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SEMIPARAMETRIC COMPARISON OF REGRESSION CURVES

By W. HARDLE! AND J. S. MARRON2

Universitdt Bonn and Universitdt Bonn and University of North
Carolina at Chapel Hill

The comparison of nonparametric regression curves is considered. It is
assumed that there are parametric (possibly nonlinear) transformations of
the axes which map one curve into the other. Estimation and testing of the
parameters in the transformations are studied. The rate of convergence is
n~1/2 although the nonparametric components of the model typically have a
rate slower than that. A statistic is provided for testing the validity of a given
completely parametric model.

1. Introduction. An important case of regression analysis is the comparison
of regression curves from related samples. Even when there is no reasonable
parametric model for each regression curve a way of quantifying differences
across individual curves is often desirable. A well-known example is the study of
child growth curves, where individual curves certainly seem to require nonpara-
metric estimation techniques [Gasser, Miiller, Kohler, Molinari and Prader
(1984)] but may have a simple relationship between them. Another example
appears in Figures 1(a) and 1(b), which show acceleration data from a study on
automobile side impacts [Kallieris, Mattern and Hirdle (1986)].

The curves give the impression that they are noisy versions of similar
regression curves, where the main difference is that the time axis is shifted and
there is a vertical rescaling. A parametric model that could be deduced from a
physical or biomechanical theory is not available here; see Eppinger, Marcus and
Morgan (1984), so a nonparametric smoothing technique seems to be a reason-
able way to estimate the acceleration curves for inference regarding this data set.
The problem of comparison of the two curves could be modeled parametrically
because, to a large extent, the difference between them seems to be quantified by
two parameters, horizontal shift and vertical scale. Hence, a comparison of
nonparametric regression curves in a parametric framework is desirable for
studying data sets of this type.

The main objective of this paper is the analysis of general semiparametric
models where nonparametric curves are related in a parametric way. The case
that is treated in detail is where there are two curves which are the same up to a
transformation of the horizontal axis and a transformation of the vertical axis,
and these transformations are indexed by some parameters. The techniques of
this paper are adaptable to other semiparametric models such as multiplicative

Received January 1987; revised March 1989.

"Research supported by Deutsche Forschungsgemeinschaft, SFB 303.

2Research partially supported by NSF Grants DMS-8400602 and DMS-8701201.

AMS 1980 subject classifications. Primary 62G05; secondary 62G99.

Key words and phrases. Semiparametric regression, nonparametric smoothing, parametric com-
parison, kernel estimators.

63

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Statistics. RIK@J:Y

I3

o 2

®

WWw.jstor.org



64 W. HARDLE AND J. S. MARRON

ACCELERATION CP’RVES OF SIDE IMPACT DATA
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F1c. 1. Two impact acceleration curves from Kallieris, Mattern and Hdrdle (1986).

or additive combination of a nonparametric regression curve with a parametric
“modulation” function. An additional benefit of the theory developed in this
paper is that, with no extra work, a statistic is provided for testing the validity
of a given completely parametric model. This test quantifies the idea of checking
a parametric model by comparing the parametric fit to a nonparametric regres-
sion curve.

Section 2 contains a mathematical formulation of these ideas, together with a
proposal for estimating the parameters. This parameter estimate is seen to be
consistent under very mild conditions in Section 3. Asymptotic normality, with
the rate of convergence typical to parametric problems, is established under
somewhat stronger conditions in Section 4. Section 5 gives test statistics, to-
gether with their asymptotic null distributions, for testing whether some param-
eters can be eliminated from the model and also for testing whether a given
semiparametric model is in fact appropriate.
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2. Parametric comparison of nonparametric regression curves. The
observations (x,, Y}),...,(x,, Y,), of the first curve are assumed to come from the
nonparametric regression model,

Y,=m(x;))+e, i=1,...,n.

The observation errors ¢; are assumed to be independent, mean 0, with common
variance o2 The design points x, are taken to be equally spaced on the unit
interval x;, = i/n. Suppose the data from the second curve are
(x{,YY),...,(x},Y)), from the nonparametric regression model,

Yi/ = m2(xz/) + ¢,

where the ¢/ have common variance o’%, are independent of the ¢, and otherwise

have the same stochastic structure as the ¢,, and where x/ = i/n. While x! is the

same as x;, these are distinguished for the sake of clarity later in the paper.
The parametric nature of the curve comparison problem is modeled by

(2.1) my(x') = S, 'my( Ty, ),

where T, and S, are invertible transformations (e.g., shifts and scalings of the
axes) indexed by the parameter § € ® C R¢, and where 6, is the true value of
the parameter. Such a model for linear transformations S, and 7, has been
called “shape invariant” by Lawton, Sylvestre and Maggio (1972). A good
estimate of 6, will be provided by a value of 6 for which the curve m(x) is
closely approximated by

M(x,0) = Symy(Tyx).

The effectiveness of each value of 6 is assessed by the loss function,

L(0) = [[m(x) = M(x,0))"w(x) dz,

where w is a nonnegative weight function. Note that M(x, 6,) = m,(x), so 6,
minimizes L(6). The unknown regression functions m, and m, are estimated by
kernel smoothers,
n
my(x) =n~! 3 Ky(x - %),

i
i=1

n
My(x) = nt 3 Ky(x' — %)Y/,
i=1
where K,(-) = (1/h)K(- /h), for a kernel function K which integrates to 1. See

Priestley and Chao (1972) and Collomb (1981, 1985) for properties of this
estimator. Define the estimate 6 of 6,, to be an argument which minimizes

L£(8) = [[(x) - M(x,0)])"w(x) dx,

where M(x, ) = Syriiy(Tyx). Since ﬁ(ﬂ) is a continuous and nonnegative func-
tion, there are no difficulties concerning the existence or measurability of §. The
weight function w(x) is used to eliminate boundary effects and to restrict
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attention to a region where both 1, and M(x, 8) provide reasonable estimates.
This is illustrated by the following example.
Figure 2 is concerned with the specific setting

my(x) = (x — 0.4)%,
my(x’) = (2’ — 0.5)° — 0.2.
This fits in the above framework by defining:
Sy(x) =x + 69,
Ty(x) =x + 00,
and letting
8, = (65, 6§?) = (0.1,0.2).

Figure 2(a) shows two sets of 100 simulated observations, where the (x,, Y;) are
represented by squares, where the (x/, Y’) are represented by stars and where
the errors are Gaussian with mean 0 and variance 0.0004. As a simple method of
nullifying boundary effects we consider estimating m,(x) on the subinterval
x € [n,1 — 7] (the choice of 7 is discussed below) and m,(x’) on the subinterval
x’ € [1,1 — n]. For more complicated but also more efficient means of handling
boundary effects see Gasser, Milller and Mammitzsch (1985) and Rice (1984a).
To keep the focus on the main points under discussion here we do not incorpo-
rate this type of improvement. This second restriction corresponds to, for each 8,
estimating

(2.2) M(x,0) = Symy(Tyx) = (x + 6V — 05)° — 0.2 + 4@

on the subinterval x € [ — 80, (1 — n) — §M]. Hence, for 6% > 0, w should be
0 outside the interval [n — 0D, (1 — 1) — §P]. We do not take w to be the
indicator of this interval because the minimizer of £(8) will then have some bias
towards larger values of 8V and we suspect that the minimum will be harder to
compute. Figures 2(b) and 2(c) contain the same data as Figure 2(a), except that
the (x/, Y;) have been replaced by (x; + 0.106, Y’ + 0.196) and (x/ + 0.2, Y, +
0.2), respectively. Observe that from these figures it is quite apparent that
6§V < [0,0.2]. Hence, we can restrict © to only include # with 8 & [0,0.2], and
take w(x) to be the indicator of [7,0.8 — 7].

In the general case, we assume that there is an interval [a, 4] C [0, 1] where
boundary effects are eliminated and then define

w(x) = H 1, b](Tox)
[X=LC]

= 1npeeT;‘<[a,b1>(x)-

Note that for § to be a reasonable estimate, this requires that © be rather small.
This assumption does not seem too restrictive because these methods will only be
applied after the experimenter has looked at some preliminary curve estimates.
Such a previewing procedure does not cause any additional effort if an interac-
tive graphical data analysis program is available. Hence, it is assumed that the
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SIMULATED REGRESSION DATA
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TABLE 1
Parameter estimates for the simulated regression data for different
values of h and 7. Reported are values of x3-statistics
for HV, H? and x% for H{®

suppw) h B §®  gO  g®» O H® H® H®
(With estimated covariance) (With exact covariance)
(0.0,0.8) 0.02 0.106 0.200 87.8 1328 1458 59 1000 1059
(0.1,0.7) 0.02 0.114 0.198 36.2 974 1040 25 735 760
(0.2,0.6) . 0.02 0.114 0.198 10.2 668 675 7.5 490 497
(0.0,0.8) 0.04 0.106 0.198 91.6 1356 1491 59 980 1040
(0.1,0.7) 0.04 0.106 0.196 32.7 999 1040 25 720 745
(0.2,0.6) 0.04 0.106 0.194 10.7 669 676 7.5 470 477
(0.1,0.3) 0.10 0.106 0.194 70.3 946 1059 59 940 1000
(0.1,0.7) 0.10 0.116 0.196 28.0 723 779 30 720 750
(0.2,0.6) 0.10 0.120 0.192 9.8 474 497 9.5 460 470

experimenter has a good approximate idea of the value of §,. It is merely an
assumption to the effect that the design of the experiment is appropriate for the
type of inference to be done.

The first four columns of Table 1 show how the estimates §® and @, which
have been found by a gridsearch (Figure 4 gives an intuitive feeling for the type
of grid that we used), depend on the support restriction n and the bandwidth A
for the above simulated data set appearing in Figure 2. The remaining columns
will be discussed in Section 5.

Observe that the parameter estimates are not very sensitive to the support
restrictions as expressed by the cutoff parameter 7. Also varying the bandwidth
does not affect the estimates too much. Under the above assumptions, for the
final estimation of the underlying curve m,(x), the two data sets can be pooled
by using

() + 3M(x, ).

This will only be an effective estimate of m(x) if the assumption of the curves
being the same is correct, but even the assumption is not quite correct, this still
provides a reasonable estimate of the “average curve.” More than two regression
curves can be analyzed by using preliminary estimates to choose one curve that
seems to lie in the center and calling that m,, then comparing the other curves to
that. However, it should be kept in mind that this is only an example, so it is not
possible to make general conclusions. Furthermore, it has been deliberately
chosen so that the method may be expected to work well.

Alternative ways of formulating the semiparametric comparison model are to
assume that M(x, 0) = m(x) + Sy(x), or M(x,8) = my(x)Sy(x), where Sy(x) is
a “modulation” function which is assumed to be known up to the parameter
0 € ©. The general ideas of this paper apply in this case; however, details of the
proofs will be different. It appears that these forms should be substantially easier
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to analyze. There are some recent papers on a model of the first form; see Engle,
Granger, Rice and Weiss (1986), Green (1985), Rice (1986) and Speckman (1986).
A semiparametric model of the form (2.1) but with random parameters has also
been investigated by Kneip and Gasser (1988). For an access to related work in
the time series context, see Cameron and Hannan (1979), Cameron (1983) and
Cameron and Thompson (1985). See He (1988) for another method of parameter
estimation in a model similar to ours (but more specialized) in the interesting
case of random design points.

3. Consistency of the parameter estimate. In this section, precise condi-
tions are given for the convergence of § to , as the sample size grows. The most
important assumption is that the loss function L(8) be locally convex near 6, in
the sense that: Given ¢ > 0, there is a D(¢) > 0, so that |§ — 6,] > ¢ implies

(3.1) L(8) - L(8,) > D(e).

This condition ensures the identifiability of the parameters. An example of when
this condition fails to hold is when m(x) is constant and 7}, is a horizontal shift.
The remaining assumptions ensure consistency of the regression estimates. To
allow for use of an automatically chosen (and hence random) bandwidth, see
Rice (1984b) and Hardle and Marron (1985a), and also to show that consistency
of § is not dependent on the particular choice of the bandwidths, we establish
consistency uniformly over A, A’ in the interval

Bn — [nv1+8’ nvs],

where § > 0 is arbitrary. The kernel function K, in addition to integrating to 1,
is assumed to be compactly supported and Hélder continuous, i.e., there exist
constants a, 8 > 0 such that |K(u) — K(v)| < a|u — v|P. The regression func-
tions m,(x) and m,(x) are assumed to be Holder continuous. The transforma-
tions S; and T} are assumed to be smooth in the sense that:

(3.2) sup sup |S(x)|< oo,
9€0 xe[0,1]
(3.3) sup sup |(T},‘1)’(x)| < 0.
60O x<[0,1]

Note that (3.2) and (3.3) are not any restriction at all if S, and 7}, are linear. The
following theorem is proved in Section 6.

THEOREM 1. Under the above assumptions 0 is consistent for 8,, uniformly
over h, b’ € B,, in the sense that

sup lé— bl > 0 a.s.
h, W E€B,

4. Asymptotic normality. In this section the rate of the convergence in
Section 3 is studied by giving conditions for asymptotic normality of n'/%(§ — 6,).
Since the nonparametric estimators 7, and M, have a rate of convergence
slower than n'/2, some care must be taken to obtain the rate of convergence n'/2
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for the § — 6, limiting distribution. To this end we assume that

(4.1) Tyx = 0D + §®x,

(4.2) S, only depends on 89, ..., §(®,

and that 2, and 7, employ the same amount of smoothing in the sense that
(4.3) h =6®h.

Assumption (4.3) seems quite restrictive at first glance; however, an inspection of
the proofs reveals that it is in fact necessary for n'/? convergence of the
parameter estimates. A simple way of implementing this in practice is to choose
the bandwidth for only r1,, say by cross validation, and then using a preliminary
estimate of #® to get an improved §® and iterating. More efficient methods
would pool the information from the two curves, as discussed in Marron and
Rudemo (1988) and Marron and Schmitz (1988). This is complicated in the
present situation because the smoothing parameter selection is confounded with
the estimation of 6, but a promlsmg possibility to be investigated is to choose
both % and 8 to be the joint minimizers of the sum of L(0) and the cross-valida-
tion score functions for the two curves.

As in Section 3, a critical assumption concerns the identifiability of 6.
Assume that

(4.4) H(#8,) is positive definite,

where H(0) is the d X d matrix whose [, I’th entry is
f M,(x, 0)M,(x, 0)w(x) dx,

using the notation M(x, 6) = (3/360V)M(x, 6). Under the assumptions of this
section, it can be shown that (4.4) implies (3.1). To gain some insight into this,
consider the case Sy(x) = 6® + §@x, where

M (x,0) = 0Dmy(8® + 6®x),

My(x,0) = 0Dm4(0D + 0Px)x,

M3(x ’ 0) = ly

M(x,0) = my(8O® + §Px).
Observe that (4.4) is then essentially requiring that the functions 1, m(x), m'(x)
and xm'(x) be linearly independent in L%(w). To facilitate Taylor expansion

arguments, it is assumed that Sy(x) is smooth in the sense that the following
functions are uniformly continuous and bounded uniformly over x € supp(w)
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over # € ®,andover ,I'=1,...,d:

ad
So'(x) = %SO(x)i

So,z(x) = —55(x),

36D

d
(4’5) So,l,l'(x) ao(l)sﬁ l(x)

d
So',z(x) = %So,z(x),

ad
S, z'(x) = 530,1, ,(x)

This assumption is trivial if S, is linear. Also to facilitate expansions, assume
(4.6) m}’(x) exists and is uniformly continuous.
A consequence of (4.5), (4.6) and the linearity of T; is that

(4.7) M, (x,0) = —7M(x,0)

36D

is uniformly continuous and bounded uniformly over x € supp(w), # € ©, and
I, =1,...,d. Also assume that K is a compactly supported probability density
with Holder continuous second derivative, and that Ee* < oo, for & = 1,2,.
uniformly over i = 1,..., n. The final requirement is that the bandwidth h is
taken to be an automatlcally selected bandwidth £, as discussed in Rice (1984b),
Hirdle and Marron (19853, b) and Hirdle, Hall and Marron (1988) have shown
that under the above assumptions

h=hy+ 0,(n¥1),
where h, = c,n /%, for a constant c,. Hence, if B} is defined by
= [hy = n=¥10% hy + n3/10%0],

for some a € (0,1/10), then P[ﬁ € B¥] — 1. Note that A is chosen only from
the data Y,,...,Y,. This allows assumption (4.3) to be satisfied in a simple
fashion. See the discussion there for other possibilities.

THEOREM 2. Under the above assumptions
Vn (8- 8,) > N(0, H'(6,)CH (6,)),
where the 1, I'th entry of ¥ is

4/[02 + 0’2(80’0(m2(7},0x)))2]M1(x, 8,) M, (x, 6, )w(x) dx.

The proof of Theorem 2 is in Section 7. To add insight into this theorem,
consider the special case of the example given in Section 2. Note that Tyx =
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E&I\iDWIDTH SELECTION FUNCTION FOR SIMULATED DATA
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F1c. 3. Bandwidth selection function based on the Epanelnikov kernel and weight function on
(0.1,0.7).

0 + x and Syx = 6@ + x, so an obvious modification of the notation of this
section will be made. In particular, from (2.2),

M(x,0) =2(x + 6D —0.5),
M,(x,0) =1,
Six) = 1,
and so
H(8,) = (3(0.4 — ) 0 )
0 2(0.4 — q)
Thus, Vn (é — @) has asymptotic covariance matrix

o2 3 0 )
(04 —n)°\0 404 —9)?)
The bandwidth selection function computed for (x;, Y;), with w supported on

[0.1,0.7] and the Epane¢nikov kernel had a global minimum at A = 0.04 (Figure
3) but had a pronounced local minimum..In this simulated example we used

T() = 0™ X 1%, = n(e)lu(x)/[1 ~ 20~ K (0)]

as a bandwidth selector. See Hardle, Hall and Marron (1988) for a more complete
discussion of the issues of bandwidth selection. The negative loss function for
this bandwidth is shown in Figure 4. Note that Figure 4 shows that the loss
function is more sensitive to changes in §® than to changes in 6%, This is
reflected intuitively by thinking about vertical and horizontal shifts in
Figure 2(a).
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NEGATIVE LOSS AS A FUNCTION OF THETA1 AND THETA2

NEG_1.0SS

-0. 0001 4

-0.0031 4~

~-0. 00861 4

~-0. 0091 4
o.

Fic. 4. Negative loss as a function of 8V and §®. m(X) = (X — 0.4)%. Errors N(0,0.0004).
Weight function on (0.1,0.7).

While the vertical shift is obvious, we find it much more difficult to justify a
horizontal shift just by “eye inspection.” Statistically, this can be quantified by
var(§®) = 0.0444, var(§®) = 0.0053 (where these are the entries in the asymp-
totic covariance matrix given in Theorem 2). L(f) is minimized at 6=
(M, §®) = (0.106,0.196) which is the shift used in the construction of Figure
2(b). An intuitive understanding of 6 can also be gained from Figure 5, which
shows #i,(x) (solid line) and M(x, 6) (dashed line). Note that either a horizontal
or a vertical shift in the relative position of these curves will increase the
integrated (over [0.1,0.7]) squared difference between these.

A look at Figure 1 indicates that the shift-scale model, T, = ¥ + x, S, = §®x
(using notation consistent with this section) should be appropriate for the
automobile side impact data. After transforming the X-values into the unit
interval, the bandwidth A = 0.012 was obtained by cross validation over the
interval [0.1,0.7] for the data set shown in Figure 1(b), which we took to be
{(x;, Y;)}_, with n = 800. The negative loss function L(8) is shown in Figure 6,
which for its form is called the “Sidney Opera.”. As expected from a comparison
of Figures 1(a) and 1(b), the choice of 8V is more critical than that of 8. The
“side ridges” in the negative loss correspond to values of 6, where there is a
matching of “first peaks” to “second peaks.” The loss function was minimized at
6 = (6D, 89y = (0.13,1.45). Figure 7 shows how r2,(x) (solid curve) compares
with M(x, 6) (dashed curve).
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SIMULATED REGRESSION DATA
ADJUSTED REGRESSICN CURVES
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0. 0S4
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F16. 5. Adjusted regression curves for the simulated data. m(X) = (X — 0.4)%. Errors N(0, 0.0004).
0™ = 0.106; 6 = 0.196.

SIDE IMPACT DATA

PLOT OF THE NEGATIVE LOSS FUNCTION
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THETAL o3 \\_L__/
0.7
o b3

Fic. 6. “Sidney Opera” negative loss function for the side impact data. Weight function on
(0.1,0.7).
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AUTOMOBILE IMPACT DATA

ADJUSTED REGRESSION CURVES
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. oo 0. 101 O. 202 0. 303 0O, 404 0. Sos 0. sos o. 707 0. 808 0. 908 1.010
c

Fic. 7. Adjusted regression curves for the automobile side impact data. Weight function on
(0.1,0.8). 81 = 0.13; 6 = 1.45.

5. Hypothesis testing. There are two important hypotheses to test in this
semiparametric model. First, can the parametric part of the model be reduced?
(For example: Can a horizontal shift and scale be reasonably replaced by just a
shift? Is an apparent vertical shift really significant?) Second, is the semipara-
metric model of this paper appropriate for a particular data set? [That is: Is
my(x) really a simple transformation of m,(x)?] To formulate the first hypothe-
sis, suppose there is a §* € 0 so that

m(x) = M(x, 6*).

For example, components of 6* corresponding to the types of shifts discussed
earlier are 0 and to the scaling are 1. A general way to formulate the hypothesis
is

H,: A(6, - 6*) =0,

for an r X d matrix A of rank r. A reasonable basis for a hypothesis test
is A(f — 6*), which has an asymptotic N(0,L*) distribution under H,,
where YT* = AH(6,)"'LH(,) 'AT. This suggests rejecting H, when
-9 *)TAT;* ~1A( — 6*) is larger than the 95th percentile of the x2 distribu-
tion, where L* is a consistent estimate of L*. These ideas can be illustrated in
the simulated data example of Section 2 which is depicted in Figure 2(a).
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Consider the hypotheses:
H®: 60 =0
HP®: @ =0
HP®: M =0 =0

Table 1 shows the observed test statistics for the > simulated regression data. To
give some feel for the effect of estimating X* by L*, two types of test statistics
are shown, the first type using the exact value L* and the second type using the
estimate T*. The effect of various choices for w and A is also illustrated in
Table 1.

Note that the observed values of the test statistics are relatively independent
of the bandwidth, but depend quite heavily on the choice of 5. It is not
surprising that the values decrease with increasing 7 because larger 1 means less
of the data are used, so the tests will lose power. This effect is most notable for
H{Y, which is easily understood by covering observations near the boundary in
Figure 2(a). Note that in all cases the results here are highly significant. This is
to be expected, except in the case H{V with n = 0.2. The fact that the test
proposed in this section is quite powerful in this example may be seen by
covering the intervals [0.0,0.2] and [0.6,1.0] in Figure 2(a). We recommend
taking n as small as possible. A means of doing th1s is to first start with some
preliminary guess at n, use this to get a preliminary h then take a final n which
just barely eliminates the boundary effects for this A.

For the automobile impact data, using the notation of Section 4, we tested

HP: 60 =0
HP: 9 = 1,
HP: 60 = @ = 1.

The observed test statistics are presented in Table 2, which has a layout similar
to Table 1. In contrast to Table 1, this time the observed values of the test
statistics are relatively independent of n [not surprising since essentially all of
the useful information is contained in the center of Figures 1(a) and (b)], but
vary a lot with A. The reason that the tests lose power for larger values of 4 is
that when 7, and rm, are oversmoothed, the distinctive peaks in Figures 1(a)
and 1(b) are greatly diminished. As expected from the pictures, H{® suffers the
most from this effect, although we can still reject this hypothesis at the level
0.05, when A = 0.012 (selected by cross validation).

For testing the second hypothesis, that the model is correct, an obvious
statistic is L(f), which should be small if the model is correct, but large
otherwise. The asymptotic distribution of L(8) is summarized in

THEOREM 3. Under the assumptions of Section 4,
nhy*(L(8) — n"'h5'C,) —4 N(0,C2),
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TABLE 2
x2-statistics for different bandwidths and support restrictions for
impact data
supp(w) h HO H® H®
(With estimated covariance)
(0.0,0.8) 0.005 248 13.4 2180
(0.1,0.7) 0.005 246 13.3 2150
(0.2, 0.6) 0.005 245 13.0 2130
(0.0,0.8) 0.012 80.9 4.36 232
(0.1,0.7) 0.012 80.3 4.32 229
(0.2, 0.6) 0.012 80.0 4.25 227
(0.0,0.8) 0.040 419 2.26 62.3
(0.1,0.7) 0.040 41.6 2.24 61.4
(0.2, 0.6) 0.040 41.4 2.20 60.9
where
2
2 o 2( Qs 2 -1
C = /K f 00 +0 (S,,O(mz(x))) w(T,,o (x))dx

cz - 208 (K + K

J| 5+ o7(sttmto) |

(75, 1(x)) dx))-

The proof of Theorem 3 is in Section 8. It follows from Theorem 3 that a
reasonable test, of the hypothesis that m, is indeed a parametric shift of m, will

reject when

£(8) > (nh) "6, + n 726 2, _,

where z,_, is the (1 — a)th quantile of the standard normal distribution, and

where the estimates

- (1) /|5

FIE)

62 = 2é<2>(f(K*K)2)(/

§2=nt ¥ (Y= my(x),

i=1

+67%(54( mz(x)))] (To‘l(x))dx),

22

o
)

. n
§2=n"1Y (Y — hy(x}))’
i=1

"2(So’(rh2(x)))] w(Ty '(x)) dx)

have been used. The observed test statistics for the side impact data set are
listed in Table 3 for a weight function concentrated on (0.1,0.7). The shift-scale
model that we proposed achieved a p-value of 0.02, whereas all the other studied
submodels had p-values less than 0.001. Figure 7 prov1des an intuitive feeling for
the power involved in this test. Note that while 0 clearly provides an informative
choice of the parameters, it is also clear that the curves are certainly not the
same. The fact that, at least in this example, the parameter estimation method
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TABLE 3
The test statistic from Theorem 3 for correctness of the model.
supp(w) = (0.1,0.7)

(1Y (1) Test statistic J)
Shift and scale model 0.13 1.45 2.01 0.0220
Shift model, only 0.03 1.00 30.02 < 0.0010
Scale model, only 0.00 0.10 21.18 < 0.0010
none 0.00 1.00 345.00 < 0.0010

of this paper provides good estimates of the amount of shift and scale, even when
the underlying curves are not identical, seems to greatly enhance its potential
applicability.

6. Proof of Theorem 1. To simplify notation, let sup, mean sup, »cp.
Given ¢ > 0,

P 51}1lp|0 — 4 > e] < P-SI}le(L(é) — L(8,)) > D(¢)]
< P-sup(L(é) - L(8) + L(8,) - L(8,)) > D(e)]
( )]

J

<P sup|L(0) - L(§)|>

R D(e)
+ P|sup|L(6,) — L(8,)]> — |
h
Hence, Theorem 1 follows from: Given ¢ > 0,
(6.1) Z P sup sup|L(0) - L(6)] > e] < o0,

n=1

where sup, means sup, . -
To prove (6.1), note that by rearranging terms, by adding and subtracting
2m,(x)M(x, 6) and by the triangle inequality,

|L(8) — L(8)]

st@—mM% + 2| M(m, — )|

+|(M - M)(M + M)||wdx.
Hence, by the Schwarz inequality, (6.1) follows from: Given & > 0,

(6.2) fjlp[sgp /(ml - m) wdx > E] < o0,

(6.3) 2

n

[ psupf(M M) wdx>e]<oo

1
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together with
(6.4) fmfwdx < o0,
(6.5) sup fM2wdx < .
)
To prove (6.2), note that for B, C B,,

P[sup f(ﬁzh - my) wdx > e]
h
€
< P[ sup /(ﬁzh - m)’wdx > —]
heB, 2

+ P| sup inf
heB, MEB;

f(rfzh - m) wdx — f(rﬁhl - m1)2wdx > %]

By Hélder continuity of m, and K, B, can be chosen so that the second term is
0, for n sufficiently large, and so that #(B!) < nf, some £ > 0. Hence, by
Theorem 1 of Marron and Hardle (1986), (6.2) follows from

sup E/(r?zh - m,)’wdx - 0,
heB;
which is easily established by the methods of Rosenblatt (1971).
To prove (6.3), note that

f[M(x, 8) — M(x,0)] w(x) dx
= [[Sha(Tyx) = Symo(Tyx)]*w(x) di

- fol[sol(g)(’hz(u) = mo(u)*w(Ty (u))(T;) () du.

Hence, (6.3) follows from (3.2), (3.3) and the methods used to establish (6.2).

Note that (6.4) is a consequence of the Holder continuity of m,(x). To prove
(6.5), use Holder continuity of m,(x) and an argument of the type used on (6.3).
This completes the proof of Theorem 1. O

7. Proof of Theorem 2. Let VI;(G) denote the d-dimensional vector of
partial derivatives, L,(6) = (3/96V)L(6). Note that
(7.1) 0=vL(8)=vL(8,) +H(E,)(-86,),

where If(Aﬂ) is the Hessian matrix, whose components are I;l’ A(8) =
(3/36%)L,(0), and where £, lies on a line segment connecting § and 6,,.
Theorem 2 is a consequence of (7.1), together with the following lemmas.

LEMMA 2.1.
Vn vL(6,) -4 N(0,3).
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LEMMA 2.2.
H(£,) -, H(6,).

To prove Lemma 2.1, note that the /th component of Vf,(ao) is

[2lriu(x) = M(x, 8,)] (- My(x, 6))w(x) dx.

For the rest of this section, let sup, mean sup; ¢ p«. Lemma 2.1 follows from
Lemmas 2.1.1 through 2.1.4.

LEMMA 2.1.1. Forl=1,...,d,

sup| [T (x) = 3w, 0] (Mi(x, ) = M(x,0)) o) | = o, ().
LEMMA 2.1.2. Forl=1,...,d,
sup ’f[Er?zl(x) — EM(x, 6,)] My(x, 6,)w(x) dxl =o(n12).
h
LemMa 2.13. Forl=1,...,d,
S‘}llp|Zz(h) = Zy(ho)| = 0,(n71%),
where

Z,(h) = f[rﬁl(x) — Env(x) + EM(x, 6,) — M(x, 6,)] My(x, 6,)w(x) dx.

LEMMA 2.14.
n?2Z(h,) —»4 N(0,Z),
where Z( h,) is the vector whose components are the Z,(h,).

To prove Lemma 2.1.1, note first that m(x) = M(x, 6,). Hence, by the
Schwarz inequality, it is enough to show

(7.2) Slilzpf[ﬁll(x) - my(x)]2w(x) dx = 0,(n"7/19),
(7.3) Sl}llpf[M(x,ao) - M(x, 00')]2w(x) di — Op(n—7/10)’
(7.4) Sl}llpf[M,(x, 6,) — M,(x, 00)]2w(x) dx = op(n_3/10).

The proofs of (7.2) and (7.3) use the same methods as were used on (6.2) and
(6.3), together with the fact that, under the present stronger assumptions,

sup Ef[rhh - m, fwdx = 0,(n=%%).
heB)
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To verify (7.4) in the case of [ > 3, note that
M(x,6,) = My(x,6,) = Sy, (1h5(Tyx)) = Sy, 1(mo(Tyx))
= 8}, /(&) (o Ty x) — my(Tyx)).

Hence, the methods used on (7.3) together with (4.5) may be applied. To
establish (7.4) when [ = 1, write

Mi(x, 0,) = My(x,8,) = Sj{o(Toge) )y Tox) = i mo(Tygx) ) mi( Ty )
= (Sio(Tox)) = Simo(Tyix)) ) is(Tyx)
+ S moToge)) (g Tyx) = mi(Tox))-
Now use the Schwarz inequality and the above methods applied to estimation of

m} instead of m,, together with assumption (4.5).
To finish the proof of (7.4), note that

My(x,0,) = S5 (my Ty x ) )ms( Ty x ),
My(x, 0,) = So’o(rh2(T00x))

3 1 [0 + 60 — x!
X n 'y K( - )Y]

0@ 0@h 0@h

i 0=0,

= S5 (my(Tyx))n * L U(x, x{) Yy,

where

) -1 0Px + 6§V — x! 0" — x [ 0Px + 6V — x;
U(x, xi) = 0(2)2h 0&2)}1 - 0(52)3}12 062)h

0
But, uniformly over 2 € B* and over x € supp(w),

nt E U(x, x!)my(x!) = fU(x, x")my(x’) dx’ + O(n=*%)

-1 X XxX—u u (X —u
-/ 6n ( 3 )+ 052>h2K( 3 )
X my(850 + 0Pu) du + O(n=4/5)

(Al

1
X Wm(agn + 0Pu) du + O(n~*/%)

1 X—u
/ ZK( - )um’z(f)él) + 0u) du + O(n~*/%)

= xmj(Tyx) + O(n"1/%).
Thus,
My(x,8,) — My(x,6,) =1+ 1I + III,
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where
I=[8i(mo(Tyx)) = Si(mo Tyx)) | n 7 UGx, x) ¥,
II = S,{O(mZ(T},Ox))n_l Y U(x, x!)el,

I1I = S;(my(Tyx))0,(n~1%).

The I = 2 case of (7.4) now follows from the Schwarz inequality and the methods
used on the other cases. This finishes the proof of Lemma 2.1.1.
To prove Lemma 2.1.2, note that uniformly over 2 € B* and x € supp(w),

EM(x,6,) = E[S,( Eno(Tyz)) + (mo(Tyx) — Ery(T))
(7.6) XSy Evy(Tyix)) + 3(mo(Tyx) = Ery(Tox))’Sq0(6,)]
= S, Ey(Tpx)) + O(n=*%)
and
Eny(Tyx) = n=t LEy(Tox — x1)85,'mo( T, %)
= f Kp(Tyx — w)S; 'my( Ty, w') du’ + O(n=*%)
= fK(u)S,,;lml(x — hu) du + O(n=*%)
(7.7) = /K(u)[S,,;l(fK(z)ml(x — hz) dz)
+ (ml(x — hu) — fK(z)ml(x — hz) dz)S,,’O(fK(z)ml(x — hz) dz)

+ %(ml(x — hu) - fK(z)ml(x — hz) dz)ZS(,’O’(in) du + O(n=%)

= So_ol(fK(z)ml(x — hz) dz) + 0(n=Y?%),
from which it follows that EM(x, 8,) = [K(z)m(x — hz) dz + O(n~*/%).
Lemma 2.1.2 now follows from Em(x) = [K(u)m,(x — hu)du + O(n~*%), and
assumption (4.6).
To prove Lemma 2.1.3, note that

JUn(x) = Esi(x)] My(x, 6)w() dx = ™' T Vi(h)e,
where

ViR) = [Ky(x = x)Mi(x, b )w(x) dx

= fK(u)M,(xi + hu)w(x, + hu) du.
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Thus, by uniform continuity of M,,
sup (n~* Z(Vl(h) - Vi(ho))ﬁi = Op(n_l/Z).
h i

The M part can be handled by similar methods together with the linearization
technique of (7.6) and (7.7). This completes the proof of Lemma 2.1.3.
To prove Lemma 2.1.4, note that for [ =1,..., d,

Z)(ho) =n* Z(Aizfi + Byel),
where
A, = tho(x — x;)M,(x, 0,)w(x) dx
= M(x;, 6,)w(x;) + Op(l)!
B, = S Emy(Tyx;) ) My(x,, 6,)w(x;) + 0,(1).

Using the Cramer-Wold device, a central limit theorem for Z(h,) can be
established by showing asymptotic normality of each linear combination

n'?3 ¢;2Z,(h,) = 2n"*/? Z(Zcz(AuEi + Bisz)):
I A

1

where ¥,c? > 0. Since this is a sum of independent mean zero random variables
with third moments, by Liapounov’s version of the array-type central limit
theorem [see Chung (1974), Theorem 7.1.2, for example], we need only check that
the variance tends to a constant. But

Var(Qn—l/zzi:((leclAi,)ei + (Zl‘,c,Bﬂ)e;))

=4n7! ;((Zc,Aﬂ)zo2 + (;c,Ail)Zo/Z)

)

- of (St o)

+ (ZI‘.C[(S(J'OE’M(%O’;))MI(% 00))20'2]w(x) dx + o(1),

which is positive by assumption (4.4). Similarly, for [, I’ =1,..., d,
cov(n'22Z,(hy), n*?2Z,( h,))

=4[+ o(St( Ema(Tox))) | My(x, 8) My (x, B )uw(x) dx + o(1).

This completes the proof of Lemma 2.1.4 and hence also the proof of Lemma 2.1.
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To prove Lemma 2.2, note that for [, I’ = 1,..., d,
f’l,l'(én) = /2[Ml(x’én)Ml'(x’én)
= ((x) = M(x, £,))M, (=, &,)] w(x) dx,
Ly (6) = [2(M,(x, 8,)M,(x, 6,)

- (ml(x) - M(x, 00))M1, v(x, 00)] w(x) dx.

Thus, by appropriate adding and subtracting, by the Schwarz inequality, and by
(4.7), it is enough to show:

(7.8) sup [ [1i(x) = my(x)]"w(x) dx -, 0,
(7.9) SI}llpﬂM(x, £2) — M(x, &) w(x) dx >, 0,
(7.10) / [M(x,£,) — M(x, 6)]"w(x) dx -, 0,
(7.11) sgp/[M,(x, £,) - M(x,£,)]) w(x) dx >0,
(7.12) [1M(x,8,) - My(x, 8,)]"w(x) dx —, 0,
(7.13) s%pf[zv‘[,, (%, &) = My 1(x,E,) ] "w(x) dx >, 0.

Note that (7.8) and (7.9) are immediate corollaries of (6.2) and (6.3). Equations
(7.10) and (7.12) are consequences of the uniform continuity assumption (4.7).
Verification of (7.11) requires only a straightforward extension of the methods
used on (7.4) to the case of én = 6. To prove (7.13), the same general techniques
as used on (7.4) apply. The only difference is that verification of

(7.14) EM, ,(x,0) > M, ,(,0)
requires more calculation in some cases. Note that for Ll >3,
L,,(0)= Sp,, t'(mz(q};x)),
I:z, 1(0) = Sp,1, t'(’hz(nx))1
Lz,1(0) = Sé,z(mz(Tox))mé(Tox),
L(6) = 8 (o Ty))y(Tyx),
Lz,z(o) = Sé,z(mz(%x))mé(%x)x,

ral A a A
L,’2(0) = S,,",(mz(’I},x)) 20 mZ(T},x),
p)

L1,(8) = S{(my(Tyx))my(Tox) + S5 (my(Tyx))(my( Tyx))>,
L,1(0) = Sj(1hy(Tyx)) iy (Tyx) + S (y(Tyx)) (g Ty ) )2,



SEMIPARAMETRIC COMPARISON OF REGRESSION CURVES 85

so these cases can be handled as was done for (7.4). The hard cases arise because

L, 5(8)) = Sj{mo(Tyx))my (T x)x + S/ (my( o)) (mi(Tyx)) ',

ad
L1a(00) = S5l 1) | s

+ Sf;g(m(nox))[ =30 mQ(Tax)] _, i(To),

0
2

L, 5(6,) = Sa'o( m2( Taox))[ my(T, ox)]

2
0@ =0,

ad
+ So,o/(mZ(q‘oox))[ 30(2) m2(T0x)] ’

=0,

2

. ad
L, 5(6,) = SJO<’;‘2(T003C))[8 27 m2(T0x)]

0=06,
144 e a A
+ Soo<m2(nox)) 30® m2(T0x) 0=0,
In view of the work done for (7.4), it remains to show that

290 2To%)| & ma(Tyx)

= my(Tpx)x,
6=0,

9
T

9
E e

2

= ——my(Tyx) = mé’(Ta(,x )x2

x
2
=96, 30(

0=6,

To check these, observe that, as in (7.4),

-2 _ [6Px + 6V — x’
= / 052)3h2K 062)}’

(x = 60)  (6@x + 60 -«
0(2)4h3 " Béz)h mQ(x/) dx’ + 0(1)
0

ad
E 80(2) m2(T9x)

=0,

1 xX—u
= /0(2)2h duz[ ( W )u]m2(0(§1) +0Pu) du + o(1)

= th(x — w)umy(6" + 0Pu) du + o(1)

= xmj(Tyx) + o(1),
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2 0Px + 6V — x
-/ o 0®h

2(x" — 6§V) [ 06Px + 650 — x’
0" n? 05>h

2

ad
EWMQ(TMC)

0=0,

(x' = 60) (6% + 60 — v o
0°h3 9Ph mo(x’) dx’ + (1)

1 [d® (x—u\ O 4 e®
= /h0(2)2 @K( 7 )u my(6° + 6Pu) du + o(1)
0

= x’my(T,x) + o(1).
This completes the proofs of (7.13), Lemma 2.2 and Theorem 2. O

8. Proof of Theorem 3. Since the technical details of this proof follow
closely those of the proof of Theorem 2, only an outline is given. Note first that

L(6,) = £(8) + (8, - 0)vL(8) + (6, — 8)"A(E,)(6, - ),

where £, is between 6, and 8. Now since the second term on the right side is 0, it
is enough to show that

(8.1) (6, 8)"A(2,)(6,— 0) = 0,(n),
(8.2) nhy?(L(8,) — n"'hy'C,) -4 N(0,C2).

Theorem 2, together with the methods of Section 7, make (8.1) easy to verify. To
check (8.2), note that

L(6,) = [[(su(x) = Eriu(x)) - (M(x,6,) - EM(x, 6,))]"w(x) dx

+0,(n7t)

= f[n‘l ;Kh(x —x)e,— !

ZKh,(Toox - xi’)eg(Sf,’()(mz(Toox)))] w(x) dx
+0,(n7")

=n"2) Y [Ay¢, e, — Byeel — Byele, + Cyelel] + 0,(n71),
D7



SEMIPARAMETRIC COMPARISON OF REGRESSION CURVES 87

where

Ay = [Bplx = x)Ky(x = xJul(x) d,
i = th(x - xi)Kh'(nox - xé)(So’o(mz(nox)))w(x) dx,

Cir = [KulTopx = x)) K Tyx — x)(Sg mo( Ty ) () .
Hence,
E(L(8,)) = -22[A,,o + Cyo’?] + 0(n7Y)

= n7%? [[ Ky(x — u)’w(x) drdu
+n%? /th,(Toox - x’)Z(So’O(mz(T},Ox)))Zw(x) dx dx’
+ 0(n71)

= (nh)_loz(/Kz)(fw) + (nh)7! ’2(fK2)(f Sy mz(x))) )
+ 0(n71).
To understand the variance structure of L(4,), note first that

var( Y Y AL ”)

it i
=n'Y ¥ (AL + A A,)0!
it
= n‘204ff2[th(x —u) K, (x — uy)w(x) dx ’ du, du,
+ o(n7?)
= n‘2h_12a4(/K *Kz)(/w) +o(n 2071,
where * denotes convolution, that

var(2n‘2 Y Y Bee ,)

i#i

=4n"*) Y BZo%"?

=n"*4¢%"? ff [th(x —u)Kp(Tyx — uy)
(S0’0<m2(T00x)))w(x) dxr du, du
+o(n™Y)

= n‘zh‘14020'2(fK * K2)(f[Sgo(mQ(x))rw(To;lx) dx) +o(n7%h7Y),
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and that

ar(n T ¥ Cueter
i
_20/42f/[th,(T00x - ul)Kh,(T,,ox - u,)

Sg’o( mQ(Toox)))zw(x) dx] du, du,

+o(n"Y)
= n‘Qh‘12o’4(/(K * K)2)(052)/[89’0(m2(x))]4w(7}9;1x) dx)

+ O(n~2h71).
But

( ZZA” L) = n_"ZA?i var(e?) = O(n=%h"?),
var(n‘z ZBiieie{) = 0(n"%h"2),
i
var(n‘ZZCﬁe,‘z) =0(n"°n72%),
i
cov(n? £ T Ayeiey,2n” 'Y LB &) =0,
cov( QZZA,,”, 222 ull) 0,
cov(2n 2223,, £E, N ZZZCuE{‘f{) =

Hence,
var(L(6,)) = n"2h"'C2 + o(n"%h"1).
To verify the asymptotic normality, first obtain it for n=2Y.%, A, e, and
n~2L,x,C; ¢le, using Theorem 1 of Whittle (1964), with his r taken to be n!/ 10
and for 2n"2L, %, B, €€l by an ordinary central limit theorem for arrays. An
application of the Cramer—-Wold device then gives (8.2). This completes the proof
of Theorem 3. O
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