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THE POWER FUNCTION OF THE STUDENTISED RANGE TEST

By A. J. HAYTER AND W. Liu
University of Bath

In this paper we investigate the power function of the Studentised range
test for comparing the means of normal populations in the one-way fixed
effects analysis of variance model. The main results provide rigorous proofs of
certain least favourable configurations of population means. These results are

-important in the calculation of the sample sizes required to guarantee power
levels under certain restrictions on the ranges of the population means.

Consider the usual balanced one-way fixed effects analysis of variance model
Xi=p+e l1<i<k/1<j<n,

where the p,, 1 < i <k, are the £ unknown population means, and the ¢, are
independently, identically distributed as N(0, 6®) random variables for some
unknown error variance o®. Let X; denote the sample mean of the ith popula-
tion, and assume that an estimate S? of ¢? is available distributed as a o2x%/v
random variable for some degrees of freedom v, independent of the k& sample
means X;, 1 <i<k.

The Studentised range test of the null hypothesis Hy: ¢, = -+ = p, against
a general alternative hypothesis operates by rejecting the null hypothesis if and
only if the statistic

lXi - X,l\/;
max ——/—
1<i, j<k S

exceeds a suitable critical point. It is our purpose in this paper to consider
separately the two conditions

b,(0) = lmaka,« -0l=b

and
by(8) =  fnax 16, — 6 = b,

where 8 = (0,,...,8,) = (1,/0,..., u,/0) and 8 is the arithmetic average of the
0,1 < i < k, and to establish in each case the configuration of the 8, for which
the power function of the Studentised range test is minimized. These results are
given below in Theorems 1 and 2, respectively, and the paper is concluded with a
discussion of the motivation for this work.

If the power function of the Studentised range test is denoted by 8(8), then
by conditioning on the value of the random variable S2, it is apparent that for
any 0, 0* € R%,

(1.1) WA8) < W(0*) Ve = pB(6%) < B(0),
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where the function W(0) for 8 € R* and ¢ € R is defined as
W) = P(Y,- Yj <14, j< k),

where the Y, 1 < i < k, are independent normal random variables with vari-
ances 1/n and means 6,, respectively.

Now for any ¢ € R we have the following four properties for the function
W(0).

1. W(0) = W(-8).

2. W (0 + A1) =W(0),1=(,...,1), A€R.

3. W(=(08)) = W(8), where the operator # permutes coordinates.
4. W/(0) is log-concave, i.e., for 0 < a < 1, and for all 0, 8* € R%,

Wb + (1 - a)8%) > W2(0)W22(6%).
The first three properties are readily apparent. The fourth property follows from

a result of Prekopa (1973) [see, for example, Eaton (1987), page 79] since the
function W(0) may be written as

w(8) = [ £(6,y)dy,

where the function g(8,y) is log-concave in (0,y) € R?** and is given by

k
g(0,y) = I(y)n*/? i=l_Ilq>((y,~ - 6,)Vn),

where ¢(-) is the density function of a standard normal random variable and
I (y) is the indicator function of the convex set

w={y=p-m-y<el<ij< k} C RE
Notice that the fourth property implies by induction that for any m € N,
5. W(Z ,a09) > W(00) ifa; >0, X7 0, = 1and W,(8D) = --. = W, (™).

Also, notice that since (1 + p)8 + 3(1 — p)(—0) = p, properties (5) and (1)
above imply that

6. W,p0) > W(8) for|p| < 1.

Now we give the main results.

THEOREM 1. Let b> 0 and 6* = (0,...,0, kb/(k — 1)), so that b,(0*) = b.
Then

b(0)>b = pB(8) > B(6*).
PROOF. Suppose that b,(0) =0, — 8 =b > b. Let 0, i =1,...,(k — 1)! be

the vectors obtained by permuting 0_1,..., 0,_, and leaving_ 0, in place. Let
8, = [1/(k — DIELY, so that 6, — 8, = [k/(k — DXG, — ) = [k/(k — 1)]b.
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Now by properties (1)-(6) above, it follows that for any ¢ € R,
(k—1)!
W(8) < W( )3 0<i>/(k - 1)!) = W0, 81, 6,)
i=1

= w,(0,...,0,8, — 8,) = W,(0,...,0,[k/(k — 1)]b) < W,(6*).
The proof is then completed by appealing to (1.1) given above. O

THEOREM 2. Let b >0 and 0* = (—b/2,0,...,0, b/2), so that b,(8*) = b.
Then

b(0) =6 = B(8) = B(6%).

PRrOOF. Suppose that b,(0) =60, — 0, =b>b. Let 09, i=1,...,(k — 2)!
be the vectors obtained by permuting 6,,..., §,_, and leaving 6, and 6, in place.
Let 8,, =[1/(k — 2)]£*-]6,. Then by properties (1)-(6) above it follows that for
any ¢ € R,

(k—2)!
M(o) =< M( Z 0(i)/(k - 2)') = M(ol’élkv'-"élk’ak)
i=1

< W, (1(0,, 84, 0,6,) + 2(—8, — Oy, — 04y, — 6,))
= W(-15b,0,...,0,1b) < W,(6%).
Again, the proof is completed by appealing to (1.1) above. O

The quantities b,(0) and b,(0) can be used as measures of variability of the
population means and have been suggested before in, for example, Pearson and
Hartley (1951), Scheffe (1959) Section 3.3, and Kastenbaum, Hoel and Bowman
(1970). It is generally agreed that they allow an experimenter an intuitively
appealing interpretation of the sensitivity of an experiment if they are used in
the following manner. The experimenter may specify a positive constant b and a
power level B, a < B < 1, and require that a test of size a of the null hypothesis
H, has power no less than 8 whenever b,(8) > b (where i may be chosen to be 1
or 2 depending upon which measure is more appropriate for the problem under
consideration). The theorems above show that this can be done by guaranteeing
the power B at the specified set of least favourable population means. The power
calculations at these two specified sets of least favourable population means
involve only a two-dimensional integral regardless of the number of populations
k, and so may be performed very easily. Some calculations of the power level
achieved for various sample sizes n and amount of variability b are given in
David, Lachenbruch and Brandis (1972) and Hayter and Liu (1988).

An alternative method of testing the null hypothesis H, is, of course, to use
the F-test. The power function of the F-test depends on the population means
only through the quantity ¥*_,(8; — 6). This simple dependence has allowed the
calculation of tables of the power function of the F-test and makes it easy to
establish that the least favourable configurations of population means given
above in Theorems 1 and 2 also provide least favourable configurations for the
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F-test. It is interesting to compare the power levels of the Studentised range test
and the F-test under these common least favourable configurations of population
means, and generally the Studentised range test is more powerful [again see
David, Lachenbruch and Brandis (1972) and Hayter and Liu (1988)].

Notice that since the experiment is designed as a one stage procedure, it is
necessary to state the condition on the population means in terms of the
unknown variance o2 This may be avoided, so that the power level may be
guaranteed under the condition b,(p) > b rather than b,(8) > b, by using a two
stage procedure in which examination of the data obtained in the first stage
indicates what further sample sizes are required in the second stage to guarantee
the probability requirements [see Hochberg and Lachenbruch (1976)].

Finally, in this paper we have only considered the balanced one-way fixed
effects model. It has been shown in Hayter (1984) that for an unbalanced model
(where different populations may have different numbers of observations), the
Studentised range test may be modified to produce a conservative test. The
power function of this modified Studentised range test is complicated by the fact
that it depends on the matchup between the population means and the popula-
tion sample sizes. Nevertheless, for the problem of experimental design, since the
experiment will in general be designed in a balanced manner, it is necessary only
to investigate the power function in the balanced case. Furthermore, the consid-
eration in this paper applies also to testing the equality of fixed effects of a
certain kind in other higher order balanced orthogonal models.
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