The Annals of Statistics
1990, Vol. 18, No. 1, 220-250

ASYMPTOTIC PROPERTIES OF MULTIVARIATE NONSTATIONARY
PROCESSES WITH APPLICATIONS
TO AUTOREGRESSIONS!

By RUEY S. Tsay aAND GEORGE C. T1ao

Carnegie-Mellon University and University of Chicago

Asymptotic properties of multivariate time series with characteristic
roots on the unit circle are considered. For a vector autoregressive moving
average (ARMA) process, we derive the limiting distributions of certain
statistics which are useful in understanding nonstationary processes. These
distributions are derived in a unified manner for all types of characteristic
roots and are expressed in terms of stochastic integrals of Brownian motions.
For applications, we use the limiting distributions to establish the consis-
tency properties of the ordinary least squares (LS) estimates of various
autoregressions of a vector process, e.g., the ordinary, forward and shifted
autoregressions. For a purely nonstationary vector ARMA( p, q) process, the
LS estimates are consistent if the order of the fitted autoregression is p; for a
general ARMA model, the limits of the LS estimates exist, but these esti-
mates can only provide consistent estimates of the nonstationary characteris-
tic roots.

1. Introduction. A k-dimensional linear process z, = (2y,,..., 2,)T follows
a vector ARMA( p, ¢) model if it satisfies

(1.1) ®(B)z,=0(B)a,,

where ®(B)=1-®,B— --. — ®,B? and 6(B)=1-06B— --- — 0,B? are
matrix polynomials in B of degrees p and g, respectively, B is the backshift
operator such that Bz, =z,_,, ®;’s and 0,’s are k£ X k real-valued matrices and
{a,=(ay;,..., a;)")} is a sequence of martingale differences satisfying

E(a,|¥,_,) =0, cov(a,¥,_,)=2 and

(1.2) sup E(|a,|2*®|¥,_,) < o0, a.s.for some § > 0,
it

where ¥, , is the o-field generated by {a, ;|j=1,2,...} and = is a positive
definite matrix. For model (1.1), we assume that ®(B) and 8(B) are left coprime
and all of the zeros of the determinants det[®(B)] and det[8(B)] as functions of
B are on or outside the unit circle. For convenience, we shall refer to the inverses
of the zeros of det[ ®(B)] as the characteristic roots of z,. If all of the character-
istic roots are inside the unit circle, z, is'stationary; otherwise, it is nonstation-
ary. If all of the characteristic roots are on the unit circle, z, is purely
nonstationary. For a nonstationary process, we assume that it starts at a fixed
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time point with known starting values. As will be seen later, this last assumption
has no effect on the asymptotic properties considered.

In recent years, the theory and applications of model (1.1) have been exten-
sively investigated by many authors. For example, among others,
Tunnicliffe-Wilson (1973), Hillmer and Tiao (1979) and Nicholls and Hall (1979)
studied the maximum likelihood estimation; Chan and Wallis (1978), Tiao and
Box (1981) and Tiao and Tsay (1983b) proposed model building procedures;
Hosking (1981) and Li and McLeod (1981) considered model checking techniques.
Most of the investigations, however, are confined to the stationary case, leaving
behind the wider class of nonstationary processes commonly encountered in
practice. In the univariate case, this may not be a serious problem because
stationarity can often be achieved by using the technique of differencing; see Box
and Jenkins (1976). However, how to transform a multivariate nonstationary
process into a stationary one is unclear. Differencing of the vector process z, is
no longer a practical solution because it may introduce unnecessary complica-
tions by making some of the zeros of det[8(B)] on the unit circle. Roughly
speaking, when the nonstationarity of a particular component of z, is attributed
to its dependence on other nonstationary components, differencing each individ-
ually nonstationary component in this situation will result in a noninvertible
model for the differenced vector process; see the discussions in Hillmer and Tiao
(1979), Tiao and Tsay (1983b) and Lutkepohl (1982). Furthermore, there is no
convenient method currently available to identify the “genuine nonstationary
components” of a vector process. Therefore, a better way to understand multi-
variate processes is to investigate nonstationary processes directly.

Some results of nonstationary processes are indeed available in the literature.
Stigum (1975) investigated asymptotic properties of ARIMA processes including
the normality of a process and a law of iterated logarithm. Lai and Wei (1983,
1985) showed that the ordinary least squares (OLS) estimates of an AR(p)
regression are strongly consistent if the true model is a purely autoregressive
process of order p, i.e., AR(p), and a, satisfies (1.2). Chan and Wei (1988)
derived the limiting distribution of these OLS estimates when z, is a univariate
series. Earlier Dickey and Fuller (1979) and Hasza and Fuller (1979) considered
the problem of testing for one or two unit roots in a univariate AR model, and
Ahtola and Tiao (1987) considered the case of a pair of complex roots on the unit
circle. Fewer results, however, are available for the nonstationary mixed ARMA
model. Phillips and Durlauf (1985) investigated multiple time series regression
with unit roots. In Tiao and Tsay (1983a), we established some consistency
properties of the OLS estimates of various autoregressions of a univariate
nonstationary ARMA model under the condition that (1.2) holds for § = 2. Of
particular interest there is that we allowed for the order of the fitted autoregres-
sion to be different from the underlying AR order p. This flexibility is valuable
in application because the AR order p is usually unknown. For the multivariate
ARMA models, the corresponding asymptotic properties are yet to be derived.

The primary goal of this paper, therefore, is to investigate asymptotic proper-
ties in estimating vector ARMA models when there are characteristic roots on
the unit circle and, in particular, to extend the consistency results of Tiao and
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Tsay (1983a) to the multivariate models. More specifically, we shall consider
limiting distributions of certain statistics of nonstationary vector processes and
use this result to establish consistency properties of OLS estimates of autoregres-
sions of a vector ARMA model. For the purely nonstationary ARMA(p, q)
processes, we show that the OLS estimates of an AR(p) regression are consis-
tent. For the general ARMA( p, ¢) models, the OLS estimates are inconsistent if
g > 0, but the estimates provide consistent results for the nonstationary charac-
teristic roots, i.e., those roots on the unit circle. The limiting distribution is
derived in a unified manner for all types of characteristic roots on the unit circle.
Using some univariate results of Chan and Wei (1988), we first establish the
results for multivariate AR models. The results are then extended to the general
vector ARMA models through a relation between nonstationary ARMAC(I, q)
and AR(1) models. Finally, we apply the results to forward and shifted least
squares autoregressions and derive the consistency properties of the associated
estimates.

The results of this paper are useful in multivariate time series analysis. First,
they give theoretical justifications for some existing procedures proposed for
handling nonstationary multivariate time series data. For example, Tjetheim
and Paulsen (1982) proposed using the least squares estimate (iJI in an AR(1)
fitting as the coefficient of transformation to achieve stationarity. The reason
that this approach works in some cases is because of the consistency in estimat-
ing the nonstationary roots. Second, the results here provide the basis on which
unified procedures for modeling stationary and nonstationary ARMA processes
can be constructed. For example, based on the consistency results of Tiao and
Tsay (1983a), Tsay and Tiao (1984, 1985) have developed the extended sample
autocorrelation function and a canonical correlation approach for model specifi-
cation of univariate time series. Details of using the results of this paper to
derive a unified modeling procedure for multivariate ARMA processes is given in
Tiao and Tsay (1989). Third, the results specify the distributional behavior of
nonstationary vector ARMA models which is important in understanding non-
stationary processes.

2. Preliminaries. In this section, we derive a link between ARMA and AR
models. This link enables us to generalize asymptotic results for pure AR models
to the mixed ARMA processes. Letting X, = (z7,...,z]_ P+ DT, the ARMA model
(1.1) can be rewritten as

. q
(2.1) X,=GX,_,+ ). ©,a,_,
i=0
where the coefficient matrices are given by
0,0,...,9,
G =
Ik(p*l) o

and O, = — L6, where L is the first £ columns of I, ,, 8, = —I, and I, denotes
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the s X s identity matrix. Since the characteristic roots of z, are the eigenvalues
of G, these eigenvalues are on or inside the unit circle under model (1.1). Also, we
have det[I — GB] = det[®(B)].

Now there exists a nonsingular matrix T that transforms G into its Jordan
form, i.e.,

(2.2) TGT '=J = diag{d,,ds,...,d,},
where
;1.0 0
0 A, 1 0
d; = .
1
0 0 O 0 A

is a r; X r; Jordan block, A is an eigenvalue of G and r; is the multiplicity of A s
J=1,...,s. Here the matrix T and the eigenvalues A ; are over the complex field,
and X5_,r; = kp.

By (2.1) and (2.2), we have

q
(2.3) (I-JB)TX, = ( Y @i*Bi)at,
i=0

where the moving average coefficient matrices are given by @* = T®, = —T*9,
with T* being the first £ columns of T. We now derive some basic results of the
above transformation. For the general theory of matrix polynomials, one may
consult MacDuffee (1956) and Kailath (1980) with the latter emphasizing appli-
cations to linear systems. From (2.3), the model for each individual Jordan block
is of the form

(2.4) (I - DB)u, = ( i CiBi)at,

1=0

where D is a Jordan block corresponding to some eigenvalue A of G, u, is a
subvector of TX, and C, is a submatrix of ®* for i = 1,..., q.

LEmMA 2.1.  Suppose that z, follows the vector ARMA model of (1.1). Then
the two matrix polynomials of each individual Jordan block in the form of (2.4)
are left coprime.

ProoF. Denote the AR and MA matrix polynomials of (2.4) by D(B) and
C(B), respectively. Since det[D(B)] = (1 — AB)", where A is the dimension of
u,, we only need to consider the case A # 0. If D(B) and C(B) are not coprime,
then (1 — AB) is a factor of each and every element of adj{D(B)]C(B), where
adj[D(B)] is the adjoint matrix of D(B). Consider the model (2.3). Without loss
of generality, we may treat D as the first Jordan block of (2.2). Then, by the
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Jordan structure, we have

(2.5) det[l—JB]Tx,=adj[D(B) 0 ][C(B)] o

o DYB)||cuB)[*

where D(B) and C¢(B) are, respectively, the compliment parts of D(B) and
C(B) in the AR and MA matrix polynomials of (2.3). Writing

ad'[D(B) o ]Z[HI(B) 0]
1 o DpuB) 0 HB)/|

it is easy to see that every element of Hy(B) is divisible by det[D(B)] and every
element of H(B) is divisible by the corresponding element in adj[D(B)].
Therefore, if (1 — AB) is a factor of each element of adj[D(B)]C(B), then every
element of the right-hand matrix of (2.5) is divisible by (1 — AB). Since
det[I — JB] = det[I — GB] = det[®(B)], we have, by (2.1) and (2.2),

(2.6) det[®(B)]X, = T 'adj[I — JB]®*(B)a,,

where ©*(B) is the MA matrix polynomial of (2.3). The above result says that
every element of the right-hand matrix of (2.6) is divisible by (1 — A B). How-
ever, by (1.1), det[®(B)]z, = adj[®(B)]6(B)a,. In particular, by considering the
first £ rows of the right-hand matrix of (2.6), every element of adj[®(B)]0(B) is
divisible by (1 — AB). This contradicts the left coprime assumption of model
(1.1). O

For model (2.4) with A # 0, define the matrices ¢, by

(I-DB) ) ¢;B'=C,+ C,B+ --- +C_B".
i=0
Then , = C,, §; =X,_(D*"°C, for i=1,...,q, and §; = D" %y, for i > q.
Next, under the assumption of zero starting values we may rewrite the model
(2.4) as

(2.7) u,=M,+Y,
where
g-1 t—q-1
(2.8) M, = 'Zo Ya, Y, = 'ZO D', ; withf, = 7% PEPS

From (2.8), it is obvious that Y, is a multivariate AR(1) process, i.e.,
(2.9) Y,=DY, , +1,.

Equations (2.7) and (2.9) establish a link between a vector ARMA(1, ¢) model
and a vector AR(1) model that enables us to extend the results of a pure AR
model to those of a mixed ARMA model. We now consider some properties of the
AR(1) process Y,.
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LEMMA 2.2. Suppose that z, follows the multivariate ARMA model of (1.1).
Then the last row of {, of (2.8) is nonzero provided that the eigenvalue A of D

is nonzero.

PrROOF. Denote the jth element of the last row of the matrix A by A ;. From
Y, = L2_, D?7°C, and by the Jordan structure of D, we have

q
¢Q,j= Z_:()}\q_ocu’j forj: ]‘"'-) k-

If the last row of {, is 0, then we have

(2.10) C, ;= —qzlxq-vco, S
v=0
Now, since
adj[D(B)]
(1 -AB)" B(1-AB)*!' . B"21-AB) Bh1
- 0 (1-AB)" . . B"?(1-\B) |
0 : : 0 (1 -AB)"

where A is the number of rows of D, the only element of adj[D(B)] that is not
divisible by (1 — AB) is the (1, A2)th element. Thus, we need only consider the
last rows of the matrix polynomial C(B). The result of multiplying B*~! by the
Jjth element of the last row of C(B) is

q
(2.11) g(B)= 3 C, ,B"! forj=1,..., k.
v=0

Consequently, if the last row of {, is 0, then by (2.10) and (2.11) we have
g,/(B) = X423C, ;B"**~1 — X7 °B9~"), which says that g,(B) is divisible by
(1 —-AB) for j=1,..., k. This implies that each and every element of
adj[D(B)]C(B) is divisible by (1 — A B) which is in contradiction with Lemma
2.1. O

Next consider another Jordan block following the model

q
(I - D*B)ur = ( Z CB'|a,,

i=0

where the eigenvalue of D* is A*, u} is a subvector of TX, and C}*’s are
submatrices of ®*’s, respectively. Suppose that A* # 0. Then, similar to (2.7) we
have

(2.12) ut = M* + Y with Y* = D*Y* | + £

Comparing the models of Y, and Y,*, we have the following result.
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LEMMA 2.3. Suppose that z, follows the vector ARMA model of (1.1) and
that the two Jordan blocks D and D* of (2.9) and (2.12) are different in the
sense that D = J; and D* = J; for some i # j. Assume further that the two
eigenvalues satisfy A = A* # 0. Then, f, and f,* are not linearly dependent,
where f, and f,* are the last elements of f, and f,*, respectively.

Proor. In this proof, denote the last element of the vector w, by w,. Since
the eigenvalues are nonzero, f, and f,* are nonzero linear combinations of a,. If
f, and f,* are linearly dependent, then f, = Bf,* for some nonzero constant S.
By (2.9) and (2.12), this implies (1 — AB)Y, = B(1 — A*B)Y,*. Since A = A*, we
have Y, = BY,* + d, where d is a constant. Therefore, from (2.7) and (2.12), we
have

u,— Bu}r=M,— BM* + d.

Two cases are possible. First, if M, — BM,* = ¢, a constant, then u, = Bu} +
¢ + d. However, since u, and u}* come from two different rows of the transfor-
mation matrix T, the result says that there is an exact (lagged) linear relation-
ship in the original process z,. This, of course, contradicts the condition that X is
positive definite. Second, if M, — BM,* is not a constant, then u, — Bu} is an
MA(q) process, because both M, and M,* are MA(q). This says that u, — Su}
belongs to a Jordan block of (2.2) which is associated with a zero eigenvalue.
Thus, u, — Bu} can also be obtained by a third row of T. This, however,
contradicts the nonsingularity of T. Consequently, f, and f,* are not linearly
dependent. O

For convenience, we rearrange the Jordan blocks of (2.2) so that TX, can be
partitioned as

(2.13) TX, = (N[, 87)’,

where N, and S, consist of all the nonstationary and stationary components of
TX,, respectively. For each Jordan block in N, the associated eigenvalue is on the
unit circle. By Lemma 2.1, the two matrix polynomials of (2.4) are left coprime so
that the multiplicity of the nonstationary characteristic root is just the multi-
plicity of the associated eigenvalue. Next, (2.7) and (2.9) show that in this case
we may rewrite the process as a sum of an MA process and a purely nonstation-
ary AR(1) process. Furthermore, by Lemma 2.2, the last element of the in-
novational series f, of the nonstationary AR(1) process is nonzero. Thus, the
corresponding process Y, is not degenerated. This provides the needed back-
ground for the discussion in Section 3. °

Finally, it is interesting to see the implications of Lemmas 2.2 and 2.3 in the
univariate case. These lemmas show that for each nonstationary root there is at
most a single Jordan block available, because any two nonzero functions of the
scalar variable a, are linearly dependent. Therefore, when %2 = 1 and 6(B) =1,
by combining complex conjugate pairs of eigenvalues to produce a real-valued
system, one can further transform the process so that the resulting transforma-
tion matrix T becomes that of Chan and Wei (1988). The results of this paper
thus reduce to those of Chan and Wei when z, follows a univariate AR model.
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3. Basic properties of purely nonstationary vector AR(1) processes.
From the results of the preceding section, for each Jordan block associated with
the nonstationary component N, of (2.13) there is a corresponding purely nonsta-
tionary process Y, in the form of (2.9). Furthermore, since M, of (2.7) is
stationary (because it is a finite sum of martingale differences), the asymptotic
properties of any process in N, are determined mainly by those of the corre-
sponding purely nonstationary process in Y,. It is, therefore, important to
investigate the asymptotic properties of purely nonstationary AR(1) processes in
the form of (2.9) with the eigenvalue A of D on the unit circle.

Since each component of Y, is nonstationary, the asymptotic properties to be
discussed, e.g., the limiting distribution of least squares estimates, are different
from those obtained by the central limit or ergodic theorem. The results involve
stochastic integrals of Brownian motions, and we use the following notation.

1. D[0,1] is the space of functions f(¢) on the unit interval [0, 1] which are right
continuous and have left-hand limits; see Billingsley (1968).

2. D[0,1] is equipped with the Skorohod topology.

3. For the weak convergence X, —», X in D, we shall use X,(¢) -, X(¢) from
time to time to indicate the time variable ¢ of the random elements.

4. For 0 < s < 1, [ns] denotes the largest integer less than or equal to ns.

For a nonstationary process Y, in the form of (2.9), write the eigenvalue of the
Jordan block D as A = exp(iw), where 0 < w < 2. If the dimension of Y, is A,
then the component models are

(8.1) Y, .= exp(iw)Yh,l—l + fn e
(3.2) Y, ,=ep(iw)Y, , ,+ Y, , +f,, foro=h—1,...,1.

Assuming that the starting value Y, = O, (3.1) and (3.2) give
t

(3.3) Y, = X [exp(io)] s,
j=1
.

1 .
(3.4) Y, ,= X [exp(io)] 'Y, ;
j=1

t .
+ Y [exp(iw)]“f, ; foro=h-1,...,1.
j=1

Consequently,
t
(3.5) exp(—iwt)Y), , = 2 exp(—iwj)f, ;,
j=1
t—1
(3.6) exp(—iwt)Y, , = exp(—iw) 2 exp(—iwj)Y,.,, ,
J=1

t

+ Z exP(_iwj)fo,j-
j=1
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These two equations give a nice recursion concerning Y, ,. When & = 0 or v = 7,
i.e., the eigenvalue is either 1 or —1, the equations are real-valued; otherwise,
they are in the complex field. Since z, of (1.1) is a real-valued series, any complex
process Y, ,, innovation f,, and root exp(iw) must exist in conjugate pairs.
Therefore, (Y, ,} and {Y*} exist simultaneously, where Y * denotes the complex
conjugate of Y, ,, and we may assume 0 < w < 7. Notice that Y *, satisfies (3.1)
through (3.4) with exp(iw) and f, ; being replaced by exp(—iw) and f,*,. Let
Y, =, oY) b, = (f,0 f,%)" and H = diag{exp(iw), exp(—iw)} for 0 <
w < 7. Then we have

(3-7) Yh,t = HYh,hl + fh,u
(3.8) Yu,t = HYUJ_1 + Yo+1,z-1 + fv,, foro=h-1,...,1.

These complex-valued equations can be transformed into real-valued ones by
letting
(3.9) Y, :=rY,, and e, ,=rf ,,

v

where r is a 2 X 2 matrix with first row (1,1)/v2 and second (—i,i)/V2 .The
model of y, , then becomes

(3.10) Y, e= RYn o1+ €40,
(3.11) Yot = RY, o1+ Yorr,e1 e, foro=h—-1,...1,
where R is a 2 X 2 orthogonal matrix given by

R = R(o) = cos(w) —sin(w)

sin(w) cos(w) |’

Note that the following properties of R(w) are useful

(3.12) [R(w)]’ = R(jw) and [R(w)]" = R(-w).
By (3.10) and (3.11), a bivariate recursion similar to (3.5) and (3.6) is obtained
t
(3.13) R’y ,= LR,
J=1

t—1 ‘it
R'YRVy,,, ,+ R%,; foro=h-1,...,1.

J=1 J=1

It

(3.14) R%y,,

Notice that the recursion (3.13) and (3.14) actually applies to all w satisfying
0 < w < 7 because y, , = 27 /%Y, ,,00", e, , = 27'/%, ,,0)" and R is diagonal if
w =0 or w = 7. More precisely, the first component of each equation of (3.13)
and (3.14) reduces to (3.5) and (3.6) when w = 0 or w = 7. For this reason, we use
(3.13) and (3.14) in the derivation below and assume 0 < w < 7.
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To derive some basic properties of y, ,, we need a fundamental lemma. Let
{a,} be a sequence of martingale differences satisfying (1.2) with variance o2 For
0 < w < 7, define

¢ ¢
(3.15) C(w) = ) cos(jw)a; and S(w)= Y sin(jw)a;.
j=1 j=1
Since
n
n 'Y cos?(tw) =1 if w=00rw=m; -1 ow,
t=1
n
n ! Y sin’(tw) =0 if w=00rw=m; -1 ow,
t=1

define the constants

(3.16) C(w)=1 ifw=00rw=m; =1/V2 ow,

(3.17) S(w)=0 ifw=00rw=m; =1/V2 ow.

Next, define two functions on [0,1] by

(3.18) Z,(s) = [C(«)n%,] 'C(p(w) and
Xn(s) = [S(‘*’)nlﬂ"a] _IS[ns](w):

where Z,(0) = X,(0) = 0. Using Theorem 2.2 of Chan and Wei (1988), we have
the following lemma.

LEmMA 3.1.  Suppose that {a,} satisfies (1.2) and 0 < w < 7. Then
(Zn7 Xn) _)d(v‘/c’ I;Vs)’

where W, and W, are two independent standard Brownian motions and the
subscripts ¢ and s are used to signify limits of cosines and sines, respectively.

In Lemma 3.1, it is understood that X, = W, = 0 if w = 0 or 7 and that the
independence of W, and W, follows directly from the orthogonal properties of
trigonometric series.

Next we apply Lemma 3.1 to establish some basic limiting distributions for
yu, t Let ‘

t
(3.19) E,,= X R%, ; foro=1,2,..., A
j=1

Since the covariance matrix of f, , of (3.7) is nonzero (see Lemma 2.2) and r of
(3.9) is nonsingular, {e, ,} are martingale differences and satisfy (1.2) because
they are nonzero functions of {a,}. For any other v, if e, ,= O, then it is
understood that E, , = O and the variance of any component of e, , is 0.
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By (3.12), elements of E, , are linear combinations of terms similar to C,(w)
and Sy(w) of (3.15) with a, replaced by components of e, ,. Define

T, .(s) =n"'?E

Then, by Lemma 3.1 and using the same argument as that of Theorem 2.2 in
Chan and Wei (1988), we have the following result.

for0 <s <1.

v,[ns]

LEMMA 3.2. Suppose that z, follows the vector ARMA model (1.1) with a,
satisfying (1.2) and 0 < w < 7. Then

[T0,0(8), s T u(8)] = a[Ei(s), ..., Bals)]
with

= (5) = | C(OIWAs) - =S(o) <v><s)l[ov,1]
T S@WR(s)  C@)wis) Lol

where o, is the variance of the mth element e, m: of e, and W“’)(s) and
W(")(s) are independent standard Brownian motions associated with e,

In Lemma 3.2, since the element e, , ,’s may not be linearly independent,
E,(s)’s are in general linearly correlated. For simplicity, we do not give expres-
sions for the covariances between the E,(s)’s variables. Some expressions, how-
ever, can be obtained by orthogonalizing the €, m. ¢S [see (4.13) for an example].

To illustrate the apphcatlon of Lemma 3.2 and show that the assumption of
zero starting value, i.e, y, , = O, is immaterial in studying asymptotic results of
Y., +» We consider the process y, , in detail. In this case, the multiplicity of the
nonstationary characteristic root is unity, see Lemma 2.1.

LEMMA 3.3. Suppose that Y», . follows the model (3.10) which is obtained
from (1.1) by the transformations of Section 2. Assume that a, of (1.1) satisfies
(1.2) and that the starting value y,, , has a well-defined probabzlzty distribution
function. Then

- n . 10—‘
(@) LRy, oy [E(s) ds,

t=1

n B 1— _
(b), ™ LR 'y, i R =, [ E4(s)EN(s) ds,

t=1 0
(c n 'Ry, Wyr R >, E(1)ENQ),
(d) n~! Z (RlitYh,t—le'}f,th + Riteh,ty’?: t*IRt_l)
t=1
~d Eh(I)ET(l) -F

where F is the limiting matrix of n 'L}_ R, ,e} ,R.



PROPERTIES OF VECTOR PROCESSES 231

PROOF. Given the starting value y,, o, we have Ry, , = £’_ R e, ; + yj o
To show part (a), consider

M=

n
n¥2 Yy R—tyh’t = p3/2
t=1 ¢

(Eh, (-1 + R, + Yh,o)
1

n n
=n1Y n"\2E, ,_, + n= 2y, o+ n_l/z(n1 Yy R_‘eh’,)
=1 i=1

[
™M=

nil/QEh, tﬂ[t/n - (t- 1)/"] + Op(l)

o~
I
—

(3.20)

I
M=

Ty, [(t = 1)/n][t/n = (t = 1)/n] + 0,(1)

o~
I
—

= X7 M (s)ds +0,(1)
t=1"0-1/n
= "1, .(s) ds + o,(1).
0
In the above, the fact that n~'CR" ‘%, , is bounded in probability can be
obtained by applying a central limit theorem of martingale differences under the
condition (1.2), e.g., Theorem 2.5 of Helland (1982). By continuous mapping
theorem [Billingsley (1968), Theorem 5.2] and Lemma 3.2, (3.20) implies that (a)
holds.
To show part (b), consider

n n
_ _ _ T
n? Y R Y, tY;: R=n?Y) (Ep o+ ¥4,0)(Ep i + o)

t=1 t=1

n
_ 2 T —2
=n?YE, E}, +n
t=1

n

Z Eh,t)yir.r,o
t=1
T

-1 T
+ 17 'Yh 0Yh 0

n
+ n2Yh,0( > E, .
=1

Using the same techniques as those in the proof of part (a), the above equation
can be rewritten as

n 1 ‘
7 LRy v R = [0, ()1 (5) ds

t=1

e ['1,,,(5) ds ity

T
1 _
+ n1/2)’h,o{f0 T .(s) ds} +n 1Yh,0Y}’;I:0'

Part (b), again, follows from the continuous mapping theorem and Lemma 3.2.
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For part (c), we use
n_lRf"yh,nyhT, Ri=n"YE, , + ¥, 0)(E, , + Yh,o)T
= (nil/th,n)(nil/th,n)T + (n_l/th,n)(nil/zyh,O)T
+(n2y,0) (R V7B, )T+ 7 oY
= T J(D[Ts (D] + T () (n"2y5)

_ T _
+ 072y, o[ Th (D] + 27y 0¥m 0

The result follows immediately. Finally, for part (d), we first premultiply (3.10)
by R to get R %y, ,= R'"’y, , ; + R™'e, ,, next postmultiply each side by
its transpose and then sum over ¢, yielding

n n
n-1( Z Rl‘tYh,tfler}l:,th + Z R_teh, tyir;r, t—lRt_l)

t=1 t=1

n
= n“(R_"yh,nyfT, R= X R_teh, te};, R — Yh,oyg,o)-
t=1

Part (d) then follows from part (c). Here the existence of F is implied by e, ,
satisfying (1.2) and the properties of trigonometric series. O

Note that in Lemma 3.3 we may replace the upper limit of the summation n
by [ns] for 0 < s < 1 and obtain general results of the limiting distribution. For
instance, suppose that « = 0, i.e., the unit root case. Then the general results
become

[ns]

(a) T L Y —a on W(2) dt,
t=1
[ns] s

(b) nt L Vi =g of [ W) db
t=1

(c) n " Yyine) 2 a GRW(s),

where 0 < s < 1, ¢;, is the standard deviation of e, , and W(¢) is a standard
Brownian motion. l

From the proof of Lemma 3.3, it is clear that the starting value y, , is
immaterial in studying the limiting distribution as long as y,, , has a well-defined
distribution function. For this reason, we assume y, = O for the rest of this
paper. This observation has been made by Phillips (1987) in a study concernlng
asymptotic properties of univariate random walks.

Next consider the general process y, ,. Define

t
(3.21) K,,= >Ry, forv=1,2,..., A

Jj=1
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Then, from (3.13) and (3.14) and (3.19),

(3.22) Ry, . =E;

(3.23) R',,=R'K,,,, ,+E,, foro=h-1,...,1.

Based on the recursion (3.22) and (3.23), we define a continuous recursion for
0<t<l,

(3-24) Ph(t) = Eh(t),

(3.25) T,(¢) =R‘1f0tl‘v+1(s)ds foro=h—1,...,1,

where the integration is a componentwise operation and =,(t) is defined in
Lemma 3.2. Note that I'(¢#) depends only on X,(¢) which comes from e, ,. This
occurs because the multiplicity of a nonstationary characteristic root accumu-
lates from ey, ,.

To obtain a general result similar to Lemma 3.3(d), we make use of the
following result of Chan and Wei (1988).

LEMMA 34. Let {X,} and {Y,} be two sequences of random variables.
Define
[ns] [ns]
Ufs)= X X,,V(s)= LY, and T(s) =X, for0<s<l.
v=1 v=1

(a) Suppose that there exists a sequence {k,} with k, — oo such that
(k;ITn’ nil/zvn) d (T’ Wl)’

where W(t) is a standard Brownian motion with respect to an increasing
sequence of o-fields G, and T is G-adaptive. Then

n—1

n V2V, 0k, U, n Y, Y Un(v/n)Ym) ad(Wl,H, i lHdWl),
v=1 0

where H(t) = [{T(s)ds.

(b) Suppose that there exists an increasing sequence F, of o-fields such that
(X,,Y,)T is a sequence of martingale differences with respect to F,. Moreover,
E(X? + Y2|F,_,) is uniformly bounded almost surely and n~'/*(U,,V,) =,
(W,, W), where W, and W, are two Brownian motions with respect to an
increasing sequence of o-fields G,. Then

n—1
nt Y Ulo/n)Ypuy >y [ Wy dW,,
v=1 0

Using the above results and notation, we show the main result of this section.

THEOREM 3.1. Suppose that y, , follows the purely nonstationary AR(1)
model of (3.10) and (3.11) obtained from the vector ARMA model (1.1) by the
transformation of Section 2 and that a, satisfies the martingale difference
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condition (1.2). Then, forv=h,h —1,...,1,

(a) p~(Amo+D-1/2 tilR“yv,t -, fOlI‘U(s) ds,

() nen DRy, 6 Ry T[] ds
forv<u<h,

(c) n~HATUTDHR Ty LYo WRY g T(D[T,(D)]7,

@ e LRy, el Ry [T d[E )]

forv<u < h.

Proor. We prove this theorem by backward induction with the help of
Lemmas 3.3 and 3.4. For v = h, parts (a) through (c) are given by Lemma 3.3,
while part (d) follows from Lemmas 3.2 and 3.4(b).

Next, consider v = A — 1. For part (a), by (3.22) and (3.21) we have

n n n
n=°%? Z Rityh—Lt = n5/2(R1 Z Kh,t—l + Z Eh—l,t

t=1 t=1 t=1

Il

S

|
M=

t—1 n
Rlln‘3/2( > R_th,j)]+n_2(n1/2 > Eh—l,t)

t=1 j=1 t=1
n [ns] )

=n 'Y R Yn3 Y Ry, ;||+o,(1)
t=1 j=1

with s = (¢ —1)/n

1
~d fo T, .(s) ds.

In the above, 0,(1) is obtained by Lemma 3.2 and the last step is based on
Lemma 3.3(a) and the continuous mapping theorem.

For part (b), there are two possible values of u: u = h — 1 or u = h. We shall
only demonstrate the case of u = v = & — 1 because the same techniques apply
to the other case. By (3.23),

n
n~* Z R_tYh—l,tyi’zr—l,th

t=1
=n*) (RilKh,tfl + Eh—l,t)(R_lKh,z—l + Eh—1,z)T
t=1

T
R+ 0,(1)

n t—1
— nfl Z Rl(n3/2 Z R_jyh,j
t=1 =1

Jj=

-1
(n_3/2 > Ry, ;

J=1

—d '/(;lrh—l(s)[rhﬂ(s)]’rds-
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For part (c), notice that

nT Ry, 2 Yao R = n_3(R_1Kh,n—1 + Eh—l,n)(R_lKh,n—l + Eh—l,n)T

n-1 n—1" T
= R_l(n‘3/2 Z Ry, j) (n_a/2 Z R‘jyh’j) +0,(1)

Jj=1 Jj=1

T
4 rh—l(l)[rh—l(l)] .
Finally, part (d) follows from part (a) and Lemmas 3.2 and 3.4. The results thus
hold for v = A — 1. By the backward induction, the proof is complete. O

In Theorem 3.1, it is understood that e, , satisfies (1.2) and that part (d)
changes to convergence in probability to 0 when e, . is 0. Note that parts (a)
through (c) only depend on e, , and on the corresponding eigenvalue being on
the unit circle.

4. Applications to vector AR(1) regressions. In this section we apply the
results of Theorem 3.1 to derive asymptotic distributions of LS estimates of
autoregressions of a purely nonstationary AR(1) process. The approach of Chan
and Wei (1988) for obtaining the joint limiting distribution of the estimates is
adopted. More specifically, using the result in Appendix III of Chan and Wei’s
paper, we may establish the joint results by investigating separately Jordan
blocks with different nonstationary characteristic roots.

For a time series y, and the AR(1) regression

Y, =By,_,t+e fort=1,2,...,n,
we denote the LS estimate of BT by BT = (C7,y,_¥" ) " 'Er,y,_,¥.7). To gain

insight into the result and obtain complete formulas, we first consider each
individual Jordan block.

4.1. Individual Jordan block

Case 1: Jordan block with eigenvalue 1 or —1. Denote the eigenvalue by A.
In this case, w = 0 or =, (3.10) and (3.11) reduce to (3.1) and (3.2) and the model
of ¥, = (Yippeevr Yo' i
(41) y, = Dy,_; + e, or

Yne =AVp,-1+ ey and  y, = Ay, eor + Yor1,e-1 T €yps

for v =h —1,...,1. To apply Theorem 3.1, we simply note that the elements of
matrices in the right-hand side of

n -1 n
Q;Lr -DT= ( Z Yt—lszl) ( Z Yz—1e;r)
t=1

t=1

are exactly the same as those in parts (b) and (d) of Theorem 3.1. Therefore, let
W,(t) be the limiting standard Brownian motion of (n'/%;)"'LNe;, and denote
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the recursion (3.24) and (3.25) by

(4.2) Fy(t) = W,(¢) and F(¢) = )\ftFUH(s) ds forv=h—1,...,1.
. 0

Also, define the notation:
V = (V,...,V.)hxn where the ith column V, is defined by
T
Vo= Mo [ (e aWi(e), ['Fi(e) aWi(o).., ['R(6) aW(0)]
_ 0 0 0
= (9,),,, where, = o} ['F(t)F(t)dt,
0

hXxh

L, = diag{n*, n""1,..., n},

where o2

v

result.

is the variance of e,,. Then, by Theorem 3.1, we have the following

THEOREM 4.1. Suppose that y, follows the model (4.1) which is obtained
from (1.1) by the transformation of Section 2 and that the innovational series a,
of (1.1) satisfies (1.2). Then

(a) Lnl( 2 Yt1YtT1)L;1 -4 @,
t=1
(b) L' Y ye —aV,
t=1
(c) L,(8,- D) ~», 2V,
(d) B,—, D.

Two remarks are in order. First, the identity

Yo, t—1€ut = — (-1 t_lyu, 1(— l)teuz
is used in defining V;, when A = —1. Second, for a fixed integer %, the random
matrix £ for A = 1 and that of A = —1 are equivalent in distribution. This can
easily be seen from the definition. Similarly, V for A = 1 and that of A = —1 are
equivalent in distribution. Consequently, there is only a sign change between the
two limiting results. This property has been observed by Fuller (1976) and Chan
and Wei (1988) for the univariate processes.

Case 2: Jordan blocks with eigenvalues exp(iw) and exp(—iw). Here Theo-
rem 3.1 is not directly applicable because the matrix R is nontrivial. We need
two lemmas. '

LEmMMA 4.1. Let A = {a;,} be a real-valued 2 X 2 matrix. Then
RAR = A, + cos(2tw)A, — sin(2tw)A,,
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where
[a) +ayy  a;,—ay
2A, = R
Lojag —a ag tay
(@) — @y ay + ay
2A, = s
2 laptay ay-—ay
9A. — [ag +a;, @y —ay ]
S lagp —ay —ap—ay |
LEMMA 42. Foru,v=1,...,hand 0 < w <,
¢
(a) sup | X exp(yw)E, ;|| = 0,(n*?),
(1<t<n) || j=1
¢
.. T 2
(b) sup Z exp(l]w)Ev’ jEu,j = Op(n )’
{l<t<n}| j=1
¢
(c) sup || 2 exp(§w)K, |l = o,(nhmorD+3/2),
{(l1<t<n}| j=1
¢
.. T | _ 2h—u—v+2
(d) sup | Y exp(§w)K, ;K ;| = o, (n?h747v+2),
{(l<t<n}| j=1

where the matrix norm is defined as |jc|| = max {%,|c,.|}.

PRroOOF.

Lemma 4.1 can be proved by identities of trigonometric series and

direct algebraic calculation, while Lemma 4.2 follows from Lemma 3.3.6 of Chan
and Wei (1988) with the help of the triangular and Cauchy-Schwarz inequalities.

O
Now consider the least squares AR(1) regression of y,. For v,u=1,..., A,
define
(4-3) H, = yt—lytrl—‘l = [Hn(t), u)] where Hn(v1 u) = Z yo,t—1y1;l,‘t—1,

t=1

(44) Qu= ¥ yosef = [Qulv,0)]

and rewrite H (v, u) and Q,(v, u) as

t=1

n
where Qn(vy u) = Z yv, t—le;[‘t’

t=1

Hn(v, u) _ Z Rt—l(R—t+lyo’ t_ly;l:t_lRt—l)Rl—t’

t=1

Q o,u) = - Rt—l R—t+1y —1eT Rt R_H—IR_I.
n v, t u, t

t=1
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For v,u =1,..., h, define the 2 X 2 matrices:

(45) P(v,u) = ['T(s)[T(s)]"ds and O(v,u) = [T,(s) d[Z(s)]",
0 0
where I'(s) and Z,(s) are defined in (3.25) and Lemma 3.2, respectively. For a
given 2 X 2 matrix A = (a;;), define an operation v by
(4.6) VA=A,

where A, is defined in Lemma 4.1. Using this operation, we further define two
2h X 2h matrices:

(4.7) H = [H(v,u)] withH(v,u) = vP(v,u),
(4.8) Q= [Q(v,u)] with Q(v,u) = [vO(v,u)]R7},
where v,u = 1,..., h. Finally, let L, = diag{n”, n”, n*~, n"~,... n, n}. We

may apply Lemmas 4.1 and 4.2 and Theorem 3.1 to obtain the asymptotic
properties of f.

THEOREM 4.2. Suppose that y, follows the model (3.10) and (3.11) with
0 < w < 7 that is transformed from model (1.1) by the transformation of Section
2. Also, assume that a, of (1.1) satisfies (1.2). Then

(a) L;l( Z Yt—1y;£1)L;l -4 H,
t=1
(b) L;l Z yt—le'tT —)d Qy
t=1
(c) L,(p,-D) >, HQ,
(d) B.—, D,

where H and Q are defined in (4.7) and (4.8) and D is the Jordan block of
model (3.10) and (3.11).

In Theorems 4.1 and 4.2, we have used the fact that £ and H are nonsingular
almost surely. This is shown in Chan and Wei (1988) for the univariate case. For
the multivariate case, if the characteristic root is 1 or — 1, the univariate result is
applicable because the limiting property is determined by the multiplicity of the
root, and within an individual Jordan block the multiplicity is the same as that
of the univariate situation. For complex roots, the univariate result is not
directly applicable. However, the same idea can be used to show that H is
nonsingular almost surely. Details can be found in an appendix of Tsay and Tiao
(1986).

4.2. The general Jordan matrix. We now turn to the situation where eigen-
values of various types exist simultaneously. Clearly, it suffices to consider the
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case where the Jordan matrix of the nonstationary part N, of (2.13) is in the form
(4.9) D = diag{D,,D,,...,Dg},

where D, is an h; X h; Jordan block such that the eigenvalues of D; and D, are
1, those of D, and D, are —1, those of D; and D, are exp(iw,) and exp(—iw,),
respectively, and those of D, and Dy are exp(iw,) and exp(—iw,), respectively,
with 0 < w,, w, < 7. Partition Y, = (Y,5,..., Y, T and £, = (f},...,£5)T accord-
ing to the dimensions of D;’s. Since Y;, and Y, are conjugate pairs, one may
rearrange their elements into the form of (3.7) and (3.8) based on the multiplici-
ties of exp(iw,) and exp(—iw,) and transform the joint process (Y;., Y, )T into a
real-valued process ys, by using the r matrix of (3.9). Here the transformation
matrix is of the form diag{r,r,...,r}. The same technique applies to Y,, and Yy,
and we denote the resulting real-valued process by y,. Consequently, the
complex-valued process Y, can be transformed into a real-valued one y, =
L ..., y5T, where y,, =Y, for v=1,...,4. Let e,=(e],...,el)T be the
corresponding transformation of the innovation f,.

From the results of the preceding subsection, asymptotic distributions for
each individual Jordan block are available. Therefore, we shall concentrate here
on the results between Jordan blocks, i.e., the cross-product terms. Moreover,
since the limiting distributions concerning Yy, el are available, we need only
consider the cross-product term of the Ly, ,y,”, matrix. For convenience, we
write the model of y, as

(4.10) v, = Uy,_, + e, with U = diag{U,,..., Uy}
and define

L _=diag{n®, n®*,...,n%n
(4.11) oun g{ }

with A = dim(y,,) for v = 1,2, 3,4,

- a h ok o he -
L, , = diag{n”, n* n* !, n*"1 .. n,n)

with A = dim(y,,) /2 for v = 5, 6.

(4.12)

Case 1: Cross products of Jordan blocks with different eigenvalues. The
main result here is that cross products between different types of eigenvalues
converge to 0 when they are normalized by proper orders. This result greatly
simplifies the limiting distribution considered in this paper.

THEOREM 4.3. Suppose that y, follows the model (4.10) obtained from model
(1.1) by the transformation of Section 2 and that a, of (1.1) satisfies (1.2). Then

n
(@) Lis Xy, iLj,—,0 fori=1,2andj=3,4,5,6,
t=1

(b) L

1
i,n

n
(c) L5_ln Z y5,t—ly(;1,‘t—1L6_,ln ~p 0 if w, # w,.



240 R.S. TSAY AND G. C. TIAO

Proor. This theorem can be proved by using the same techniques as those
of Theorem 3.4.1 of Chan and Wei (1988) or as those of Lemmas A.2 of Tiao and
Tsay (1983a). O

Case 2: Cross products of Jordan blocks with the same eigenvalue. The
cross products in this case do not converge to 0. Instead, they possess certain
limiting distributions which, again, can be derived by using the results of Section
3. Consequently, to obtain the properties of least squares estimates we must
show that the cross products do not affect the nonsingularity of the limit of the
Yy,_,¥.", matrix. For simplicity in presentation, we again separate the problem
into three cases according to the type of eigenvalues. Furthermore, since the
basic idea is the same for all eigenvalues, we only provide details for the case
where the eigenvalue is unity.

Case 2(a): Eigenvalues are 1. Here we consider the cross product between
¥1. and y,,. That is, consider the matrix Ly, , ,y,, ;. To simplify the notation,
we denote the dimensions of y,;, and y,, by 4 and g, respectively, and the last
components of the innovations e,, and e,, by e, , , and e, , ,. From (3.24) and
(3.25) and (4.2), it is clear that the limiting distributions of the statistics of y,,
discussed depend only on the Brownian motion generated by e, , ,. Similarly,
the Brownian motion corresponding to e, , , governs the limiting property of
statistics of y,,. Therefore, it suffices in this section to concentrate on these two
last components.

Since the eigenvalues are 1, the results of Section 4.1 are applicable. There-
fore, similar to (4.2) with A = 1, define for 0 < £ < 1,

Fi(t) = W (8 and B () = [(Rpi(s)ds foro=h=1,....1,

F, [(t) = W, ,(t) and F, (t) = leZMH(s)ds foru=g-1,...,1,

where W, h(t) and W, ,(¢) are the limiting standard Brownian motions of
(n'/%, ;)" 'Ley, p,, and (n'/%, .¢) " 'Zey 4 1, respectively. Here o, ; and o, , are
the standard deviations of e h, cand ey ;.

LEMMA 4.3. Suppose that y,, and y,, follow the models (4.10) with eigen-
value being unity. These processes are obtained from model (1.1) by the transfor-
mation of Section 2. Also, assume that a, of (1.1) satisfies (1.2). Then

n
B o 1
n~(htE-vmut2) Zyl,v,t—1y2,u,t—l —d 01,h°2,g/F1,o(s)F§,u(S)dS’

for l1<v<handl<ucxg, wherey,, ,is the vth component of y,, andy2 ut
is the uth component of y,,.

ProoF. This lemma can be proved by using Lemma 3.2 and the same
techniques as those of Theorem 3.1. In fact, it is a generalization of Theorem
3.1(b). O
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Next, to gain further insight into the result of cross products, we consider the
relation between e, , , and-e, , ,. By Lemma 2.3, we have

(4.13) €2, 0.t = Bey p et &

where B = cov(e, j , e, 4 .)/var(e, , ,) and {e} is a sequence of martingale
difference such that var(e,) # 0 and {¢,} and {e, , ,} are uncorrelated, i.e.,

E(e, ;) =0 forall tand j.

By (4.13) and Lemma 3.2, we may rewrite W, ,(¢) as a linear combination of two
independent standard Brownian motions, i.e.,

(o2 [
(4.14) By f(8) = Wy, o(£) = —2BW, ,(8) + —=W(t),
0'2’ g 0'2’ g
where o, is the standard deviation of ¢, and W(¢) is the limiting standard
Brownian motion of (n'/%,)”'Le,. Note that the independence of W, ,(¢) and
W(t) follows from the fact that {e, , ,} and {¢,} are uncorrelated. Using (4.14),
F, () can be rewritten as a linear combination of stochastic integrals of W, ,(¢)
and W(t).
Now, let Z, = (y, y.2)T. By Theorem 4.1 and Lemma 4.3, the limit of YZ,ZT
exists after proper normalization. Denote the limit by
Q= (Q,,) whereQ,;isthelimitof L7} Y vy, , 1y, Lj}

J,n?
t=1

where L, , is defined in (4.11) and ¢, j = 1,2.

LEMMA 4.4. Suppose that y,, and y,, satisfy the conditions of Lemma 4.3.
Then, Q is nonsingular almost surely.

Proor. Let S = {w: W, ;(w,s) and W(w, s) are continuous and nondiffer-
entiable for 0 < s < 1}. It is well known that Pr(S) = 1. We shall show that
Q(w) is nonsingular for any w in S. Let m = h + g. If the contrary holds, then

there exist an w in S and a vector ¢ = (c,,..., ¢,,)T # O such that ¢™Q¢ = 0, i.e,,
1 h m 2
/ chpl,j(w7s) + Z ch2’j_h(w, S) dS=0.
01,=1 Jj=h+1

By the choice of w, EﬁglchLJ-(w,s)f YT h+16;Fy, j_p(w, s) is a continuous

function in s. Hence, the above equation implies
h

m
Jj=1 Jj=h+1
Next, since {,; is nonsingular, one element of {c,,...,c,} must be non-
zero. Similarly, one element of {c,,,...,c,} must be nonzero. Let v, =

max{j: ¢;# 0 and 1 <j < h} and v, = max{j: ¢;,, # 0 and 1 <j < g}. Now
the technique used in the proof of Lemma 3.1.1 of Chan and Wei (1988) can be
employed to prove the lemma. For instance, suppose that v = max{v;, v,} = v,.
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Then, one may write F; (w, s) as a linear combination of F; j(w, s)forl <j<wv
and F, ;, (v, s)for1 <j < v,. By differentiating the linear combination (2 — v)
times, a contradiction is realized. The same technique applies if v = v,. O

COROLLARY 4.4. For the y,, and y,, of Lemma 4.4, let Z, = (y\,y5,)". Then

n -1
[det( Y Z,_lzf_l)] = Op(n—h(h+1)—g(g+1)),
t=1
where h = dim(y,,) and g = dim(y,,).

This corollary follows directly from the nonsingularity of € and the normal-
ization matrices L; ,. It has several applications in time series analysis; see, for
instance, Section 4.3.

Case 2(b): Eigenvalues are —1. Here we consider the cross product of y;,
and y,,. It is easy to see that this case is parallel to case 2(a) and similar results
can be obtained. The only change that needs to be made is that a minus sign
should be added in defining the stochastic integrals. [See the coefficient A in

4.2)]

Case 2(c): Eigenvalues are exp(iw) and exp(—iw). Here we consider y;, and
Yo With @; = w, = w which is between 0 and =. Clearly, y;, and yg, satisfy the
recursion of (3.10) and (3.11) and we need the result of Lemma 3.2. Let A =
dim(y;,)/2 and g = dim(yg,)/2. Also, denote the Ath bivariate subvector of e;,
by e; , . and the gth bivariate subvector of e, by €; , ,. Let 5 ,(¢) and Zg (¢),
respectively, be the limiting vectors of Brownian motions corresponding to e; , ,
and e . , (again, see Lemma 3.2). Then, similar to (3.24) and (3.25), we define

T, A(t) = Z5 () and T5 (2) = R‘lj(‘:I‘&vH(s) ds forv=h-1,...,1,

Ty (¢) = Eg o(£) and T, (1) =R [Ty ii(s) ds foru=g—1,...,1.
0
Next, let Z, = (y.}, ys;) and define

A = thelimitof L;' Y Z, ,Z |L,' with L, = diag{L; ,,Lg .},
t=1
where L; , and Lg , are defined in (4.12). The result in this case is as follows.

LEMMA 4.5. Suppose that y,, and ys, are given by model (4.10) and obtained
from (1.1) by the transformation of Section 2. Assume also that a, of (1.1)
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satisfies (1.2). Then

i 1
(a) n—(h+g—v—u+2) Z R_ty5,v,ty(;1,‘u, th —d j(; r5,v(s)[r6,u(s)]Tds

t=1
forl<v<handl <u<g,
(b) A is nonsingular almost surely,

n -1
©  Jaa|Saar|| - o,
t=1

where ys , , is the vth bivariate subvector of ys, and ys , , is the uth bivariate

subvector of eg,.

Finally, combining the results of Theorems 4.1 through 4.3 and Lemmas 4.3
through 4.5, we summarize the asymptotic properties of y, of (4.10) into a
theorem. For simplicity, we treat w, = w, so that the three types of eigenvalues
all appear in different Jordan blocks.

THEOREM 4.4. Suppose that y, follows the model (4.10) and is a trans-
formed process of model (1.1) by the method of Section 2. Assume also that a, of
(1.1) satisfies (1.2) and w, = wy. Then

(a) L' Yy .y Lyt =g A,
t=1
(b) Ln( Gn - U)T —d A_IP,
(c) B.-,U,
n -1
(d) [det( Z yt—lyt’I—‘l)jI = Op(n_m)7
t=1
where

L, = diag{L, ,,L, ,,...,Lg ,} with L, , given by (4.11) and (4.12),
A = diag{Q,A, A} with Q and A given by Lemmas 4.4 and 4.5, respectively,
whereas A is the counterpart of Q for eigenvalue = —1,
P = diag{V,V*,Q} which are defined in a similar manner as those of
Theorems 4.1 and 4.2 with V* for eigenvalue = —1,
m= 24: h(h,+1) + 26: 2d,(d,+ 1) withd,= dim(y,,)/2and h; = dim(y,,).

i=1 v=>5

Since (4.10) covers all possible types of nonstationary characteristic roots,
Theorem 4.4 in effect applies to the general purely nonstationary vector AR(1)
processes.
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4.3. Some further applications. In this section we consider two more appli-
cations, namely the shifted and forward autoregressions of y, of (4.10). Again, we
treat w, = w,. These two applications are useful in the canonical analysis of
vector time series; see Section 7 and Tiao and Tsay (1989). The results are also
useful in studying seasonal behavior of a time series.

First, consider the “lag-s shifted” autoregression of y,,

(4.15) Y. = B(S)ytfs + € s> 0’
and the associated LS estimate BJ(s) = (T ,¥,_ ¥ o) " 'Tr 1Y, s Yi -

THEOREM 4.5. Suppose that y, satisfies the conditions of Theorem 4.4. Then,
for the lag-s shifted autoregression (4.15), we have

(a) B.(s) —, U,
s—1 T
o) LB - U - AR T
v=0
where L,, A and P are defined in Theorem 4.4.
PRrOOF. Since
s—1
(416) y: — UsYt—s = Z Uuet—v’
v=0

the theorem can be proved by using the same techniques as those used in
showing Theorem 4.4. The only difference is that here we apply the techniques s
times. O

Next, consider the “forward” autoregression of y,,
(4.17) Y, =8(8)¥,is + & s> 0,
Wlth LS eStimate 8;1,1‘(3) = (Z;i-?lsyt+syg‘0-s)_lz?;lsyt+sytT'

THEOREM 4.6. Suppose that y, satisfies the conditions of Theorem 4.4. Then
for the forward autoregression (4.17) of y,, 8,(s) -, U™".

Proor. By the model (4.16),
s—1
y: = U_S(YHS - "]Hs) with n,, = Z Ue, -
v=0

Therefore,

[Sn(s) - Uis]T = _(ni stytT;s) (niSYz+s"]’zI‘+s)(U_s)T-

t=1 t=1
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By (4.16) again, we may rewrite the second summation on the right-hand side as

n—s

Z (Usyt + "|z+s)"l’{+s'

t=1

The result then follows from Theorem 4.4 and the fact that n~'L,m,m! converges
to a constant matrix. O

In summary, in this section we have established various asymptotic properties
of purely nonstationary vector AR(1) processes. This in effect provides a frame-
work for investigating the asymptotic results of general nonstationary vector
ARMA models.

5. Purely nonstationary vector ARMA(1,q) processes. We now extend
the results of the preceding two sections to the purely nonstationary ARMAC(L, q)
process N, of (2.13). The key to the extension is the link established in Section 2.
More specifically, by the result (2.7), we have

(51) Nt= Mt+ Yt)

where M, is an MA(q) series and Y, follows a purely nonstationary vector AR(1)
model. Since an MA series is stationary, the asymptotic behavior of N, is
dominated by those of Y, which are available in Sections 3 and 4. For simplicity,
we treat Y, as being the real-valued process y,, because, as shown before, the
transformation is trivial.

LEmMMmA 5.1. Suppose that N, follows a purely nonstationary vector
ARMA(1, q) model with each individual block in the form of (2.4), which is
obtained from (1.1) by the transformation of Section 2, and that Y, is related to
N, by (5.1). Also, assume that a, of (1.1) satisfies (1.2). Then, for a fixed inte-
ger s,

n -1 n
( Z YtsYtIs) ( Z NtsNt’I;s) = Ih + Op(l)’
t=1 t=1
where h = dim(N,).
Proor. From (5.1),
Z NtfsNt’lls = Z thsYth + Z Mt—sM’tlls + Z Yt—sM’tr—s + Z Mt—sYth'
t=1 t=1

t=1 t=1 t=1

By Theorem 4.4, the stochastic order of [det(XY,_.Y,T,)] ! is available. Since M,
is stationary, XM, ;M = O,(n). The result then follows directly from the
stochastic orders involved and an application of the Cauchy—Schwarz inequality.

O



246 R. S. TSAY AND G. C. TIAO

Next, consider the ordinary, the lag-s shifted and the forward AR(1) autore-
gressions of N,. The LS estimates are, for s > 1,

n -1 5
]A);;r(s) = ( Z Nt—sNt’lls) Z Nt—sNtT
t=1 t=1
and

n—s “lp—s
8;;1‘(3) = ( Z Nt+sNtT|—s) Z Nz+sNtT~

t=1 t=1

THEOREM 5.1. Suppose that N, satisfies the conditions of Lemma 5.1. Then,
for a fixed s > 1, (a) D,(s) >, D?, and (b) §,(s) », D°.

Proor. For part (a), from (5.1) we have

(5.2) [D.(s) -D?]" = ( )3 N,_SNL)_ N, ,F7,

t=1 t=1

where F, = ¥ _{(D*Y%_,C;a,_,_;) with C, being a submatrix of ®* of (2.3). This
can be written as
n -1 n
( Z YtsYth) ( Z NtsNt’I;s)
t=1 t=1

n -1 n
X ( Z Yt—sYth) ( Z Nt—sFtT):l’
t=1 t=1

Part (a) then follows from Lemma 5.1 and the fact that

Zl Nt—sFtT = Op( Z YtsftT)’
t=

t=1

-1

[D,(s) - D*]"

where f, is the innovational series of Y,. Similarly, part (b) can be shown by using
Lemma 5.1, the techniques employed in Theorem 4.6 and the multivariate
ergodic theorem of stationary processes. O

By Theorem 5.1 with s = 1 in (a), the LS estimate of AR(1) regression of a
purely nonstationary vector ARMA(L, ¢) process is consistent. This extends the
result of pure AR models to the mixed ARMA models. Next, from Lemma 5.1
and Theorem 4.4, for s > 0 we have

L Z N NtT s r: ! —d A’
where L, and A are defined in Theorem 4.4. However, the hmltmg distribution

of D ,(s) is different from that of the LS estimate of AR(1) regression of Y, shown
in Theorem 4.5 if ¢ > 0. To derive the limiting distribution of D(s), it is
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necessary, from (5.2), to establish the asymptotic distribution of L 'S N,_,al_,
for i =0,1,..., ¢ + s — 1. This can be achieved as follows.

1. Theorem 3.1(a) still holds when Y., . is replaced by the corresponding subvec-
tor N, , of N,.

2. A result 51m11ar to Theorem 3.1(d) can be established for N, and a,.

3. Using the results of parts 1 and 2 and the techniques used in Section 4, one
can complete the proof.

Note that the limiting distribution of D .(s) depends on the MA coefficients
C,, see the definition of F, of (5.2). To use this distribution, one must replace C;’s
with their consistent estimates. This procedure has been used in Tsay (1986)
where the limiting distribution of the least squares estimate of AR(1) regression
of univariate ARIMA( p, 1, q) processes is derived.

6. The general vector ARMA processes. In this section, we investigate
properties of the general vector process TX, of (2.3). From (2.13), consider first
the stationary part S, of TX,. Let L* = nl/ ?1,, where s is the dimension of S,,
and let F, = Y7 ©*a, ; be the moving average part of (2.3). Then, since S, is
statlonary and by Lai and Wei (1985), we have

(6.1) n! Z S,_.S*Y 1=, T(0) and n7! Z S, ,FT -, Lf,
t=1 t=1

where I'(0) is the covariance matrix of S,, and If=0if ¢g=0and T} # O if
q > 0. Note that for a given process z, of (1.1) that admits alternatlve model
representations the value of ¢ may change. However, once the order p is chosen,
q is fixed and the consistency of least squares estimates of the stationary part
addressed below is with respect to this chosen model. Thus, the consistency
through a unimodular matrix transformation is not discussed in this paper.

Since properties of the nonstationary part N, are available in Lemma 5.1 and
Theorem 5.1, it remains to consider the cross product between stationary and
nonstationary parts. Let K, = diag{L,, L*} with L, being given in Theorem 4.4.

Lemma 6.1. L. 'SP N, ST (L)' -, 0.
Proor. This lemma is a generalization of Theorem 3.4.2 of Chan and Wei
(1988) and can be shown along the same line. The only change is that now a,isa
vector innovational process. This change does not affect the basic argument of
the proof. It can also be shown by using the techniques of Lemma A.2 in Tiao
and Tsay (1983a) if the fourth moment of each component of a, is finite. O

By Lemma 6.1, we have

(6.2) K;‘T( ) x,_lx,T.l)TTK;I —, diag{A, T(0)),

t=1

where A, again, is given in Theorem 4.4. This result says that to study properties
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of the LS estimate of AR(1) regression of TX, we may consider N, and S,
separately Therefore, from (6.1) and Theorem 5. 1 we may summarize the result
in a theorem.

THEOREM 6.1.  Suppose that U, = TX, follows the vector ARMA(1, q) model
(2.3) which is obtained from (1.1) by the transforriation of Section 2. Assume
that a, of (1.1) satisfies (1.2). Also, partition U, = (N/, ST)T accordzng to the
stationarity of each component and let BT = (E;’ U_UrT) T U, UL be
the least squares estimate of AR(1) regression of U, Then B -, J zf ezther
q=0o0or U,=N, When q >0 and U,# N, B is inconsistent. However B
always provzdes consistent estimates for those eigenvalues of J that are on the
unit circle.

Finally, consider the vector ARMA(p, ¢) model z, of (1.1). From (2.1), an
AR(1) regression of TX, is an AR(p) regression of z,. Therefore, Theorem 6.1
applies to z, with the AR(1) regression being replaced by an AR( p) regression.
Moreover, since the eigenvalues of the G matrix of (2.1) are the roots of the AR
polynomial ®(B), Theorem 6.1 says that the roots of the LS estimate (i>(B ) of
an AR(p) regression of z, provide consistent estimates of the nonstationary
characteristic roots of z,. This generalizes the univariate result of Tiao and Tsay
(1983a) to the vector case and provides a means by which the nonstationary
structure of a vector ARMA model may be obtained. We summarize the result in
a theorem.

THEOREM 6.2. For the vector ARMA( p, q) process z, of (1.1), stationary or
nonstationary, with a, satisfying (1.2), let ) (B) be the polynomial of the
ordinary least squares estimate of an AR(p) regression of z,. Then

¢,(B) —,9(B)

if either ¢ = 0 or z, is purely nonstationary. Furthermore, the roots of ) (B)
provide consistent estzmates of the nonstationary characteristic roots of (I>(B) as
long as q is finite.

7. Applications to model specification. The limiting distribution of Sec-
tion 4 can be used to test the nonstationarity of a vector process, e.g., testing the
existence of unit roots in a vector AR model. A second application of the results
of this paper is that they can be used to develop a unified approach for modeling
stationary and nonstationary vector ARMA processes. Since the dynamic struc-
ture of a vector process may be complex, it is useful to develop methods which
linearly transform the series to uncover possibly simpler underlying structures.
The consistency results of this paper form a basis on which such a method can be
derived; see Tiao and Tsay (1989). The method uses a canonical correlation
procedure to obtain simplifying structures which may be hidden in an observed
vector process. Roughly speaking, canonical correlations of two constructed

vector-valued variables Y,, , and Y, ,_;_;, where Y, ,= (z],...,z}_,,)7, are
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used to measure the dependence between lagged variables. This, however, is
equivalent to considering the eigenvalues and eigenvectors of the matrix

A(m, j) = B*(m, j)B(m, j),
where

-1
B*(m,j) = (ZYm,tYnT,t) (ZYm,tYn’{,t—j—l)’
¢ ¢

RN )

Consequently, it is essential to show the existence of the limit of A(m, j) and to
understand the properties of such a limit for both nonstationary and stationary
processes z, when m satisfies certain conditions.

Since B(m J) consists entirely of the LS estimates of the ordinary and
“lag-s” shifted AR(m) regressions of z,, Theorems 5.1 and 6.1 show that the
limit of B(m, j) exists as the sample size increases provided that m > p.
Furthermore, using Theorems 4.6 and 5.1 and the results of forward autoregres-
sions of stationary processes, one can show that the limit of B*(m, ) also exists.
Consequently, the limit of A(m, j) exists as the sample size increases. Further-
more, the results of this paper can also be used to establish the consistency
properties of the eigenvectors of A(m, j). This provides a method for obtaining
consistent estimates of hidden simplifying structures and the autoregressive
parameters of a multivariate ARMA model.
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