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10. I regret that I have not had time to do the mathematical work that would,
I believe, support some of the above statements.

11. It should also be remembered that the literature on the principle of
conditionality is extensive.

12. A general principle, like a mathematical assertion beginning with a univer-
sal quantifier, can be refuted by a single counterexample but cannot be
validated or proved by any number of special examples.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

REJOINDER!

LAWRENCE D. BRowN

Explanations, etc. Several discussants have offered supplementary ex-
planations for the inadmissibility result of Section 3.3 (Casella, Copas, Efron,
Gleser, Morris). Each of the explanations is somewhat different and each adds
further understanding.

Gleser goes further and gives a useful extension of my results in the style of
my Lemmas 3.3.1 and 3.3.3. Consider the situation discussed in my Section 4.2
where it is desired to estimate the linear function « = aa + &8 in the
regression setting. Then, if r > 3, Gleser’s Theorem 1 can be applied via his
formula (5) to yield a specific, useful estimator dominating §, = a&@ + &'B. The
existence of a dominating estimator was already established in my Theorem
4.2, even for r = 2, but no usable formula was given.

Lu demonstrates that the general nature of the inadmissibility phenomena
here is not significantly dependent on the form of the loss function. Insofar as
his results for L, are not directly constructive (analogous to my Theorems
2.2.1 and 3.2.2 for squared error) they point to the important question of
constructing estimators in the regression setting which usefully dominate §,,
under L.

Limited translation estimators. Morris (explicitly) and Efron (im-
plicitly) each raise the issue of modifying the proposed estimators to limit
maximum coordinatewise risk. (This appears to be the joint occurrence of
conditionally independent but marginally highly correlated events!) Berger
also makes this suggestion. This seems reasonable, particularly in view of the
numerical results Berger mentions. However it is important to understand
the justification for this suggestion before putting it into practice.

To do so consider the usual multiple normal means estimation problem and
the positive-part James—Stein estimator, which is given by d*- of (2.1.7) for
3 =Q=1Iand p =p — 2. For moderate p > 3 this is known to approximate a
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generalized Bayes estimator for a prior which has—as Berger writes—
“flat ...but not too flat” tails. Let us assume that this is also the case for
large p. [Berger (1985, page 238) informally claims this is so, but I am still
skeptical in the current case. If it is not so, then an appropriate generalized
Bayes estimator should replace it in the following discussion.] In this case the
limited translation estimator will not dominate d *. But there are two kinds of
robustness arguments which nevertheless can justify use of the limited trans-
lation estimator. One involves robustness in the loss function. If there is a
possibility that some coordinate(s) of the loss are more important than the
others, then it becomes desirable to limit the maximum coordinatewise risk.
[See Brown (1975) for a precise formulation, but the idea is already implicit in
Efron and Morris (1972).] Alternatively, if there is some doubt as to the
suitability of the generalized prior, then certain types of robust Bayesian
considerations suggest using something like the limited translation estimators
in place of d¥ [See, e.g. Berger (1985), pages 243-244, Dey and Berger (1983)
and Berger and Dey (1985)].

Now consider the current problem of estimating @ when V is ancillary.
Here the first type of robustness motivation cannot exist since the loss is
one-dimensional. The limited translation alternatives must be appealing—if at
all—because they are more appropriate for a realistic, robust prior assessment
than are those in Section 3.2. It is thus not the large value of the conditional
risk, per se, that justifies the limited translation estimator; Rather it is that
this large value is a warning that the prior may not be realistic or, in other
words, that what Berger (1984) has called “posterior robustness” does not
hold. Perhaps it is also of interest to note that essentially this robust Bayesian
idea is already apparent in Efron and Morris (1971), which proposed limited
translation estimators for the standard one-dimensional normal problem.

An additional comment seems relevant. Gleser has pointed out how it is
possible in the regression-with-ancillary setting to construct an estimator
which simultaneously improves on all coordinates of the estimated (a, B’)
vector. It is plausible that, even here, it would be desirable to construct a
limited translation version if a suitable version could be constructed and
shown to have some meaningful, desirable robustness properties.

Conditional criteria versus marginal criteria, I. Berger contains an
incisive analysis of the conditionality issues raised in the current situation. I
agree with almost all he has to say. His ““alternative ancillarity paradox” is
particulary pertinent. He may also be right when he later continues that it is
rare for estimators developed solely [my italics] as unconditional frequentist
dominating estimators to be of much use in practice.” In any case, I would not
recommend proceeding in such an exclusive fashion. Of course, ‘“developing
the procedure conditionally to assure conditional soundness and (only then)
checking its unconditional behavior,” as he suggests, can also mislead. The
ancillarity paradox in my paper is meant to be an example. Pandora or no (I
am not sure which) I agree with him that ‘“a mix of good conditional and good
unconditional frequentist behavior is needed.”
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Conditional versus marginal criteria, II. When Berger suggests first
analyzing problems conditionally, he is careful to make clear that this condi-
tional analysis should be Bayesian in some sense. Furthermore, as we both
agree, the prior (or robust family of priors) must be chosen without regard to
the observed value of the ancillary. To proceed conditionally in some other
fashion is much more dangerous. Fraser and Reid seem to recognize this in
Section 5 of their discussion. There they present an example in which use of
conditionally minimax estimators leads to a marginally unacceptable, nonmini-
max procedure. A systematic treatment of a much more important general

~instance of this phenomenon can be found in He (1989). [ Fraser and Reid’s
example is perhaps not so ‘“simple” as they thought. They have overlooked the
fact that the conditional problem inherits the parameter space of the marginal
one. Thus, given x;, + x4, = 1, the variable x,, is Bernoulli with + < p = (1 +
6)/2 < 1 since 0 < § < 1. The admissible minimax procedure for this condi-
tional problem is (2 — V2)xy, = 0.5858x,,. This has maximum risk (over
0<60<1) of 0.1716 attained at § = 0 and 1. Rao-Blackwellizing this condi-
tional estimator together with that for x,; + x4, = 1 does indeed improve over
the simple conditional prescription. However, it does not improve the maxi-
mum risk at ¢ = 1 since P,_,(x,53 = x9; = 0) = 1. Thus both the fully condi-
tional original and the Rao-Blackwellized estimators have maximum risk
X 75 + % X 0.1716 = 0.1352. The true minimax procedure for the marginal
problem is £* = x,; + (2 — /2 )x,,, which is Bayes for a suitable prior sup-
ported on 6 = 0, 1. This procedure has maximum risk of only 0.1144, attained
at 6 = 0, 1.] Given their discussion, and particularly this example, I do not
understand their conclusion that “the issue of marginal optimality is not of
interest ... .” Perhaps they are thinking only of situations similar to Welch’s
confidence interval example, which I will now discuss.

Welch’s and Cox’s examples. The discussants are very divided here.
Fraser and Reid strongly support the standard (conditional) analysis in the
Welch example, and presumably also in the Cox example. Efron supports the
standard analysis in Cox’s example, but for what seems to me an unusual
reason. Stein [in his (7) and (8)] also supports the conditional analysis in the
Welch example but favors the marginal test. Berger favors the marginal test
in the Cox example. [It seems like a contradiction for the avowed frequentist
(Stein) to prefer the conditional test-and the avowed Bayesian (Berger) to
prefer the marginal one! But read them closely.] Gleser is the only discussant
who seems to have understood what I was hinting in my Section 5 so I will be
explicit here—but also brief.

What I propose as a level a = 0.05 procedure in Cox’s example is this: If the
smaller sample size n, obtains, then use the formally level 0.1 conditional test
and state that the test used has (conditional) level 0.1. Otherwise (n,) use the
appropriate level ¢ (¢ near 0) conditional test and state that the test used has
conditional level e.
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My suggestion is thus that the standard test statement consisting of a plus
either “accept” or “‘reject’” be augmented with a statement of the conditional
level. A formal framework for this sort of thing can be found in Brown (1978);
see also Kiefer (1976, 1977). Within this framework the above proposal domi-
nates the ordinary conditionally level 0.05 test and I suspect it is admissible.
Note also that this proposal follows—and in a way justifies—a customary
practice of using smaller « levels for higher quality data. My suggestion for
Welch’s example is similar.

In accordance with the above I think it would be very useful to have
available—as Gleser suggests—supplementary estimates of the conditional
risk of the procedures in Section 3.2. Perhaps this would also help settle the
valid confusion expressed in Morris’s Section 1. Johnstone makes a useful
start in this direction.

Frequentist measures of performance. I think Gleser’s description is
overly restrictive. He writes that ‘‘frequentist measures. . .implicitly assume a
‘stream’ of similar [my italics] experiments....” (Some other writers even
require identical experiments. Hill comes close to this in his third-from-the-end
paragraph.) In fact the experiments need not be similar at all. For my view on
this, see my discussion of Berger (1984, pages 126-127), only part of which is
cited by Hill.

The real world is finite. Hill argues that the conflict between frequen-
tist admissibility (FA) and the ancillarity principle (AP) “cannot occur in the
case of parameters and data for which there are only a finite number of
possibilities.”” Make the proviso that this finite list of possibilities be known to
the statistician. Then Hill is correct in the strictly formal sense that every
admissible procedure is (stepwise) Bayes both marginally and conditionally.
[See Hsuan (1979) for the definition of stepwise Bayes.] As Berger has noted
in his discussion, the only conflict between FA and AP that could then occur
would be if different (stepwise) priors were to be used in different conditional
problems. Nevertheless, I disagree with Hill.

There are two related practical faults in this reasoning. One is that the
preceding proviso is often not present in any realistic fashion. The second is
that there is a hidden presumption that the unique, suitable prior can be
determined. Hill seems to argue that when this prior cannot otherwise be
determined, then it suffices to simply impose a uniform prior on the finite
parameter space.

To illustrate these faults I will consider below a slightly whimsical example.
Also, note that because of the mathematical connections it suffices here to look
at the ordinary simultaneous-estimation-of-normal-means problem. (See espe-
cially the explanation in my Lemma 3.3.1 and in Efron’s comment.)

So, let us suppose that for four different, previously unnoticed species of
bees, living on four different continents, we wish to estimate the average
species-wide log-mass per beehive. Let us further assume that previous experi-
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ence convinces us that a suitable approximation is to assume, that the ob-
served log-mass x; is a N(u;, o) variable. For simplicity in the current
discussion let us also assume that ¢ is known and that o> = 1. (Neither of
these assumptions is needed for the general assertions that follow if several
beehives for each species can be measured.)

Hill would begin by noting that both X and u are really discrete; let us say
in multiples of 1/1000. (This assumption, even if questionable, does not
materially affect the argument to follow.) Accordingly, the sampling distribu-
tion now becomes a discretized normal.

More importantly, he would argue (correctly) that both the x; and X; are
bounded; let us say b < u;, X; < B. The dilemma lies in the values of b, B. I
think we can agree that it suffices (i.e., is not too small) to choose B equal to
the log mass of a herd of elephants. An analogously small value could be
agreed upon for b. We have now arrived at a strictly finite problem in which
the Bayes procedures are a complete class. But that does not help settle the
problem of what estimator to use.

Hill would now, it seems, have us use the Bayes procedure for the uniform
prior on the possible values of u = (u,,..., 1) with each u; between b and
B. This Bayes procedure will be exactly X so long as b < X; < B. [Elsewhere
in his discussion he seems to argue for use of the least squares estimator, by
which I presume he means either X itself or the truncated version with
coordinates min(max(X;, b),B). In either case the least squares estimator is
inadmissible for the truncated problem, and so does not seem to meet the test
of his Theorem 1.]

The discretized positive part James—Stein estimator centered on a prior
guess for u would be preferable. An alternative if this prior guess for u were
vague would be to use the corresponding Lindley—Smith James—Stein positive
part estimator shrinking toward X(1,...,1). Both of these estimates would be
only approximately admissible. If an exactly admissible estimator were desired,
the proper approach would be to use the Bayes procedure for a truncated and
discretized version of a suitable prior, like those suggested in Strawderman
(1971) or Berger (1976,1984,1985). The result should be similar to the
positive part James—Stein estimator suggested above.

These James—Stein style estimators will dominate the uniform prior Bayes
estimator in risk except when some u; is near b or B. But values of u; near
either extreme are unrealistic. No one a priori expects the beehive to weigh as
much as an elephant, and if it did, then we might seriously question our
assumption that X; ~ N(u;, o), as well as our sanity and safety!

In summary, the James—Stein estimator (or something much like it) often
remains a preferable alternative to the uniform prior Bayes estimator even in
a finite world, since the bounds on this world are frequently more extreme
than reasonable prior opinion. Berger and Wolpert (1988, page 189) make a
similar point. Because of this, the apparent conflict persists in practice be-
tween what Hill terms FA and AP. A final quotation from Hill, with which I
do agree, is appropriate. Elsewhere [Hill (1981)] he wrote: ‘“Even if we accept
that real problems are finite [infinite and] continuous idealizations are com-
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monly made in statistics for practical approximations, so the question would
remain as to when such idealizations are dangerous.”

To conclude. I would like to thank the discussants for their stimulating
and penetrating discussions. I am sorry that it has been impossible here to
respond in some way to all of the interesting issues they have raised. I also
wish to thank the editors of the Annals for encouraging this discussion. In
spite of the risk of being repetitive, it nevertheless seems appropriate to close
with an evaluation taken from Efron (1982). Efron was referring to the usual
James-Stein situation, but his advice is equally relevant in the ancillary
situation presented here: ‘“A successful answer is likely to be at least partly
Bayesian while still enjoying good frequentist properties.”
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