The Annals of Statistics
1990, Vol. 18, No. 1, 303-328

ESTIMATION IN A LINEAR REGRESSION MODEL WITH
CENSORED DATA!

By Y. Rirov
The Hebrew University of Jerusalem

We consider the semiparametric linear regression model with censored
data and with unknown error distribution. We describe estimation equations
of the Buckley-James type that admit n -consistent and asymptotically
normal solutions. The derived estimator is efficient at a particular error
distribution. We show the equivalence between this type of estimator and an
estimator based on a linear rank test suggested by Tsiatis. This equivalence is
an extension of a basic equivalence between Doob type martingales and
counting process martingales shown by Ritov and Wellner. An extension to
an estimator that is efficient everywhere is discussed.

1. Introduction. Let (Y, Z,C) € R X R™ X R and suppose we observe X =
(YA C,Z, A), where A = 1,y_ . Let p be a product of the Lebesgue measure on
the real line with some measure of R™*1, We assume that the joint density of
(Y, Z, C) relative to p is given by f(Y — BIZ)h(Z, C). Let F, be the distribution
function with density f,. That is, e = Y — BZ is distributed according to F, and
is independent of Z and C. The latter have an arbitrary joint distribution.

This model can arise in a regular regression situation if the measuring device
fails to give a true measurement above a given level. In survival analysis this
model may be used to describe the log of the failure time in the “accelerated
time model,” see Kalbfleisch and Prentice (1981) and Lawless (1982). There it is
assumed that T, the survival time, follows a conditional scale model

(1.1) fi(tlz) = e Bi=f (e Bit).

If Y = log(T) and f,(y) = e”f,(e”), then (1.1) is identical to the linear regression
model.

In this paper we address the problem of estimating 8, when we are given a
random sample X,,..., X, from X with f, and A unknown. Miller (1976),
Buckley and James (1979) and Koul, Susarla and Van Rayzin (1981) suggested
estimators based on different modifications of the ordinary least squares method.
Hopkins (1984) suggested an adaptive estimator of 8 and made some simulation
experiments to compare his estimator with other estimators. Recently, Tsiatis
(1990), building on some earlier work of Louis (1981) and Wei and Gail (1983),
suggested a family of estimators based on linear rank tests for the slope.
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304 Y. RITOV

We suggest an estimator that is a close relative of the Buckley—James
estimator. It is a modification of the M-estimator for regression, except that the
unobserved Y values are replaced by their (estimated) conditional expectations.
Somewhat surprisingly, the estimator resembles quite closely the Tsiatis estima-
tor, although the motivation for the score function of the Buckley-James
estimator and the weights of the ranks in the Tsiatis construction are different.

The theoretical background for this resemblance was given in Ritov and
Wellner (1988). In this paper the authors investigate a link between counting
process martingales and Doob martingales (conditional expectation martingales)
that arise via censoring. The same type of link is the base for the equivalence
between the two seemingly unrelated estimators.

Ritov (1984, 1986) gave a detailed construction of a Vn -consistent estimator
under the minimal condition of nonzero information and described the construc-
tion of efficient estimators. We do not pursue these topics here. Some comments
on them are given in Section 6.

The paper is organized as follows. In Section 2 the Buckley—James type and
Tsiatis estimators are described. In Section 3 we investigate the relations
between the estimators and exhibit martingale representations of them. Then, in
Section 4, their asymptotic equivalence is proved. The asymptotic properties of
the Buckley—James estimators are investigated further in Section 5. Section 6 is
devoted to some additional comments on the estimators.

Martingale techniques are used extensively in the proofs, showing the impor-
tance of this device for censored data models, even for those models that are not
hazard function oriented: Some four different martingales and three families of
o-fields are used in this paper.

Some parts of the proofs, those that are either short or were found by us to be
interesting, are given in Sections 3 to 5. The remainder of the proofs are given in
Section 7.

2. Two classes of estimators of the slope. Let X =(YAC,Z,1y_c))

and let X, i = 1,2,..., n, be a random sample from X. Assume first that f,(-)1s
known. Then the maximum likelihood estimator B of the slope is a solution of
" f() f 0 AT
=Z A“(Y :B )_(1_Ai) (Ci_BZi)'
= fo 1- Fo

More generally, we can replace —f,'/ fO' by any reasonable score function s(-)
and get an M-estimator that is a solution of the following set of equations:

fcof—BTz,s(t) dFy(t)
1- F(C - B"Z,)

= i ZiI:AiS(Yi - :éTZi) +(1-4)
i=1

Normally, f, is known only up to a shift, or equivalently, there is an intercept
term in the regression equation. In that case the above estimating equations do
not have mean zero when we plug in the correct slope with misspecified
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interception. The simple remedy is centering the Z;’s:
1&_przs(t) dFy(t)
- F(C, - B"z)

n

(21) 0= Y (z,- Z)[ALS(Y, - B%z) + (1 - A )

=1

where Z = n" Y2 Z,

If s(t) = t, then (2.1) defines a natural generalization of the least squares
estimators to the censored model. A standard approximation of (2.1) is given by
the one- step Newton-Raphson approximation: Begin with some auxiliary esti-
mator, 8, which is Vn - consistent, and construct

A

B=F- Rt Y (7~ 7)|as(Y, - §72)
i=1

(2.2) J&- grz5(t) dFy(t)

Ha AT Fy(C, - 7z,)

where K . is some estimate of the derivative (with respect to B) of the r.h.s. of
2.1).

It is well known that, without censoring and under some mild conditions, the
estimator defined by either (2.1) or (2.2) is well behaved, whether the error
distribution is known or not, that is, Vn ( B B) converges in law to a normal
distribution with mean 0. The situation is changed drastically when we permit
some censored observatmns Neither (2.1) nor (2.2) defines an asymptotically
unbiased estimator.

A natural extension of (2.1) to cope with unknown F, was suggested by
Buckley and James (1979). The idea is that the unknown F, in (2.1) should be
replaced by its generalized maximum likelihood estimator, namely the
Kaplan-Meier (KM) estimator based on the residuals (assuming that the esti-
mated slope is the true value). Let F? be the KM estimator, assuming f is the
true slope. We consider therefore an estimator that is an approximate solution of
¥ (B; s) = 0, where

Y(Bis)=n"V2 Y (2 - Z)

f(Cl—BTZ,,oo)s(t) lef(t)
1-FJ(C - B"Z,)

f<;,ﬂ,oo>8(t) dF;(¢)
ET) |

e# =Y - BTZ and {B = C, — BTZ,. Note that the KM estimator is based on
{(sﬁ ASEIA), i=1,. n} Hence it is itself a function of 8. Moreover, due to
this dependence ¥.(; s) is not monotone and it is not continuous, even when
s(+) is. As a result, ¥ (B; s) = 0 may fail to have a solution.

Buckley and James (1979) do not give a proper theoretical justification for
their suggestion nor a full analysis of the behavior of the estimator. A partial

(2.3) x|As(Y, - BZ) + (1 -4,

~n 2 Y (%, 7)

i=1

Ais(ezp) +(1-4)
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result concerning its consistency is given in James and Smith (1984). However, it
is not clear from their analysis, for example, whether it is important to use the
KM estimator in the estimate of the conditional distribution or whether any
other reasonable estimator can be used. It will be shown in the following
discussion that the properties of the KM estimator are essential for the analysis.
Actually we believe that any other (nonequivalent) estimator will not yield a
regular estimator.

Motivated by linear rank tests of the slope, Tsiatis (1990) suggested a family
of estimators. Let

27‘- 1Zj1(.e.5? AL >u)

24)  TuBiw)=n"2Y A,

i=1

z, -

}w(sﬂ,

for some weight function w. T,(B; w) may serve as a test statistic for .
Consequently, a solution of I(8; w) = 0,(1) can be used as an estimator of the
slope.

The reader used to the counting process point of view may find it convenient
to rewrite (2.4) as

L(Bw)=n"12 ) z; -
i=1‘/(‘7°°'§zp]

Z?= ll(ej’ AL >u)

Z?= lzjl(sf A §jB > u}

Z?-ll(e}’ AE > u)

]w(u) dNf(u),
where Nf(u) =1 (f <u)- We now add a term that is identically 0 to obtain

Ngw)=nn E [ g R
(2.5) i=17(- 0,1 Lied(f nghsu

X {dlvlp(u) - lef'zu) dA(u)}y

for any ‘“hazard function” A(-).

In the next sections we show that for any s(-) there is a w(-) that is a function
of s(+) and F/ only, such that T (8; w) = ¥,(8; s). Moreover, for any s(-) there
is a w(-) that is a function of s(-) and F, only such that if 8, = B, + O,(n"'/?),
then ¥,(B,; s) = [(B,; w) + 0,(1).

We conclude this section with a list of the major assumptions under which
¥ (B; s) will be analyzed.

ASSUMPTIONS.

(A1) Let ¢, be such that Pr(Y A C — B7Z < ¢;) <1 for all B in some
neighborhood of B,  Then s(:) belongs to a family %, C L,(F,), where any
s € ¥, satisfies:

) m/supus(t + &) — s(2)1% 1§l < v} dFy(t) = 0.

(i) s(t) =s(t A cp).
(A.2) Z has compact support.
(A.3) F, has finite Fisher information for location.
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REMARK. Assumption (A.1)(ii) is essentially equivalent to the more standard
demand in the survival analysis literature for considering only intervals that are
bounded from the right.

3. Martingale representation of I,(B; w) and ¥,(B; s) and their corre-
spondence. Consider

f(t,oo)s(u) dF(u) 1
1 - F(t) (e>2}

Let ¥= {%,} be a family of increasing o-fields, where ¥, is the minimal o-field
such that (e A ¢,1,,,)) is 9 measurable. If ¢ is a random variable distributed
according to F, then Q (+; ¢|F) = Ep(s(¢)|%,), and hence it is a martingale with
respect to ¥. Note that Q (C — B7Z; Y — BTZ|FP) is the “building block” of
¥,(B; s) with

(3.1) Y, (B:s) =n V2 Y (2,— Z)Q,(¢F; eHIFD).

i=1

Q(t ¢F) = 3(3)1(est} +

On the other hand, define the counting process martingale

dF(u)
M ( ¢: =1 — .
(ty le) {e<t) ‘/;—w,t]l(szu) 1 — F(u _)

It is a martingale under the same assumptions as Q (¢; ¢|F'). Considering (2.5), it
can be seen that [w(u) dM(u) is the “building block” of T (8; w):

(3.2) T(B;w)

= p-1/2

™M=

w(u) dM(u; e8|F),

f 7 _ E;l'= 1Zj1(sf AEE > u)
(-0, 5]

i=1 Z?zll(ef/\{fzu)
for any distribution function F.

We next explore the connections between Q (+; ¢/F) and M(-; ¢ F). For any
distribution function F on the real line we define the transformations W;. and S

by

f(t,oo)s(u) dF(u)
1-F(t) ~°

Wes(t) = s(t) — s € Ly(F)

(with 0/0 = 0) and .
Spw(t) =w(t) = [ w1 = F(u-)] " dF(w),  we LyF).

These transformations were investigated by Ritov and Wellner (1988) for F
continuous (in this paper W was called R and Sy was called L). See Efron and
Johnstone (1990) for an independent discussion. If F is continuous, then
Wg: Ly(F) - Ly(F) is the adjoint of Sz: Ly(F) — L,(F) and both have norm
1. In the noncontinuous case the situation is not so simple. We will be satisfied
with the following result.
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LEMMA 3.1. Let S = {s: s € Ly(F) and s(t) = s(t A ¢,) for t € (— o0, 0))}
and W = {w: Ly(F) and w(t) = 0 for t > ¢}, where F(c,) < 1. Then
(i) Wp: S—> W and Sp: W > S are bounded linear operators. If F is

continuous, then their norm is 1.
(i) WpSpw = w and SyWgs = s — [s(u) dF(u).

Thus W, = S;! on {s: s € Ly(F) and [sdF = 0}.

PROOF. That Sg: Ly(F) — Ly(F) is a bounded linear operator with norm
not greater than 1 follows from the first proof of Ritov and Wellner (1988),
Proposition 2.1(i). It is easy to verify that for s € S the norm of the second term
in the definition of Wys is at most (1 — F(c,))~*/?||s||. Part (ii) follows now by a
simple application of Fubini’s theorem. O

The martingales Q, and M are connected via Proposition 3.1.

ProPOSITION 3.1. Suppose that s € Ly(F) and [s(t) dF(t) = 0. Then the
martingale Q (-; ¢|F') is related to the counting process martingale M(-; ¢|F) by

Qs(t;em):f t]WFs(u)dM(u;qF), te (—oo,m).

Consequently, for any L,(F') functions s(-) and D(-) with [sdF = 0,

J

D(u) dQ,(u; €| F) =[ D(u)w(u) dM(u; ¢/F),
(—o0,t] (—o00,t]
where w = Wys (or s = Spw).

Note that although the proposition was expressed in probability terms, it is
actually just an equality between two real variables, ¢ and ¢, a function s(-) and
a distribution function F. If ¢ is a random variable distributed according to F,
we get an identity between two martingales. Proposition 3.1 will be used to
establish the connection between the two classes of estimators. The proposition
was proved in Ritov and Wellner (1988) for a continuous distribution function F.
We give here its proof for completeness.

Proor. First note that
dF(u) dF(u)
Jowa TRy " TR
Jer, o0yS(1) dF(u)  dF(7)
(-w,8] 1—-F(r) 1-F(r-)
B dF(u)
"™ TR

s(W)l, cglir<u
_f/ i F(T)S(f)_‘F(T’_)) dF(u) dF(7).

— 00,
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Apply Fubini’s theorem to the second integral on the r.h.s. to obtain
dF(u) dF(u)

Wes(u) ———— = — s(u) ———

fvoo,s] ksl )1—F(u") f<£,oo>( )1—F(€)

_ Jit,oyS(u)dF (u)

1 - F(¢)
Hence
/ ]Wps(u) dM(u; ¢|F)
(o0, t
Jie, )s(1) dF(u) dF(u)
=s(e)l,.y — ( {_F(e) {e<t) "f(_w’m]WFS(u)l—jF(T_—)
Jie, )8(w) dF(u)
= s(e)l{egz) + = 1)_ F(t) Loy
=Q(¢t; ¢ F). |

This proposition enables us to establish the following result.

ProposITION 3.2. Forall B € R™ and s, w: R —> R and w.p.1.,

(i) Y(B;s)=n"12 i (z,- Z)/ Weas(u) dM(u; e£|F2)
i=1 (0,81 "

» e

= T,(B; Weps).
(ii) L(B; w) = ¥,(B; Sgpw).

Proor. By Lemma 3.1 and the fact that the Z, are centered it is enough to
prove the first part. [The centering of the Z,’s makes ¥,(8; s) = ¥ (8; s + ¢) for
any constant c. In particular, we can assume that [sdF = 0.] It follows from
(3.1) and Proposition 3.1 that

(33)  W(Bis)=n" L (Z-Z)[  Weps(u)dM(u; efIFE).
i=1 (—o00,¢f]

F/ has atoms only on uncensored observations and

dF}(u) [

1-FA(u-) -

n -1 5
Z 1(43/\§f>u)] Z Ail(u=e{*)-
Jj=1 i=1
Hence, for any function #,
n
h(u) dM(u; ef|FF)
1=1"(—00, zﬁ]
(3.4) N

n d":ﬁ"(lt)
=Y Alh(elﬁ) - /i§11(e{’/\§fzu)h(u)l “FA(u-)
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Now combine (3.2), (3.3) and (3.4) with
52 = Z) L ngpay

Z;l'= ll(ef AL > u)

h(u) =

Wess(u)

to establish the first part. The second part is immediate by Lemma 3.1. O

4. Asymptotic equivalence of the two estimators. In view of Proposition
3.2, we see that the Buckley—James family of estimating equations is equivalent
to the Tsiatis family except that in one of the sets of equations there is a random
function. In this section we show that ¥,(B,; s) = I'(B,; Wys) + 0,(1), where
{B,) is nonstochastic and lim sup n'/?||8, — B|| < 0. The tightness of ¥,(; s) is
proved in Lemma 5.2, and see Tsiatis (1987) for the tightness of I,(:; w) (the
tightness of the latter is not proved by us), so the result can be extended to
stochastic sequences {8,} as well. We begin by claiming that Wes»s converges to
Wp.s.

LEMMA 4.1. Suppose s € &, and {B,} is a nonstochastic sequence such that
lim sup||B8, — Byl < co. Then

[Wep.s — Wis|| = 0,(n7'/?) asn— oo.
The lemma follows from Lemmas 7.1(ii) and 7.2(iii).

PROPOSITION 4.1. Suppose the conclusion of Lemma 4.1 holds. Then
\Pn(Bn; S) = I‘n,(IBn,’ WFOS) + Op(l)‘

Proor. By (3.1), (3.2) and Proposition 3.2 it is enough to prove that
(4.1) n 12y /Zih(u)lmz,,zu) dM (u; ef|F5») -, 0,
i=1
where h = Wefns — Wy s. For the proof of (4.1) we consider the process

n
Lo(t) =n 2 [ % A(u)lgpes {2 AM(u; ef[Ffr) = DPa(u) dNf(u)),
(

t:°°)i=1

where

- RA»(u +) 1 1 n

Bn = —"FE(ZIY-BTZ=u,A=1) — ————< . Z1, 160 r bn~
DP~(u) RF(u) (21y - 8] u ) Rﬂn(u+)i§1 i {5Bn A efn> )
and

n
R (u) = Z Litn p ebn> uy-

i=1
Note that as RP»(u) = O,(n) for all n values of interest, and
E{Z)Y - BiZ=u,A=1} =E{ZIC-B{Z>u} = E{Z]Y A C - BJZ > u}.
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Thus Df»(u) is essentially the difference between a mean and its estimate. In
Lemma 7.3(i) it is shown that DP(ef")1 4. ., —=,0. Since [DP(-)| <
2 esssup||Z||, we find that it converges in the mean, and hence

IR Sy
=1

i=

In particular,

n_l Z IDBn(etﬁ")ll{e{’nsc‘)) _)p 0.
i=1
Now use this result together with Lemma 4.1 to show that LA=(— o) differs
from the Lh.s. of (4.1) by
n
=|n71% L Ah(efr) DPr(ef)

i=1

P72 [ 3 h(u)DP(u) NP ()

i=1

n
< (n‘/znhnw)(n‘l > Aill‘)ﬁn(ef’")|1{ggnsco>)

i=1
-, 0.
Hence L#»(— o0) is an approximation to the Lh.s. of (4.1), and it is enough to
prove that

(4.2) LA»(—o0) =, 0.

We will consider this process together with the family %##» = (%5} of
decreasing o-fields where % stands for future observations and

P = o{[Lgnnipus o Zis ¢ A SE 8), Lpungpnng] 8= 1,00, ).

(Given #f», we know all X; with &= A {f» > t and only the indices of those X
with 8 A (Br < t)

Note that Wez-s(t) depends on the data through {F2»(u): u > t}, which is a
function only of those observations X; with e® A {# > t. Hence A(t) is %,’~-mea-
surable. Likewise it is easy to see that LAx(¢) and RP»(t) are %,’»-measurable.

We now claim that L#(¢t) is an %Prreversed martingale, that is,
E{L#B~(7)| %A} = LP(t) whenever 7 < t. To see this, note first that LA=(-)is a
pure jump process with jumps only on uncensored observations. Next we obtain
from the definitions of F5-, DPx(u) and RP(w),

dLP(ebr)

- - dF fr(efn
_ nil/zh(£iﬁ") Zi_DBn(E?n) — Z Zj].(gfn/\ff">9?")1 n (El ) )]Az
i—1 -

; ~F (e

(4.3) - - 1 n
=n I/Qh(ELﬁ") Zi — D:Bn(e{gn) — W lejl(sfn/\ffnzef") Ai .

j=
Rbn(efr) — 1

= n"2h(ef) — (&)

[z, - E(2)Y — BIZ = &b, A; = 1)] A,
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Now, A(t)(RP~(t) — 1)/RP»(t) is #Fr-measurable and
E(AZ|Ffr) = E{AE(ZI)Y — BIZ = ¢f», A; = 1)| 7/}

for any t > ef». Hence E{dLP~(u)|%#»} =0 for all ¢>u, and LA»(-) is a
reversed martingdale.

The reversed martingale L? has at most n jumps. Actually we could describe
it as a martingale on the set 1,2,..., n, representing the order statistics of the
residuals. By (4.3) each jump is bounded by

2n12|h(efr)lesssup||Z|| = 2n V2 Wep.s(ef) — Wys(ef).

We obtain from (4.3) and Lemmas 4.1 and 4.2 that the sum of the conditional
expectations of the squares of the jumps, given what is known just before them,
converges to 0. Saying it otherwise, we obtained that if K, is as defined in
Lemma 4.2 then

(LP(=o0)y = L E{[dLP(u)]"|#fr)
= Y E{[dLP(u)|Ffr, dLP+(u) > 0} P{dLP(u) > 0|Ff)
< 4n K, T P(ALA(u) > 17E)
e 0,

since K, -, 0 by Lemma 4.2 and E[ZP{dLP~(u) > 1|%A}] < n. Now use an
inequality of Lenglart (1977) [see also Gill (1980), pages 18 and 19] or the
martingale CLT [cf. Rebolledo (1980)] to conclude that (4.2) holds. O

LEMMA 4.2. Suppose s € ¥, and {B,} is a nonstochastic sequence such that
lim sup n'/2||8, — Boll < . Then for some random variables (K},

E{[Wans(t) - Wpos(t)]2|ZB"} <K,—,0 forallt<u<c,.

Proor. The claim follows Lemmas 4.1 and 7.2(iii) since 1 — F/2~(¢) >
1 — FPr(c,) while 1 — FPr(c,) is #Prmeasurable and P{1 — F/r(cy) >
3(1 — Fyco)} 1. O

5. Asymptotic properties of the Buckley-James type estimators. We
now turn to investigate the asymptotic properties of the Buckley—James family
of estimators. Our main result is that ¥ (8,; s) is asymptotically normal with
mean 0, and in a neighborhood of 8, of order n='/%, ¥ (B; s) is close to a linear
function in n'/%(8 — B,). This implies that with probability converging to 1
there will be a “solution” of

(5.1) ¥,(B; 5) = 0,(1),

which is Vn -consistent. Moreover, if the gradient of this linear function is
invertible, then any Vn -consistent solution of (5.1) is an asymptotically normal
mean zero random variable.
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We will begin by proving that there is a linear function ¢(-; s) such that
V(B 8) = ¥ (Bo; 8) + ¢(n**(B, — By); §) + 0,(1) for any deterministic se-
quence {f,} such that n'/*(B, — B,) is bounded. This in itself will be enough to
prove that if there is a Vn -consistent estimator of By, then there is a Vn -con-
sistent estimator that is a solution of (5.1). Alternatively, one can begin with an
auxiliary Vn -consistent estimator, truncate it to a grid of O,(n~'/?) spacing and
do a one-step Newton-Raphson improvement similar to (2.2), to find an approxi-
mate solution of ¥,(B; s) = 0 (see Remark 6.2). In Lemma 5.2 the tightness of
the family of random functions ¥,(B, + tn /2, s), t € (-M, M), M < oo, is
proved. Hence there is no need to do the unpleasant (but nonharmful) discretiza-
tion.

The main result of the section is as follows. Let

A= /Var(zw — BIZ > u) Wy s(u) Wy so(u) B(u) dFy(u)
and
V= fVar(ZlC — BIZ = u){Wys(u)) B(u) dFy(u),
where s, = —f,/f, and B(u) = P(C — BTZ > u).

THEOREM 5.1.  Suppose Assumptions (A.1)-(A.3) hold and A is nonsingular.
Then

(i) Y.(By; s) is asymptotically distributed as a A"(0, V) random variable.
(ii)) For any M < oo,
sup |V, (B;s) = ¥,(By; s) — n'?A(B — By)] =, 0.
18— Boll<Mn~ /2

(iii) There is a ,én satisfying V¥, ( ,én; s) = 0,(1) which is Vn -consistent and
asymptotically has a A0, A~VA) law.

(v) If s = sq = —f, /fo, then A =V, and ,én has the asymptotic distribution
of the best regular estimator.

The assumed nonsingularity of the matrix A may seem difficult to check.
Note, however, that the matrix is nonsingular if both s and fo/(1 — F,) are
monotone, strictly monotone increasing in an interval (u, v), and the distribution
of Z given C > u does not concentrate on a hyperplane.

The theorem will be proved in the following discussion.

In the method of the proof one can distinguish three main steps. The first is
the replacement of the random F/f» by a nonrandom term. This seems to be
easier to do with the use of the counting process martingale theory. The second
step is proving the almost linearity of the estimating equation. The last step is
the consideration of tightness. We do not know a simple way to do the two last
steps with counting process devices. The difficulty follows mainly from the fact
that a change in B causes a change in the order of the observations and it seems
that there is no family of increasing o-fields such that the Tsiatis (1987)
estimator can be described conveniently for two different values of .
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Define for all ¢ € R,

Ag(t)

limp 'Pr{A=1,t<ef <t+ref >t
ANy 4

E[ f,( fo t+ BTZ)Pr(C > t + B7Z|2)]
E[{1-F(t+ B72)}Pr(C > t + B7Z|Z)]

[the limit exists a.e. in view of the finite information assumption (A.3)]. Let F,
be the distribution function with hazard function A g and let f; be its density. It
is reasonable to assume that F; converges in some sense to F, as 8 — 0; see
Lemma 7.2 for details.

In Proposition 4.1 it was proved that ¥, (B,; s) = T (8; Wr,s) + 0,(1). It will
be useful to have a slight modification of this result.

ProrosiTION 5.1. Let {B,} be any deterministic sequence such that

limsupn'/?||B, — B,ll < .

Then
¥, (Bis 5) = T(Bas Wi, ) + 0,(1).

The proof of the proposition relies on the convergence of W s to Wy, s, which
is proved in Lemma 7.2. It is essentially the same as the proof of Prop0s1t10n 41
and is omitted.

We next show that the random mean of the covariates of the subjects at risk
at time u appearing in the expression (2.5) of T'(8; w) can be replaced by the
nonrandom quantity

DA(¢t)=E(ZICAY - BTZ > t).

LEmMA 5.1. Let {B,} be any nonrandom sequence such that

lim sup n'/?||8, — Byl < .
Then

V.(B,;s8)=n"12Y /lms,,zu}{Zi — D’f"(u)}WFﬁ"s(u) dM(u; 8?"|E9,.) + op(l).
i=1

Proor. By (2.5) and Proposition 5.1 we have
¥,(B.; s)

5.1 " A
(5.1) =n"1/2 '21 flme,,zu){Zi - Dﬁn(u)}WFﬁ"s(u) dM(u; ef’nlﬁkn) +0,(1),
im
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where

n
DBR( t) = Zl= IZtl(an A {f’n 2t

il ntn>y

R LI Zd (epn p i<ty
RP-(2) RF~(¢)

nZ + Z;; 1Zi1(e{3n Abn<ty
RPx(t) RP~(t)

Define the process

RPr(u)

MPs(t) = n~1/? .é . t]{bﬁn(u) — Df(u) + M}

X W, s(u) dM(u; e?ﬂﬁkn)
and the family of increasing o-fields ##» = {5~ t € R}, where

AP = o [1gonipn < (Zor e A 80 8) Vg npusp] i = 1o

(s stands for history: Given 5=, we know all X; with e®» A {#» < t and only
the indices of those X; with &f» A {f» > t.)

It is easy to see that M(u; sf’an]gn) is an Qfﬁnlmartinglae. Actually F was
defined so as to make this statement true. Now DP~(t) + n(EZ — Z) /Rp(t) is
HPrmeasurable. Hence M#»(-) is an integral of a predictable process with
respect to a martingale.

We are going now to show that the predictable variation process of M# at its
endpoint,

n(Ez—Z)}2

{ﬁﬁn(u) — DAr(u) + R-(2)

(MPny = n-lf(

— 0, ¢

x Wy, s(u)) RP(u)Ag(u) du

)

converges to 0. First note that the measure Ag(u)l,_., is equivalent to
fa(4)1(4 < ) du. Then, since F; is continuous, the L, norm of Wy, s is the same
as the norm of s (see Lemma 3.1). But the denominator of the r.h.s. of the
definition of A is bounded away from 0 with probability converging to 1 and Z
is bounded. Therefore, with probability converging to 1, fz(u) < 2sup{f(u + t):

{Dﬁn(u) — DP(u) + En%—)} {W,,h"s(u)}z}\ﬁn(u) du,

IA

— 0, ¢
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[t] < |IB,ll}- It follows from Assumptions (A.1) and (A.2) that

3 (_w,%)ﬁ(t)fﬁ,‘(t)dt

< 2(8)f.(¢) dt
<[ SOk

+ s%(¢) [f/(t+ u)|dudt

(—o0,¢cp) =B ll> 1BID
2(t)fo(t) dt

<), SO0

+ 2B, sup{s*(t + u): |u| < |B,I}|fy/ ()| dt

(=00, ¢o+IB,1)

and the second term in the r.h.s. is of order n~!/2 in view of Assumptions (A.1)(i)
and (A.3) and Cauchy inequality. We conclude that W}, s is square-integrable.
Now, by Lemma 7.3(i),

[{DP+(u) = DEx ()} sy

|_—,0.
Certainly n(EZ — Z)/R"x(c,) —, 0. Hence
1D5+(u) — D~(u) + n(EZ = Z)/RF~(u)ll,,

We therefore obtain that the predictable variation process, ( M#=)(o0), converges
to 0 and hence we conclude from the Lenglart (1977) inequality that

MP(o0) -, 0.

We are not interested in M An(c0) but in a similar expression without the term
involving Z and EZ. But since for t < ¢,, n(Z — EZ)/RP~(t) = O,(n"'/?) and
Z — EZ can be taken outside the integral, a similar argument 1mp11es that

n-1/2 2 [ 1({?n2u}{f)ﬂn(u) — DPr(u)) Wy s(u) dM(u; e F, ) -, 0.

i=1"(-®

Together with (5.1) this proves the lemma. O

The next step is moving back from the martingale representation of the
estimating equation to a “standard” M-estimator form. The following result is
an immediate consequence of Proposition 3.1 and Lemma 5.1.

PROPOSITION 5.2. Let {B,} be any sequence such that

lim supn'/?||8, — Boll < oo.
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Then

V(B s) =172 Y [1ps {2~ DP(u)} dQ,(u; e1E,) + 0,(1)
i=1

n
=n‘_1/ Z

{A s(ebe) + (1 — o) Hzsrs() th,gu)}

1 - F(sf)

- fl(i’f’"zu)D(u) dQ (u; eIF, )| + 0,(1).

The final preliminary needed result is the tightness of ¥,(-; s). The following
lemma is proved in Section 7.

LEMMA 5.2. Let {B,} be any deterministic sequence such that
1imsupn1/2||ﬁn — Byll < o0.

Then for any sequence {v,}, v, > 0, v,n'/? > 0,

» Yn =

sup{|¥,(8; s) = ¥u(By; s)I: 1B = Bull < 2,} = 0,(1).

Given Proposition 5.2 and Lemma 5.2, the proof of Theorem 5.1 is standard
and is done in Section 7.

6. Additional remarks.

6.1. The “favorite” estimators. It is clear that if F, has a second moment
then s(t) =t A ¢, € %, and the Buckley-James estimator are covered by our
results. The Tsiatis (1987) estimator with w(¢) = — 1<, Is equivalent to the
Buckley~James estimator with

8(t) = =Splicoy(t) = =1 —log[l = F(¢)], ¢t <c,.

It is efficient if 1 — F(t) = exp{—e‘} and then s(¢) = e’ — 1. Other possible
functions w can be derived from the rank tests suggested by Gehan (1965), Peto
and Peto (1972), Prentice (1978) and Harrington and Fleming (1982).

6.2. Isolating a Vn -consistent root. James and Smith (1984) show that for
Z € R and s(t) =t A c,, any solution of ¥, (B;s)=o0 (1) is consistent. This
result is not strong enough for our purpose since we should be able to isolate a
Vn -consistent root. Clearly, there is no problem when all the roots of ¥ (8; s)
are O,(n~'/?) apart. Otherwise, we need an initial V7 -consistent estimator.
Moreover given a Vn -consistent estimator, a one-step Newton—-Raphson correc-
tion gives an estimator that is equivalent to order o,(n~ 1/2) to the proper root of
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¥.(B; s). Thus, if B, € R, ﬁn is Vn -consistent and

(B,—d,)¥ (B, +d,;s)— (B, +d,)¥(8,—dys)
S

®1) b= V(B +dys) - V(B —d,;s) ’

then ,é has the properties given in Theorem 5.1 whenever {n'/%d,} is bounded
away from 0 and oo.

For particular submodels one can use the estimator suggested by Miller (1976)
(for the model C — BfZ independent of Z), Koul, Susarla and Van Rayzin (1981)
(C independent of Z) or Powell (1984) (type I censoring, i.e., C is always
observed) as appropriate simple but V7 -consistent estimators.

Ritov (1984, 1986) suggested a (not too practical) estimator that seems to be
Vn -consistent under the minimal assumption of positive finite information for
estimating the slope. The estimator is relatively simple when Z has positive
masses at points z,,..., 2, which are not on a proper hyperplane. Then we can
consider only that part of the data with Z equal to one of z,,.. . We can
find a g such that fy(¢,) > 0 and min; Pr(C ,BOz > t,|Z =z ) > 0, where

Fy(t,) = q. Now construct estimates tql, o tgp of T, based on the subsamples
(Xi: Z,=2}, j= , k, respectlvely, and estlmate B, by a robust estimator
of regression based on {(tq 22 = ., k}. If Z is continuous and 8 € R, the
the following program can be carned out Divide the range of Z into intervals
small enough [O,(n~'/?)] that Z does not vary much in each, but large enough
that a sufficient number of them contain O,(n'/?) observations. Continue, as in
the discrete case, as if Z is constant in each interval. If one chooses the intervals
without any prior knowledge of the distribution of X, then the detailed construc-
tion is tedious and is described in Ritov (1986).

6.3. Information bound. The information bound for the estimation of 8 was
derived in Ritov and Wellner (1988) and Bickel, Klaassen, Ritov and Wellner
(1989). It is given by the matrix V in Theorem 5.1 with s = —f,/f,. It may
be of interest to note that the information is greater then 0 if, and only if,
Pr(Y < C) > 0 and the support of Z given Y < C is not a proper subset of R™
[Ritov (1984, 1986)].

6.4. Efficient estimators. 1f s = —f /f, then the estimator is efficient. Now
consider the problem of constructing an efficient estimator without prior knowl-
edge of F,. We need to consider two problems: (i) How to replace ¢, by ¢, = .
(ii) How to estimate —f, /f,- Note that the first problem does not arise when
there is a Co such that Pr(Y B¥Z > c,) > 0 and Pr(C — BIZ > c,) = 0. When
fo'(t)/fo(t) is estimated using only residuals greater than ¢, the martingale
structures used in the proof are not destroyed. Moreover, the rate of convergence
of the estimated score function is not important for the asymptotic efficiency.
Again, these problems can be solved, but the calculations are tedious. See Tsiatis
(1987) and Ritov (1986).
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6.5. The Tsiatis estimator. Suppose Assumptions (A.2) and (A.3) hold and
(A.1) is satisfied by Spw. It was proved in Proposition 4.1 that I(B8; w) =
¥.(B; Sg,) + 0,(1), umformly for B € B,, where B,, B,,... are deterministic
finite sets such that lim sup card(B,) < . Thus, as a corollary of this paper, we
get an alternative proof to Tsiatis’ (1987) main result restricted to discretized
estimators, for example, estimators that take values on the grid {0,+ n=1/2
+2n71/2,... ). This paper is irrelevant to the tightness considerations in Tsmtls
paper and therefore to the uniform behavior of his estimator on small intervals.

6.6. Consistent estimator of the variance. Tsiatis (1987) suggested a consis-
tent estimate of the variance of B The bootstrap may be another alternative. If
B € R then the one-step estimator given by (6.1) seems to provide an easy
algorithm. For any pseudosample calculate (6.1) with §,, the initial point, always
equal to the estimator derived from the original sample.

7. Lemmas and proofs. In this section we assume that (A.1)-(A.3) hold,
and w.lo.g. that 8, =0, Pr(J]Z| < 1) = 1 and $(t)1;5 .,y = 0 for all s € &, We
denote by {8,} any deterministic sequence such that n'/?8, is bounded. Let Fj
be as in Section 5. Define

=

HA(t) =n"'#{X;: A, =1,¢f < t},

HA(t) = n"'#{X;:

i

A<t}

In the following lemma the convergence of n'/*(Ff — Fy) is investigated. Its
proof is standard—the fact that Y — B87Z is not 1ndependent of C - B7Z is
immaterial to the standard proofs of the convergence of the KM estimator. The
proof is given by completeness.

LEMMA 7.1.

(@) sup [F(¢) — Fy(t)| = Op(n~17%).

t<cy

(ii) For any s € ¥,

supn~ /2

t<cy

(¢, co)

/ s(u){dIFf"(u) - dF;,n(u)} — 0 in second mean

and
||WF5,,s - Wpﬂnsuoo =0,(n"1?).

ProOF. First note that F/»(-) > H#»(-). Hence by Assumption (A.1)
(7.1) Pr{Ff(c)) <1-v} -1,



320 Y. RITOV

for some y > 0. Let

Roey= [ (1= Efn(u =) dFfn(u).

(_ 0, t]
By (7.1) all increments of A#» on (— oo, c,] are O,(n™"). Hence

1 - Ff(t) = exp{ = A%(2)} + O,(n"")

—(1- zq,n(t))exp{_m(t) s

(—o0,

t]}\ﬁn(u) du} +0,(n7Y),

where the Op(n‘l) term is uniform for ¢ < ¢, [it is a function of H#»(c,) only].
But APs(.) — Ji= 0 Mg u) du is an ¥ En.martingale, where the family s#%» of
o-fields is as defined in the proof of Lemma 5.2. Now the value of the predictable
variation process of this martingale evaluated at the endpoint ¢, is given by

<Aﬂn<co> -

which is O,(n™") by (7.1). This proves the first part by the Lenglart (1977)
inequality.
(ii) By part (i) it is enough to prove that

— o0, —00,¢o]

) ])\Bn(u) du> =n"! ( (1 - HA(u —))_lkpn(u) du,

sup / )s(u){dIF,fn(u) - dF},n(u)}l = 0,(n"1?).

t<cy|"(t co

This will follow if

t)s(u){dIF,f"(u) - dFkn(u)}‘ =0,(n"?).

sup
t<cy '/(>—°0,
But
1—FA(t-)
n'/? s(t){dFPr(t) — ——————dF,(t)
f(—oo,» 1-Fy(e) P

stopped at c, is an s##r-martingale with the predictable variation process

s2(6)(1 = Ff(t =) {(1 = B (6))(1 - WAt -))) " dEy(2)
(—o0,")

<(1-Ffe)) [ s2(t) dFy(t).

(—00,¢o)

Hence the supremum of this process is O,(1) and part (ii) follows from the
Lenglart (1977) inequality. O

We now investigate the convergence of F; to K,
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LEMMA 7.2.

(i) sup |Fy(t) — Fyt)| = O(||Bl) asB — 0.

t<cy

(il) For all s € %,

‘(—

[ U6 =t} ) =0l asp-o0.

0

(iii) |We,s = Wes|_ = OCI18I) asB - o0.
Proor. (i) Note that

|}‘ﬂ(t) - )\o(t)| =< eSSSUPP‘o(t + 5) - )\o(t)|
1€1<118Il

s[ IN(¢ + &) dt
=8I, 181)

'4 1811, 1181

where A, = (1 — F;)~'f,. Hence, for any ¢ < c,,,

(7.2)

[y (t+§)| fh(t+8)
T-F+8) T (1—F0(t+s)) ““’

— Fy(t)
© gl — B / oo Nal(8) = No(t)]
- No(t + £)| dtd
= ‘/;_llﬂlly IIBII)‘/(’—oo,co+||B|D| 0( §)| 3
<2||Bll(a, + a,),
where
a, = (1 - Fyc, + ”'B”))_lﬁ £(0)) dt
and l

a, = {1 — Fy(co + ||B||)}_2esssup fo-

Both a, and a, are finite, since for || 8| small enough 1 — F(c, + ||8|]) > vy and

(fs(1))° t}
o0

esssup f, < _/|f0(t)|dt< _</

by (A.3).
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(ii)) Let s € #,. Then
o( ) — Fy(t)

JsO{I(®) = (0)} dt = [s(6) =75 o(0)
+/s(t)(1 — Fy(8))(Ng(2) = A(2)) at
=L, + L,, say.

Since s € Ly(F) and s(t) = s(¢)1;; <.,y we conclude from part (i) that L, =
O,(n"1%). Now from (7.2) and s € %,

Lyl < f(

= 2”:8”] {b1|f0,(£)| + ay fo(€) sup{|s(2)|: |t — & < |1BI} d¢

(— o0, co+|1B8I1]

< 2I|BII[ {/(fﬁo((t)) } {ffo(t sup{s*(£): |t — & <||BIl} dt

SO, (B (O] + axfo(6)) de de

— 00, ¢]

1/2

v

+{ffo(t)sup{sz(£): It — & <118} dt}l/z]

= O,(1I8N),

where b, = (1 — Fy(c, + ||B])) " and a, is as above.
(iii) Immediate corollary of parts (i) and (ii). O

LEMMA 7.3. Define

n n
Dﬂ(t) = Z Zi]'(efn/\f,”nzt) Z l(efn/\g,ﬁnzz)-
i=1

i=1
Then
(1) sup |DP+(t) — E(Z|Y A C;B,,TZZ t)l = 0,(n"1?).
t<cy
E(ZIYA C— BIZ > &)
(ii)
~E(ZIC-BTZ> Y - BTZ = ¢f») -, 0.
(ii) DFn(efn) -, 0,

where D is as defined in the proof of Proposition 4.1.
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Proor. (i) It is a simple empirical process result [cf. Shorack and Wellner
(1986), page 283] that

(7.3) sup
t

n

n2y [Zil{s{’n/\ff’nzt) - E(ZI(YACAB:{‘ZZL))] ‘ = 0,(1)
i=1

and

sup
-t

n
n2y [1(5{,,/\;5’"2:) - E(I(Y/\C—BZZZ t})] ’ = 0,(1).
i=1

Since, by assumption, the denominator of Dfn(¢) is O,(n) for all ¢ < ¢, the first
part follows (7.3).
(ii) First note that the Cauchy-Schwarz inequality yields for all ¢ and 7,

| fo(t) = fo(T)l < /('t 7]|f0/(§)|d§

S{/(f;)o((g) £} {lt_”'|eSSsupf0}1/2

o (L)
R Ry

Hence for any ¢ such that fy(¢) > ||8,/"/%
E(ZIC-B1Z>Y - BTZ=1t)
= (1+ O(IB.I*))E(2ZIC - BZ = t).

Now Z is bounded, and Pr{ fy(ef~) > ||B,/I"/*} — 1, and the claim follows.
(i) Since inf,_, RP+(t) = O,(n), we obtain

sup|D#~(t) — E(Z|C — BTZ > Y — BTZ = t) + DF~(t)| = O,(n"17?),

t<cy

(7.4)

and hence part (iii) follows (i) and (ii). O

Proor or LEMMA 5.2 [Tightness of ¥,(-; s)]. Two terms are involved in the
tightness considerations: n~/2X" A, Z;s(e?) and

nol? Z A=29zf, s(t)dFH(e)/(1 = FA(sf)).

It is easy to see that Assumption (A.1)-(A.3) imply that

sup {

w2 Y Az s(sf) — s(ef)] |
i=1

18— BII<V}—>0-
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Hence it is enough to consider the family of random variables:
f(;;",oo)s(t) lef(t)
1— F (1)

We begin by investigating the behavior of FA(-) as a function of 8. Now, for
some y > 0, Pr{H#»(¢,) <1 — vy} — 1. Hence

(7.5) {nﬂﬂ g": (1-4)z S8 = Ball < Vn}'

sup log{l - IF,’f(t)} —n71 i Ail{ef’st){l - [HIB(efz —)}A1
(7.6) & 1B-Bali<w, i1

= 0,(n7").
Now, for all 8,
(7.7) HA(u = |18 = Bull) < WA(u) < HA(u + 18 = BI)-

Hence

n
n-1? Zn: Ail(s{’st){l - HB(E? ’)}Al -n"'? E Ail(ef’nst){l - Hﬂ"(ezﬁ" _)}_1
=1

i i=1

n
=< n_1/2 2 Ail(efn<t+vn){1 - Hﬁn(etpn + 2vn _)}‘1

i=1
" -1
—n 2 AL il - HA(ef —))
i=1
= n"V2(HE(t + 3v,) — HE(2)}
+n1/2f (1 - HA(u)) {dHE(u + 20,) — dHE (u))
(—oo,t]
= n'2{HE(t + 3v,) — HE(2))}
#n2 [ (Mt 20,) - HE(u)) d{1 - WA (u))
(— o0, t]
-, 0
as n — oo and v — 0 uniformly in ¢ € (— 00, ¢;].
The last claim follows the uniform continuity of H?» [note that H%» is a
sample from a distribution with a bounded density as a conseqeunce of the finite

information assumption and see Shorack and Wellner (1986), pages 542-552]. A
similar argument applies to the infimum over 8. Therefore (7.6) implies that

(7.8) sup |FA(t) — Fpn(t)| >, as»—0.
t<co, |1B=Ball<v,
To make long equations shorter, define

G*() = [ s(w){1 - Fiw)} amlu)

["CO
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and

KA(-) = (1-H())
Now, for any ¢ < ¢, and B: |8 — B,ll < ¥

_ ___ﬁﬁ_l
.[Awf(“)dff(")"lt%s(“) R )

= [ sw)(1-Fiu-)

(tv CO]

x|1+ [ d{1- Hﬂ(g)}“} dHA(u)

(—o0,u)

dHg(u)

(7.9)

- GHt)+ [ GH(e) dKA(8).

(-0, ¢

With probability converging to 1, {1 — H#(-)} ! is a finite positive measure on
(— 0, ¢y ). Therefore (7.9) implies that

(7.10) sup nl/zf s(u){dFE(u) - dIF,‘f"(u)}‘ -,0
t<co, IB—Ball<v, (2, &l

if

(7.11) sup n'/2|GF(t) — GP=(t)| -, 0

t<co, IB—Bull<v,

and

(7.12) sup n'/? f GP(u){dKP(u) - dKB(u)}‘ —p 0.
B = Bull<v, (=0, )

But

GH(t) — GP(t) = §A%hﬁ()U‘F% -))

= Z Ao ps(ef) {1 - (e )

§ Bognos(ef) (1 = FE(e£ -))
-s(et) {1 - B2 (e )]

8 AL g ratns () (1 = FEGE )

i=1

- ZAl(eﬂn>z>e")s( ){1 - n:ﬁ( )}

i=1

—p 0,
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by (7.8), (A.3) and the bound on the modulus of continuity of H#=. This proves
(7.11). By (7.7), (7.12) holds if

(7.13) sup  n'2|GP(t + £) — GP(t)| -, 0.

t<cy, |§|<v,

The empirical processes argument and (A.1) show that (7.13) holds. Hence (7.12)
and therefore (7.10) hold as well.
Finally, (7.7) and (7.10) prove the tightness of (7.5) and the lemma follows. O

ProoF oF THEOREM 5.1. (i) Define
B (B s) =n2 Y /I(I?"Zu){zi — DP(u)} dQ (u; ebr|F, ).
i=1

Then ¥,(8,; s) =¥ (B;s)+ 0,(1) by Proposition 5.2. But ¥ (By; s) is a normal-
ized sum of ii.d. random variables. Hence ¥,(8,; s) is asymptotically normal.
Since Qg(-; efo|F,) is a martingale and ¢fo is independent of {fo and Z, we
obtain

E{Lgpr {2 — DPo(u)} dQ,(u; efo|Fy ) }
= E{lypos {2, — DPo(u)}}E{dQ (u; ol 7y, )|
=0
[recall that DPo(u) = E(Z|C — BFZ > u)] and
Var{flm’uu){zl ~ Dfe(u)} da,(u; ef"'FBo)} =V

Part (i) follows.
(ii) Now define

T8 8) = % (Ll Z ~ Dio()) d@, (s fIFy).
i=1

We claim that @n( B, s) = \i'n( B, s) + 0,(1). Considering Lemma 7.2, we need
only to check the expectations. But for some function A(-),

B(%(Ai5) = ()} = B0 $ [l g~ DP(0)) )

=0,
by the definition of DA=(-).
By Lemma 7.3 and the dominated convergence theorem

Var{¥,(B,; s) = ¥,(By; )} — 0.

Hence part (ii) will follow if the expectations are proper. Now let

X(X;B,) = [1gns {2 = DP(u)} dQ (u; e|F,)

and let E; be the expectation under the measure with density f(y —
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BTz)h(z, c). Then Ez x(X, B,) = 0. Hence

Epx(X,8,) = [ [x(,¢, 25 B oy — BTz) dyh(2, ) dp

= [ [x(5, ¢, 23 B[ fol ¥ = BT2) = fo( ¥ = BT2)] dyh(z, ) d.
Taking the limit as 8, = B, and recalling (A.3), we obtain
fo'(¢)
fo(e)

(iii) Follows immediately from the first two parts.
(iv) Follows from part (iii) and the information calculations done in Ritov and
Wellner (1988) or Bickel, Klaassen, Ritov and Wellner (1989). O

n‘”{Epox(X; B.) ~ cov{x(X; Bo), Z" }(B,, - Bo)} - 0.
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