢)U, falling in y°. Representative results for % =
2,6,12 are given in Table 4 along with values of the Hotelling formula (5.3).
Standard errors for G(6) are estimated by {G(6)(1 — G(8))/n}!/2, so that two
standard errors may be conservatively bounded by 0.01.

As seen from Table 3, first overlap occurs in each of the three cases at about
41°. However, Table 4 shows that the Hotelling formula remains accurate for
tubes of significantly larger radius as the dimension d = 2k + 1 increases. In
particular, the formula is good to within 0.01 (also the resolution of the Monte
Carlo experiment) for tail probabilities as large as 0.25.
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TABLE 4
Columns 2-7: Simulated (‘“sim”) and Hotelling [“Hot,” cf. (5.3)] expressions for probability of
tube of geodesic radius 6° about the closed curve (5.2) in S2*. Horizontal line: approximate angle
at which first overlap occurs (cf. Table 3.2), so that “Hot” is not exact. Simulations based on
10,000 replications, standard error of estimates is at most 0.005. Below descending dotted line,
Hotelling formula overestimates by at least 0.01 (even allowing for simulation uncertainty).
Columns 8-11: extra contribution from the ‘““caps’ term (2.3).

Angle k=2(d=5 k=6(d=13) k=12(d =25) caps
(degrees)  sim Hot sim Hot sim Hot k=2 k=6 k=12
4 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.004 0.004 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.013 0.013 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.030 0.030 0.0 0.0 0.0 0.0 0.001 0.0 0.0
20 0.056 0.057 0.0 0.0 0.0 0.0 0.003 0.0 0.0
24 0.093 0.095 0.0 0.0 0.0 0.0 0.005 0.0 0.0
28 0.145 0.146 0.001 0.001 0.0 0.0 0.010 0.0 0.0
32 0.211 0.210 0.003 0.004 0.0 0.0 0.016 0.0 0.0
36 0.287 0.287 0.011 0.011 0.0 0.0 0.026 0.0 0.0
40 0.372 0376 0.031 0.029 0.0 0.0 0.038 0.001 0.0
44 0459 0.474 —: 0.071 0.068 0.002 0.002 0.054 0.002 0.0
48 0.543 0.580 ! 0.144 0.143 0.008 0.008 0.073 0.004 0.0
52 0623 0692 1 0266 0272 0030 0030 0.097 0010 0.0
56 0.691 0.806 0.436 0.476 ! 0.094 0.097 0.124 0.019 0.001
60 0.751 0919 0.639 0.769 ! 0.253 0.264 0.156 0.034 0.005
64 0.802 1.027 0.805 1.157 0.527 0.620 0.192 0.058 0.013

For this numerical example we conclude, as did Knowles and Siegmund
(1989) in a different example, that the Hotelling formula is useful for the
range of significance levels encountered in practice, even in those cases where
overlap occurs. [Incidentally, the curve y would arise from a testing problem of
the form (2.5) with @ = 0, A;(¢) = cos it for i = 1,...,n, A(¢) = sin(i — n)t
fori=n+1,...,2n and A,(¢) = 27V/2]

Although v is closed for this example, to obtain a valid upper bound for
P(W = cos ) for 6 > 6,, we need to add the caps term in Naiman’s bound. The
magnitude of this term is shown in the three rightmost columns of Table 4.
The term is quite significant for k& = 2, marginally important for 2 = 6, and
negligible for 2 = 12. This is due both to the increased length of y as k&
increases and to the smaller relative volume of a cap of fixed angle as &
increases.

Most distant projection. Which projection of the data lies furthest from the
Andrews plot, and how closely does the plot approach it? Since the projections
on vy, and —vy, are equivalent, this amounts to calculating

M = min max|u'y,,
ue Sd -1 t

and, if possible, the minimax value of «.
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A simple answer exists when d = 2k + 1 is odd. From Parseval’s identity,
for ¢ = (ag, @y, by,...,ay, by),

lc|?
2k +1°
Hence, M > 1/y2k + 1, and the bound is attained for u =(1,0,...,0).
For this value of u, the closest projection direction makes an angle 6 =
cos"Y1/V2k +1)=w/2 — (1/V2k + 1) + O(k~3/%). When d is even, the

situation is less clear-cut—further details are given in dJohansen and
Johnstone (1985).

1 2
mtax(c'%)2 = E’;_’; (CI'Yt)zdt =

ReEMARK. The corresponding analysis of y(¢) = wy(¢)/|wy(¢)] when d is
even is complicated by the fact that |w,(¢)|? is no longer constant, so that y
has nonconstant speed and v/y, is not shift invariant. This can still be
analyzed (for example, using the bivariate methods of Section 4), but a simpler
analysis occurs if w,(¢) is modified to w,(¢) = (cos ¢, sin¢,...,cos kt,sin kt),
which yields a y, = @, /|w,| of constant speed, etc. The results are qualita-
tively similar to those described above and are given in detail in Johansen and
Johnstone (1985).

6. An application to projection pursuit. Projection pursuit methods
form a class of computationally intensive exploratory data analytic procedures
aimed at uncovering “nonlinear” structure in multivariate data [see, e.g.,
Friedman and Tukey (1974), Huber (1985) and Friedman (1987)]. The nature
of projection pursuit, whether applied to viewing data, regression, density
estimation or classification, is to search over a large number of low dimen-
sional projections in order to optimize numerically a projection index that is
sensitive to the particular kind of structure sought.

Such extensive data dredging clearly raises the possibility that spurious
structure will be “discovered” [see e.g., Day (1969), Miller (1985) and
Friedman (1987)]. It is therefore important to assess the amount of structure
that will be found by projection pursuit in white noise. Such significance tests
can be based on Monte Carlo simulation, as in Friedman (1987), although this
can be enormously expensive computationally.

The purpose of this section is to show that Hotelling’s approach (and Weyl’s
extension) offers, at least in principle, a way to derive approximate tests of
significance analytically. We do this by example, working with a slightly
idealized model of projection pursuit regression (PPR) in which it is assumed
that the independent variables follow a Gaussian distribution. The benefits are
that first a simple approximate P-value exists for even a computationally
complex procedure such as PPR and, second, a fairly direct application of the
Hotelling-Weyl approach can be presented. The price is that further work in
less idealized settings is necessary before the approach can be recommended
for practical use. Fortunately, Sun (1989) has produced approximate P-values
for the practical algorithm of Friedman (1987) (and was actually the first to
carry out the program sketched in an earlier version of this paper).
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Projection pursuit regression [Friedman and Stuetzle (1981)] fits a regres-
sion function of the form y =X ,g,(a}x) to data (X;,Y;)) eRP X R, i =
1,...,n in an effort to estimate the regression function f(x), the conditional
expectation of y given x. If there are several independent variables, the idea is
that a small number of univariate functions g, and well-chosen projection
directions a, € SP~! may lead to parsimonious representation of  f(x).
[Donoho and Johnstone (1989) have begun some theory to support this
heuristic.]

The PPR fit is usually constructed using a least squares criterion: Choose
{g,} and {a,} to minimize ave(Y — ¥ ,g,(a}X)}?, where ave denotes sample
average over data points (X, Y;) indexed by i = 1, ..., n. Various algorithms
are described in Friedman and Stuetzle (1981) and Friedman (1984). A com-
mon algorithm is forward stepwise: First minimize ave(Y — g,(ajX)}? obtain-
ing a fitted model Y = g,(&{X) + e;. Repeat the minimization on the residual
e, obtaining the fit Y = 2,(&; X) + 2,(44X) + e,, perhaps after a ‘‘backfitting”
adjustment to (2, &;) to allow for (£,, @,). The iteration continues until no
substantial improvement in fit occurs, as measured by the relative size of
ave{82, (d}.,,X)} and ave{eZ).

A natural approach to significance testing in the stepwise setting is there-
fore to assess the size of the various terms g(&'X). We shall consider in detail
only the first step, namely, assessment of 2,(¢{x). This step is perhaps most
important from the viewpoint of significance testing, for if no structure is in
fact present, there should be no reason to progress beyond this stage. As is
usual with stepwise methods, the results may be formally carried over to later
stages, though the distributional assumptions made at the first stage may no
longer exactly apply.

We first describe the algorithm by which g,(&]x) is constructed. In spirit
this follows Friedman and Stuetzle (1981) and Huber (1985), but differs in
details: Especially, the use of orthogonal polynomials to fit univariate func-
tions is a concession to mathematical convenience. Then we discuss the model
assumptions which underlie our theoretical analysis.

Let e, (t) = H,(t)/y/(m!) denote a normalized Hermite polynomial [e.g.,
Magnus, Oberhettinger and Soni, 1966] H, (t) = e!*/%(—d /dt)™e /2. For a
given direction a, let g, (a'x) = L™ ;c,(a)e,(a'x). Let ¥ and s denote the
sample mean and standard deviation of (Y;)]_; and standardize the data via
Y. = s7 XY, — Y). The least squares fit is obtained by minimizing the residual
sum of squares over {c,(a), r =1,...,m} and «,
n ' m 2
RSS = min min Y, {Y - c,(a)e,(a'Xi)} )

a cla) =1 r=1

Denote the least squares estimates obtained for fixed a by {¢,(a)}. The statistic

n . . n m 2
Ti= L ¥ -RSS = aw ¥ § 6 (e (X))
i=1 a i=1\r=1
yields a significance test of the null hypothesis of absence of regression,
f = constant: reject for large values of T2,
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Our idealized model postulates Y; = f(X,) + ¢;, with (X,,Y) i=1,...,n
iid. and with errors &; having mean zero and variance o> and being indepen-
dent of X; ~ N,(0,I). We shall illustrate the Hotelling-Weyl approach in
deriving the following.

THEOREM 6.1. Let b, ,, = E[LT rV2I®*~ Y72 for (V,,...,V,) a uniformly
distributed random vector on S™~. Then, under the null hypothesis that
f = constant, as x — ®,

(6.1) lim P(T? > 2) ~ CootOnty  P(Ximos = %2)

p,
@Dpirm-2

lwg_y = 27%72/T(d/2)].
The constant b, ,, can, in principle, be evaluated exactly when p is odd
le.g., if p=38, b,,,=(m+1)/2], and is in any case straightforward to
estimate by simulation.
The demonstration breaks into three steps:

1°. The random variable T, converges in distribution to a random variable T
with representation

(6.2) T= max max y(a,pB)Z,

acSP~lgesm!

where Z ~ N,(0,I) and y: S?~* x S™~1 - S9! js a smooth mapping to
be described below. This representation depends critically on an idea
suggested by David Siegmund.

2°. Decomposing Z = RU, where R ~ x4, and U ~ Uniform(S d-1) are inde-
pendent, we write T = RW, where in analogy with (2.2), W = sup, ¢ v'U,
where C = y(SP~1x 8™~1) is now a surface in S~ ! of dimension
p + m — 2 rather than a curve. From the decomposition

P(T=z) = [ P(W=xr)P(R €dr),

we are led, exactly as in the case of curves, to consider the volume (in
S9-1) of a tube about the surface C. Weyl’s theorem, specialized as in
Corollary 2.5 yields

ko ,o ' x
P(T2x)~—[ P[(Ul2 + - +U2,)? zﬁlR = r]P(R e dr)
W, 7x

(6.3) (x = )

ko
= w_KP(X(2K+1) = x2)’
where k =p + m — 2 is the dimension and %, is the volume of the
manifold C. [Inasmuch as the manifold C has no boundary, this example is
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simpler than the statistical applications of Weyl’s theorem given by Naiman
(1990) and Knowles and Siegmund (1989).]

3°. A calculation shows that the volume &y =w,_ 0, ;EErV2)®-b/2
where (V,,..., V,)) is a uniform random vector on S™~!. Combining this
with (6.3) yields the formula (6.1).

We proceed to the details of steps 1° and 3°.

1°. To approximate the null distribution of T),, we separate a from the data
X; by using the Hermite polynomial addition theorem [e.g., Magnus,
Oberhettinger and Soni (1966), page 254],

(6.4) e (a'x) =Y, ‘/mw’ek(x).

|kl =r

Here we use multiindex notation: k = (ky,..., k), a* =af' -+ als, |k| =

ky+ - +k, and e,(x) = e,(x,) - - e, (x,). The generalized binomial coeffi-

cient (;)=r!/ﬂk,~!. The summation is taken over the d, = d(r, p)

= (r;’izl) vectors (ky, ..., k,) for which k; + - +k, =r.

Define the n X d matrix X by X, = e,(X;) and the d X m matrix I'(a) by

Ty (@) = {\/m ot ik =,

0 otherwise.

Let c(a) = (c,(a)]* ;. The projection pursuit least squares minimization prob-
lem becomes, in matrix notation, to minimize |Y — XT'(a)c(a)|? over a and
c(a). Hence, &(a) = T(aYX'XT(a)) " T'(a)X'Y and

T2 = maxY'XT'(a)(I'(a) X' XT(a)) ‘T (a)X'Y.
Let Z, = n~Y2X'Y and E, = n~'X'X. It follows that
T2 = maxZ.T'(a)(I'(a)'E,I'(a)) 'T(a)'Z,.

Under H,, Z, has mean 0 and (from the orthogonality of the Hermite
polynomials) asymptotic covariance matrix I,;, and so the central limit theo-
rem guarantees that Z, converges in distribution to a standard Gaussian
vector Z. Again by the orthogonality of the Hermite polynomials, the law of
large numbers guarantees convergence of E, in probability under H, to the
identity matrix I,. Hence, (Z,, E,) converges jointly in distribution to (Z, I).
The function (z, e) —» max{z'T(a)I'(a)el'(a)) I'(a)z, a € SP~1} is continu-
ous for z € R™ and e in a neighborhood of I,,, and so the continuous mapping
theorem ensures that 7,2 converges in distribution to the maximum of a
chi-square process,

T? = max ZT(a)l'(a)'Z,

where we have used the easily checked fact that I'(a)T(a) = I.
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Now introduce d, X 1 vectors y"(a) defined by

vi(a) = ‘/_(_ga’“ for |k| =r.

Write Z" for the d, X 1 component of Z corresponding to subscripts £ with
|k| = r. From the definition of I'(a),

T?=max Y, (y"(a)Z")>
a  r=1

Siegmund’s idea is to represent the maximum of the chi-square process in
terms of the maximum of a Gaussian process using the device

m 1/2 m
[Z (7"2')2] = sup ) B.(y"z"), =z €R%.
r=1

peSm™~lr=1
Thus,
m
T= sup sup Y B,(y(a)Z") = supy(a,B)Z,
acSP~l gesS™ 1 r=1 a,B

which is a representation of the form (6.2) with

Bﬂ’l(a)
(6.5) v(a,B) = e 841,
Bny™(a)

For future reference, we record some properties of the mapping y™: S?~! —
89-~1 The identity |y"|> = 1 reflects the fact that the total mass of the
multinomial distribution of the vector K = (K, ..., K,) counting the distribu-
tion of r balls into p cells with probabilities (af, e Ié) equals 1. We compute
partial derivatives

D,y; = (]:)kjak"e,’

and hence from the properties of multinomial distribution

(6.6) (D y )(D y )—

EK,K; =rd;; + r(r — 1)a;a;
J aJ

3°. Finally, we compute the volume of C = y(S?~! x §™~1) by expressing
the volume element on C in terms of the volume element do,_(a)do, 1( B)
on SP71x S™ L Let y: UcCRP™™ 25 C, ¢: U, XUZCRP Ly g1
SP-1 x §™=1 be local coordinates (““charts”) on C and SP~1 x §m~1 respec-
tively (U, U;, U, are open sets), that are connected by y: ¢ = y © ¢. Using D to
denote differential (Jacobian matrix), the volume element on C in local coordi-
nates becomes

\Dy’' Dy|'/? = |D¢' Dy’ Dy D¢|*/2.
Writing y7 = D, y"(a) and partitioning according to « € SP~!, p € 8™, we
j o;
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find from (6.5) that
Boyi By | Y 0
Dy = [D,y|Dgy| = : KR
Bnyl: 0 BmYpy | O y™
An appeal to (6.6) yields

Dy' Dy =

a(B)I, + b(B)aa’ af’
Ba’ I, }
where B, = rB,, a(B) = L"rp2 and b(B) = Lr(r — 1)B2. Writing ¢(s,t) =
(a(s), B(2)), we get
2o =[5 D)
and (since |a|> =1 = @' Da = 0)
|Dy’ Dy|'/? = a?~V/2(B)|Da’ Da|'/?|DB’ DB|/2.

Hence,
vol(C) = | a®?"V/%(B) do,_\(a) do,,_,(B)
sp-ixgm-1 P
m (p—-1)/2
=“’p—1“’m—1E(E"Wr2) ’
1
where W, ..., W, are uniformly distributed on S™"1,
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