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INTERSECTION UNION TESTS FOR STRICT COLLAPSIBILITY
IN THREE-DIMENSIONAL CONTINGENCY TABLES

By LiNDA JUNE Davis

The structure of the strict collapsibility model in a three-dimensional
contingency table is investigated with the goal of developing more powerful
tests. After showing that strict collapsibility can be written as a finite union

_of distinct models, an intersection union test is proposed which is at least as
powerful asymptotically as the likelihood ratio test. Intersection union tests
for strong collapsibility and marginal independence are also suggested.

1. Introduction. The advantages of collapsing a high-dimensional contin-
gency table include increasing cell frequencies, decreasing number of parameters,
easing data interpretation and simplifying graphical and tabular data presenta-
tion. Unfortunately, the disadvantages of collapsing include information loss
concerning interactions of interest and distortion of these interactions, a phe-
nomenon known as Simpson’s paradox [Simpson (1951)]. Whittemore (1978),
however, characterizes tables called strictly collapsible for which certain interac-
tions remain unchanged when the contingency table is collapsed. For such tables,
the benefits of collapsing can be reaped without paying the price of distorted
interactions.

Several tests of strict collapsibility have been proposed. Whittemore (1978),
for a 2 X 2 X 8 table, uses the likelihood ratio test (LRT) which cannot be
computed using standard log linear model fitting packages. To avoid this
computational difficulty, she also suggests using the weighted linear regression
technique of Grizzle, Starmer and Koch (1969). Several papers have exploited
this last suggestion. Specifically, Cohen, Gatsonis and Marden (1983b) develop
such a test for a 2 X 2 X 2 table using the asymptotic normal distribution of the
maximum likelihood estimators of two- and three-factor interactions. Ducharme
and Lepage (1986) propose a test for a 2 X 2 X K table using the asymptotic
normal distribution of the differences of observed log odds ratios. They also
explain how their test extends to I X J X K tables.

This paper explores yet another testing method suggested by the model
structure of strict collapsibility. Specifically, the strict collapsibility model equals
a finite union of distinct models (i.e., no one model entirely contained in
another). For such a model, Berger (1982), Berger and Sinclair (1984) and Gleser
(1973) suggest the so-called intersection union test (IUT); in fact, Berger and
Sinclair (1984) show that the IUT is more powerful than the LRT. This paper
considers the IUT specifically applied to testing strict collapsibility and com-
pares it to the LRT.
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This paper is organized as follows: In Section 2, strict collapsibility is shown
to equal a union of distinct models. In Section 3, the IUT and LRT for union
null hypotheses are defined and examined. In Section 4, intersection union tests
are suggested for strong collapsibility, as defined by Ducharme and Lepage
(1986), and marginal independence via their relationship to strict collapsibility.
Finally, in Section 5, the LRT and the IUT are compared via several examples.

2. Strict collapsibility. Suppose objects in a population are classified by
three factors, say A, B and C. Factor A has I levels, i = 1,2,..., I, factor B has
J levels, j =1,2,..., J and factor C has K levels, £ = 1,2,..., K, n,;; equals
the number of objects in a sample of size N with A =i, B=jand C =k and n
the entire table of sample frequencies. Also, p,; > 0 is the probability that a
selected object has A =i, B=j and C = k and p the table of these probabili-
ties. For simplicity, n is assumed to follow a multinomial distribution with
parameters N =13, ;,n,;, and psoL,; ; ,p;x = 1.

As defined by Whlttemore (1978), collaps1b1hty over C with respect to the AB
two-factor interaction means that this two-factor interaction in the three-dimen-
sional table is identical to that in the AB-marginal table. Strict collapsibility
entails, in addition, that the ABC three-factor interaction is 0. Thus, testing
strict collapsibility involves testing both equality of a two-factor interaction and
the absence of a three-factor interaction.

In a three-dimensional table, Whittemore shows strict collapsibility is equiva-
lent to

Pijk = Pij+Pin s
for some positive constants {4,,} and {g,,} where p,;,= X, p, ;. Hidden in this
parametnzatlon are the constraints that ¥, ;p;;,=1 and X, h;g; =1 since
Dijr/Pij+= hi .8, and X;p; /P, ;.= 1. Thus, one parametrization of strict col-
lapsibility is

(1) {p > Olpuk pu+ lkg]k’ Zptj+ 1 Zhlkgjk ]'Vl -]}
i, J
(Implicitly, p,;;,> 0, hy, > 0 and g, > 0 for all i, j, k.)
As an example of this parametrization, consider a class of tables investigated
by Darroch (1962) called perfect contingency tables. A three-dimensional perfect
table satisfies

Zpij+pi+k/Pi++=p.+j+p++k for all j, &,
13

Zpij+p+jk/p+j+= PisiP sy foralli, k,
J

Epi+kp+jk/p++k =P, +P4jy foralli, .
k

As Darroch shows, if the three-factor interaction is 0, then these constraints
imply
DijiDPit kP jr
DPijp = ——— -
PiviPjiP i+
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Setting

p; Py,
hik - Uitk and &= +jk ’

DiviP i Dy
D;jr. has the form developed by Whittemore for strictly collapsible tables. The
constt:aint that X, .8, = 1 is then just X, pi x P jn/Psir = PisiPijie

This parametrization in (1), however, has two shortcomings. First, {h;,} and
{g;x} are not identifiable since for any nonzero constant f,, h;8; =
(hi1/f1)(8 & f1)- For example, for a perfect contingency table, one could also take

hip =

Diir D
i+ DijiDyir

Second, the number of nonredundant constraints among the I X J constraints
Lyh g = 1 is difficult to determine due to its dependence on the number of
levels I, J and K. This dependency stems from the nonlinearity of these
constraints caused by constraining sums of products of individual parameters. In
practice, this dependency underlies such properties of strictly collapsible tables
as:

An I X J X 2 table is strictly collapsible if and only if A and

C are conditionally independent given B, or B and C are

conditionally independent given A. An I X J X K table with

K > 2, however, can be strictly collapsible without any two

factors being conditionally independent given the third.

Also, this dependency makes it impossible to use standard iterative packages for

computing maximum likelihood estimates and likelihood ratio tests. As noted by

a referee, a practitioner cannot rely on his or her software to determine the

number of constraints on {h,} and {g;}. Thus, the constraints must be

reformulated analytically before computation can proceed using this model.
Reparametrizing (1) to

{p > Olpijk =pij+fkhikgjks ZPU+= 1, Hhik = IVk,
2) i
ngk =1Vk, kahikgjk =1V, J}
J k

resolves the first problem.

The proposed resolution to the second problem involves relating the con-
straints X f,h 8, = 1 to constraints on inner products of vectors. This refor-
mulation is suggested by the “sums of products of parameters” form of the
constraints. Define

fE (fl: f2""’ fK),
hi=(hy hig, ., hig) fori=1,2,...,1,
gi=(8,8p2r-,8x) forj=12,...,d.

Also, let V, denote the vector space spanned by {h; — h;,i=1,2,...,1—1}
and Vj the vector space spanned by {g, — g,, j = 1,2,..., J — 1}. Furthermore,
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define an inner product { -, - ) on R¥ by

(x,y) = Zk:kakyk~

For any two subspaces V, and V, of R%, V| L V, means V, and V, are orthogonal
with respect to ( -,+ ) and V| L x that (x, y) =0forall y € V.

Using this notation, the constraints Y,f,h;g, =1 for all i, j, ie,
(h; g;) = 1f{or all i, j, are equivalent to:

1. (h;,8;) =1
2.V, L g,
3. VgL h,
4. V, L V.

Of course, this reformulation does not remove the redundancy in the constraints;
however, it does relate the redundancy in the constraints to the dimensions of V,
and Vy [denoted dim(V,) and dim(Vy)] which as shown below prove easier to
handle both analytically and computationally.

Specifically, the next two propositions relate

Q= {( fs hi’gj)”k’ hins8jr > 0,{h;,8;) =1V, j}
to a union of
S, 6= {( fs hi’gj)lfk’ hip: 8> 0,{hp,8;) =1,
Vilg,, Vel hy,Vy L Vg,dim(V,) < a,dim(Vy) < b}

over certain a and b. Having done so solves the second problem with the
parametrization given in (1) since the number of nonredundant constraints in
S, » is tractable.

ProposITION 1. @ =UZXZ(S, x| ..

Proor. @ =UXZJUX}S, , upon noting dim(V,) < K — 1 since V, 1 g,
and g, # 0 and dim(Vy) < K — 1 since V3 L h; and h; # 0. Thus, it suffices to
prove S,. ,. € UKZ(S, x_,_, for fixed 0 < a* b* <K — 1. Let (f,h;, g,) €
S,« pr. Since (hy, g;) =1and V, L g, h; & V,. Therefore, Vz L hyand V, L Vp
imply dim(Vy) < K — 1 — dim(V}). Thus,

K-1
(f, hi’gj) € Siim(v,), K—1-dim(v) € U Se k-1-a- u

a=0

ProrosiTION 2. If I<K,S, x_,_,C
<

-1 SI—I,K—IforI_lsaSK_]'; if
J<K,S, k.1-4SSk_yg -1 for0<a

K - J.

ProOF. Fix I-1<a<K-1 and let (f,h;,8;) €S, xk1-, Then,
dim(V,) < a and dim(Vz) < K — 1 — a. But, since V, is spanned by I -1
vectors, dim(V,) < I — 1. Furthermore, since a >I-1,K—-1—-a <K -1
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Thus, dim(V,) <7I—1 and dim(Vz) <K -1 so (f, h;,&;) €S;_, k. The
second part is proved similarly. O

Combining these two propositions:

THEOREM 3. If K <I+ J — 1, then

]
Q= U Sa,K—l—a’
a=a,
where a, = max(0, K — J)anda,=min(I — 1, K —1). If K > I + J — 1, then
Q= SI—l,J—l'

PRroOOF. Suppose K < I + J — 1. Then, the values of a, and a, are given in
the following table:

I<K,J<K I<K,J>K I>K,J<K I>K,J>K

a K-J 0 K-J 0
a, I-1 -1 K-1 K-1
Thus,
K-1
Q= U S, x_1_. (Proposition 1)
a=0

52
= U 8, x.1_. (Proposition 2).

a=a,;

Next, suppose K>I+J —1. Then, 0<I—-1 and J—-1<K -1 so
S;_1,7-1 S Q- To prove @ € S;_, ;_,, let (f, h;,8,) € Q. Then, since K > I,
dim(V,) < I —1 and since K > J,dim(Vp) <J — 1 so (f,h;, 8,)€8_, ; ;.
Thus, @ € §; 4 ;1. O

To implement the IUT, the union hypothesis must involve nonempty and
distinct models. (Here, distinct does not mean disjoint but rather, each model
containing at least one point not contained in any other model.) Thus, for later
use in developing an IUT:

ProposITION 4. If K < I+ J — 1, then for each a, < a* < a,, there exists
a (f,h;; 8;) € S k-1-o Such that dim(V,) = a* and dim(Vz) = K — 1 — a*
and also, S, g 1 0+ ZUuuorSyk-1- If K21+ J —1, there exists a
(f, h;,8;) € Sy, 41 such that dim(V,) = I — 1 and dim(Vp) = J — 1.

Proor. Suppose K < I+ J — 1 and fix a; < a* < a,. Proving the existence
ofa(f,h;,g;) €8S, x_1_4 such that dim(V,) = a* and dim(V) = K — 1 — a*
requires only checking subspace dimensions. Now, if this (f, h;,8,) €S, x_,_,
for a < a*, then dim(V,) = a* < a which is a contradiction. Similarly, if
(f,hi,8) €8S, k-1-4 for a>a* then dm(Vz)=K-1-a*<K-1-a,
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le, a < a* which is a contradiction. Thus, S« x_;_,« € Uy 4048, x—1_o When
K >1+J -1, the existence of a (f, h;, g;) €S;_, ;_, such that dim(V,) =
I — 1 and dim(Vy) = J — 1 also only requires checking subspace dimensions. O

Combining the results of Theorem 3 with the parametrization of strict
collapsibility in (2), the strict collapsibility model equals

Ay
®) USkk1q fK<I+dJ-1,

St g1 HK2T+dJd -1,

where

Sy = {plpijk = Dijifrhin8ns Pijis fr> P 8o > OV 3, J, ks Z_Pij+= 1L
i J

(4) [ny= l’ngjk= 1VEk;Ch;, 859 =1V, L g, Vg L by,
i j

V, L Vi dim(V,) < @, dim(Vy) < b}.

Furthermore, for K <I+J — 1,{S*x_,_,, a, < a < a,} are nonempty and
distinct models and for K > I + J — 1, S*, ;_, is nonempty.

3. IUT and LRT for union hypotheses. Let X,, be a random vector whose
likelihood function P;" belongs to a class {F", § € ®™}. Suppose 8" € @™ for
r=1,2,..., R, < R, where R is a finite, fixed integer not depending on m, and
for each r, there exist a test ¢(-) and a test statistic 7,*(-) with

. 1 if T™(x) > ¢,

for which ¢]" is asymptotic size « for testing § € O against § € 8™ — O™, i.e.,
]'imm—-»oosup0E8:" P0{¢r"n(Xm) = 1} =a

Using T, r = 1,2,..., R, define the following two tests for testing 6 €
UE»®™ against § € @™ — UE» O™

r=1
1 ifT™(x)>c™forallr=1,2,...,R,,
0 if T™(x) <c™forsomer=1,2,..., R

©) o (x) = {

m

and

1 ifmin, 7/"(x) > max,c™,
7 * % -
() 9n" (%) {0 if min, T,)*(x) < max, c.
¢ is called an intersection union test (IUT) since it tests each model separately
and rejects the union model if and only if each individual model is rejected. ¢} *
is the likelihood ratio test (LRT) when T, is the likelihood ratio statistic for
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testing § € O)" since

—2log( sup P/ sup B,"‘) = min{—2log( sup P*/ sup Po"‘)}.
Ul om fcO™ r [ fcom

The next theorem explores properties of ¢} and ¢}*. Specifically, using
results in Berger (1982), it shows both ¢ and ¢} * are asymptotic size at most a.
Also, it gives sufficient conditions, implicitly in Berger and Sinclair (1984), for ¢}
and ¢X* to be asymptotically size a. Berger (1982) also gives sufficient condi-
tions for ¢* to be exact size a, but these apply only to one-sided individual
hypotheses and thus are not applicable to testing strict collapsibility.

THEOREM 5. The asymptotic size of ¢} and ¢k * is at most a. Furthermore,
if there exists a sequence 0, € UR» O™ such that

Rm
(8) lim ) P {T(X,)<c'}<1l-a,
m=o0 1

then the asymptotic size of ¢ is «; if there exists a sequence 6,, € UR» O™ such
that

Rm
9) lim ) Pa,,,{Trm(Xm) < maxc,',”} <1l-a,
m-o . r

then the asymptotic size of ¢}* is a.

Proor. For any r* and 6* € 9%,
Pr(83(X,) = 1} = Bu{T(X,,) > ¢,V r)
< B {TX(X,,) = c&}.
Therefore, since R,, < R < o and the individual tests are asymptotic size a for
testing 6 € O,
lim sup Pp{¢%(X,,) =1} = lim max sup P{¢%(X,) =1}

m— o0 geyyom m-ow T ge@n

max lim sup P{¢x(X,,) =1}

r m— oo oeem
.

(10)

IA

= a.
Next, suppose there exists a sequence {6,,} satisfying (8). Since, for any 6,
Py{on(X,) =1} = B{T/(X,,) = c]",V 1}
=1- P{T™(X,,) < c, for some r}
Rm
>1- ¥ B{T(X,) <<,
r=1

(8) implies

Rm
im P, {¢%(X,)=1}>1~- lim )} B {T/(X,)<c} za

r=1
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Thus,
lim sup Pp{¢%(X,) =1} >a,

which, in conjunction with (10), implies the asymptotic size of ¢} is a. The proof
for ¢ * is similar. O

These sufficient conditions given in (8) and (9) for asymptotic size a of ¢ and
o *, respectively, are mild. They are satisfied, for example, if the individual tests
are consistent and no one individual model is contained in the union of the
others. For, under these conditions, a sequence 6,, can be chosen such that all
summands but one in (8) and (9) go to 0 while the remaining one approaches
1 — a since tests of individual models are asymptotic size a.

Berger (1982) and Berger and Sinclair (1984) address other properties of the
IUT. First, the IUT performs more like a simultaneous inference procedure than
an omnibus test since accepting indicates which hypothesis is most likely true.
But, unlike simultaneous inference where inference about individual parameters
must be done at error rates less than a to achieve an overall rate of a, each
individual test is performed at asymptotic size a to achieve overall asymptotic
size at most a. Second, under mild conditions on the individual test statistics
and their distributions, when all the individual tests are one-sided, then among
all level a tests with monotone rejection regions based on these test statistics,
the IUT is uniformly most powerful.

As shown by Berger and Sinclair (1984), however, the main motivation for
using an IUT is that the rejection region of ¢X** is contained in the rejection
region of ¢*. Thus:

THEOREM 6. When ¢ and ¢}* have the same asymptotic size, ¢} is
asymptotically uniformly more powerful than ¢} *.

The power advantage of ¢ over ¢** stems from a difference in the “effective”
sizes of the tests of the individual models under ¢} and ¢} *. The critical region
of ¢ consists of the random vectors rejected by all tests of the individual models
each at asymptotic size a. The critical region of ¢} *, on the other hand, consists
of random vectors rejected by all tests of the individual models some of which
may be of asymptotic size less than a. (The size may be less than a since the
individual tests are essentially compared to the maximum of the critical levels
for all individual tests instead of the critical level specific to that test.) Thus, the
power of ¢* is greater than that of ¢ * because with ¢} *, the asymptotic size of
the tests of individual models can be less than a.

Returning to the problem of testing strict collapsibility over C with respect to
the AB two-factor interaction, let 7, in (5), (6) and (7) be the LRT for testing
6 € 0,. Results for other tests with similar asymptotic properties, such as
Pearson’s chi-squared, are immediate.

Now, as shown in Section 2, the strict collapsibility model’s structure depends
upon whether or not K> 1+ J — 1. When K > I + J — 1, the model equals
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TABLE 1
Number of restrictions Number of restrictions
Constraint when K>I+J-1 when K<I+J-1
Zt,jpzj+= 1 1 1
[;h;,=1VE K K
l_[jgjk =1Vk K K
Chi 84) =1 1 1
VyL1g, I-1 a
Vg Lk J-1 K-1-a
Vi LV (I-1(J - 1) WK —-1-a)
dim(V,) < a 0 (I-1-a)K-a)
dim(Vg) < b 0 (J-—K+a)a+1)
IJ + 2K + 1 aJ+1-1-K+a)

+(J+1+ K+ KI)

Sp* 1. s_1 as defined in (4). Since in this case the strict collapsibility model does
not equal a union of distinct models, one cannot define an IUT. Thus, when
K > I+ J — 1, the power of the LRT cannot be improved upon by an IUT.

Using standard asymptotic theory for the LRT [see, e.g., Diamond (1963) and
Serfling (1980), Section 4.4], the asymptotic distribution of the LRT when
K > I+ J — 1 is chi-squared (x%) with degrees of freedom (d.f.)

(11)

= (number of parameters under alternative model)
— (number of parameters under null model).

The number of parameters under the alternative model is IJK — 1 since the only
restriction placed on p is ¥; ; . p;j» = 1. The number of parameters under the
null model equals the number of parameters in p, ; i+frhix8jr whichis IJ + K +
IK + JK minus the number of restrictions on p;;., f, h; and g which as
shown in Table 1 is IJ + 2K + 1. Thus,

d=IJK—1—(IJ+K+IK+JK—IJ—2K—1)
- (I-1)(J - 1)K.

Therefore, one test for strict collapsibility when K > I+ J — 1 is the LRT
having an asymptotic x% distribution with d = (I — 1)(J — 1)K.

Next, suppose K < I+ J — 1. Then the strict collapsibility model equals
U2, S¥k_1-o with S*g_,_, defined in (4). Since in this case the strict
collapsibility model equals a union of distinct models, one can define an IUT.

To this end, for S} _,_,, unlike for §*, ;_,, the constraints dim(V,) < a
and dim(Vy) < K — 1 — a place restrictions on the parameters. In fact, S}*x_,_,
must also be expressed as a union to apply asymptotic theory since S;fx_,_,
does not specify which vectors in {h,—h;,i=1,2,...,1—1} and which
in {g;—-8,7=12,. — 1} are linearly independent. In particular,

o k-1-a = Y, 1,21, 1 where 1, ranges over all subsets of a indices from

lAv lB
(1,2,...,I -1}, lg ranges over all subsets of K —1— a indices from
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{1,2,...,J — 1} and Z,; is identical to S}*x_,_, with the added constraints
that &, — h, for i & 1, isin the span of {(h, — h;,i € l,} and g; — g, for j & I
is in the span of {g; — g, j € lp}. Since the LRT for testing Z, , has the same
d.f. regardless of the values of I, and Iz, the IUT and the LRT for testing
Sk _1_, are identical. Furthermore, the assumptions in Theorem 5 hold for the
LRT of Z,,, . Thus, the LRT of Sj*x_,_, has an asymptotic XZay distribution
where d(a) equals the d.f. associated with Z, , .
Now, d(a) associated with Z, , is still given by (11) so using Table 1,

d(a)=IJK-1-{IJ+K+IK+JK-a(J+1-I1—-K +a)
(12) —(J+1+ K+ KI)}
=IJ(K-1)—-a(K-1—-a)—al - (K-1-a)d.

In particular, note that d(0) = (I — 1)J(K — 1) and d(K — 1) = I(J — 1) X
(K —-1).

Thus, to test for strict collapsibility when K < I + J — 1, one can use either
the IUT or the LRT based on the individual LRT for testing S*x_,_, which
has an asymptotic xﬁ(a) distribution with d(a) given in (12). Proposition 4 and
Theorem 5 imply both tests are asymptotically size a. If d(a) does not depend
upon a, then the two tests are identical. If d(a) depends on a, however,
Theorem 6 implies the IUT is asymptotically uniformly more powerful than the
LRT.

The amount of improvement in power offered by the IUT over the LRT
hinges on the variation in the degrees of freedom associated with individual
models. For example, in a 4 X 8 X 4 table, d(a) varies from 72 to 84. Thus, for
the LRT, all individual likelihood ratio statistics are compared to a quantile of
x2, while for an IUT, the individual likelihood ratio statistics are each compared
to the associated quantile with degrees of freedom ranging from 72 to 84. Since,
for example, the 0.95 quantile of x2, is 106.39 while that for x2, is only 92.81, the
IUT is much more powerful in this case. On the other hand, for a 8 X 4 X 2
table, d(a) varies only from 24 to 28 for all individual models so the IUT and
LRT are more comparable in power.

In general, computing the LRT for S* , ,_, or §;*x_,_, cannot be done using
standard statistical packages for contingency table analysis since the model S;*,
is not log linear or linear. The statistic, however, can be computed, using any
package which minimizes a smooth function subject to constraints including
simple bounds, linear constraints and smooth nonlinear constraints on the
variables.

When a = 0 or a = K — 1, however, the LRT of S*x_,_, can be computed
directly. When a = 0, S}*x_,_, is the hierarchical log linear model that A and
C are conditionally independent given B (denoted A ® C|B) while when a =
K — 1, it is the model that B and C are conditionally independent given A
(denoted B ® C|A).

In particular, when a, = 0 and/or a, = K — 1, the LRT of A ® C|B and
B ® C|A supply a lower bound on the p-value of the IUT and LRT. For
example, if K < I and K < J, then provided the maximum p-value of these two
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tests is large, the strict collapsibility model would be accepted via the IUT
without computing the additional LRT. A similar trick works for K > I + J — 1.
Hence, since A ® C|B and B ® C|A imply strict collapsibility, the LRT of
8%, g-1 is smaller than the minimum of the LRT of these two conditional
independence models. Thus, the p-value for Sf* ; ;_; is bounded below by the
p-value of the minimum of the two LRT"s.

As an aside, since Sfx_,_, is a hierarchical log linear model if and only if
a = 0 or K — 1, the strict collapsibility model reduces to a union of hierarchical
log linear models if and only if K = 2 (in which case it reduces to the union of
A ® C|B and B ® C|A). The sufficiency of K =2 is proved by Whittemore
(1978).

Other individual test statistics besides the LRT can be used in ¢* and ¢**.
For example, Cohen, Gatsonis and Marden (1983b) propose a test for strict
collapsibility in a 2 X 2 X 2 table which rejects if

min{(ﬁ123’ 1213)21_31(1?123, ;) (ﬁ123’ ﬁ23)§2—3l( {93, ﬁ23)'} > 22(0‘):

where @55, #;3 and #@,; are the maximum likelihood estimators under a satu-
rated model of u,,; the ABC three-factor interaction, u,; the AC two-factor
interaction and u,, the BC two-factor interaction, 3,, and 3, estimators of the
corresponding asymptotic covariance matrices and z,(a) the 1 — a quantile of a
x2 distribution. This is an IUT and also a ¢** test since the individual tests for
(U195 = U3 = 0} and {u,5; = uy3 = 0} have the same d.f. Although originally
proposed and studied only for testing strict collapsibility in a 2 X 2 X 2 table,
this test works for any I X J X 2 table via treating &,,3, @,5 and 2,5 as vectors;
¢* and ¢**, however, are now distinct tests provided I # oJ.

4. Strong collapsibility and marginal independence. Durcharme and
Lepage (1986) define an I X J X K table to be strongly collapsible over C with
respect to the AB two-factor interaction if all I X J X K’ tables with K’ < K
obtained from the original table by combining levels of C are strictly collapsible
over C with respect to the AB interaction. They also prove an I X J X K table
is strongly collapsible with respect to the AB interaction if and only if A ® C|B
or B ® C|A.

Since strong collapsibility equals a union of distinct models, the results of
Section 3 suggest using an IUT. Therefore, one test of strong collapsibility is to
test A ® C|B and B ® C|A separately by LRT and reject if and only if both
models are rejected. This IUT is asymptotically size a and provided I # J,
asymptotically more powerful than the LRT (which is also asymptotically
size a).

Cohen (1981) and Cohen, Gatsonis and Marden (1983a, b) consider testing
marginal independence of A and B (denoted A ® B) given A ® B|C. Given
A ® B|C, A ® B if and only if p is strictly collapsible over C with respect to
the AB interaction. Hence, in this special case, testing marginal independence is
equivalent to testing the null hypothesis that A ® B|C and p is strictly
collapsible against the alternative that A ® B|C. Using (1), the set of p such
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that p is strictly collapsible and A ® B|C equals

{p > Olpijk = pi++p+j+hikgjk7 Zpi++= 1, Zp+j+= 1, Zhikgjk =1V, J}
i J k

Thus, arguing as in Section 2, the null model equals

&2
(13) USk% ., fK<I+dJ-1,
a=a,

Sty fK=2I+dJ-1,

Sa*:?; = {plpijk = pi++p+j+fkhikgjk; Diiis Pijys fes Rigs &ir>0Vi,j, k;

Ypi.=1, Zp+j+= 1 nhik =1, ngk =1Vk;(h;, 85) =1,
i j i J

Vilg,,VgLh;V, L Vgdim(V,) < a,dim(Vy) < b}.

Using (13), when K > I + J — 1, one can test A ® B against the alternative
A ® B|C using the LRT of S**% ;_; against A ® B|C which has an asymptotic
x% distribution with d = (I — 1)(J — 1). When K <I+ J — 1, one can test
A ® B against the alternative A ® B|C using the LRT or the IUT based on the
individual LRT for testing S}*%_,_, against A ® B|C which has an asymptotic
XZ(ay distribution with

dla)=(I+J-1)(K-1)-a(K-1-a)—al- (K-1-a)d.

The IUT and LRT are asymptotically size a but the IUT is asymptotically more
powerful.

As before, when a =0 or a = K — 1, S}%_,_, reduces to a hierarchical log
linear model —to A ® (B,C) when a =0 and to B® (A,C) when a = K — 1.
Furthermore, the LRT of A ® (B,C) against A ® B|C equals the LRT of
A ® C against the saturated model in the I X K AC-marginal table and simi-
larly, the LRT of B ® (A,C) against A ® B|C equals the LRT of B® C
against the saturated model in the J X K BC-marginal table. Thus, the LRT of
S¥%_1-o when a =0or a = K — 1 is easily computed. In particular, if K = 2,
the IUT of A ® B given A ® B|C rejects if and only if the LRT of A ® C and
the LRT of B ® C reject.

Other tests of A ® B given A ® B|C have been proposed. For example,
Cohen, Gatsonis and Marden (1983a) propose several tests for 2 X 2 X 2 tables.
One is an exact IUT using two-sided Fisher’s exact tests for independence in the
AC-marginal table and in the BC-marginal table. Cohen, Gatsonis and Marden
(1983a) prove this IUT is not size a« when the individual tests are.

They also propose a large sample IUT based on

T, = (""\1 - *\3)/6137

T, = ('fs - "ce)/é\ssy
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where
n=P(B=2A=1,C=1},
3=P{B=2|A=1,C=2},
s =P{C=1]A =1},
75 = P{C=1]A = 2}

and 7, 7, 7, 7, are maximum likelihood estimators under the conditional inde-
pendence model with 6,, and &5, the associated estimated asymptotic standard
errors. If instead of estimating 0,5 (o55) by replacing 7, (7;) by 7, (%) and 75 (75)
by 7; (f;) [as done by Cohen, Gatsonis and Marden (1983a)], one estimates o,
(056) by replacing 7, and 7, (75 and 75) by the pooled estimate under the null
hypothesis, then the above IUT is based on Pearson’s chi-squared statistics for
independence in the AC-marginal and BC-marginal tables.

5. Examples. Fienberg (1980), pages 11-13, considers a 2 X 2 X 2 table
involving the habitat of sagrei adult male Anolis lizards of Bimini as compared
to distichus adult and subadult Anolis lizards of Bimini. For each lizard, perch
height and perch diameter were recorded and subsequently dichotomized result-
ing in the following 2 X 2 X 2 table:

Sagrei lizards Distichus lizards
Perch diameter Perch diameter
(inches) (inches)
< 4.0 > 4.0 < 4.0 > 4.0
Perch height > 4.75 32 11 61 41
(feet) <4.75 86 35 73 70

Let A denote perch height, B perch diameter and C species.

Now, for a 2 X 2 X 2 table, the strict collapsibility model is the union of Sg¥,
and Sp*, with the LRT for testing Sgf, and S/*,, each having asymptotic X2
distributions. Since both individual LRTs have the same asymptotic distribu-
tion, the IUT and the LRT for strict collapsibility over C with respect to the AB
two-factor interaction are identical. Also, since K = 2, the IUT and LRT for
strict collapsibility are also tests of strong collapsibility. The LRT for testing
Sy*, which equals the log linear model A, ® C|B is 11.82 on 2 d.f. with p-value =
0.003 and the LRT for testing S;*, which equals the model B ® C|A is 14.02 on 2
d.f. with p-value = 0.001 making the p-value of the IUT (or LRT) for strict (or
strong) collapsibility 0.003. Thus, the model of strict (or strong) collapsibility is
rejected so collapsing the two tables into one by summing over species would
change the relationship between perch height and perch diameter.

Other proposed tests for strict collapsibility lead to the same conclusion. For
example, the test statistic proposed by Ducharme and Lepage (1986) equals 7.19
on 2 d.f. with p-value = 0.027. For the IUT proposed by Cohen, Gatsonis and
Marden (1983a), T, = 11.42 and T, = 13.53 both on 2 d.f. resulting in an overall
p-value of max(0.003,0.001) = 0.003.
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Turning to a more complex table, consider a 3 X 2 X 4 table from Aickin
(1983), page 158. Prior to voting, voters expressed their political preference
(Democrat, Independent, Republican) and then after voting, their actual vote
(Democrat, Republican) was determined. The voters were also classified accord-
ing to income level (in thousands of dollars per year).

<10 10-15 15-20 > 20
Dem Rep Dem Rep Dem Rep Dem Rep
"Dem 112 7 83 13 76 8 86 11
Ind 67 37 75 45 67 57 67 63
Rep 5 35 3 28 9 35 14 71

Let A denote political preference, B actual vote and C income level.

First, consider testing collapsibility over C with respect to the AB interaction.
In this case, K = I + J — 1. Thus, testing strict collapsibility involves comput-
ing the LRT of the model S;* having an asymptotic x distribution. Since the
minimum of the LRT of A ® C|B and B ® C|A is an upper bound on the LRT
of S;*,, the trick mentioned in Section 3 can be used to alleviate this computa-
tional task. The LRT of A ® C|B is 25.20 (12 d.f., p-value = 0.014) and of
B ® C|A is 11.81 (9 d.f., p-value = 0.224) so the p-value for strict collapsibility is
at least P{x2 > 11.81} = 0.160. Thus, the null hypothesis of strict collapsibility
would not be rejected so the relationship between political preference and actual
vote could be studied in the marginal table. For testing strong collapsibility, the
values of the necessary LRT are given above. The p-value of the IUT is
max(0.014,0.224) = 0.224 so the strong collapsibility model is not rejected. The
p-value for the LRT is P{x%, > 11.81} = 0.461 so the model is again not rejected.

Next, consider testing strict collapsibility over A with respect to the BC
interaction. Here, K <I+ J — 1. Now, a;, =max(0, K —J)=0 and a, =
min(I — 1, K — 1) = 1 so the strict collapsibility model equals SO"‘2 U S As
pointed out before, Sj¥; equals B ® A|C; the LRT for this model is 343. 61 on 8
d.f. with p-value = 0. Using NPSOL, a FORTRAN package for nonlinear
programming developed by Gill, Murray, Saunders and Wright (1984) of the
Systems Optimization Laboratory in the Department of Operations Research at
Stanford University, the LRT for S*, is 16.52 on 9 d.f. with p-value = 0.057
implying the p-value of the IUT equals 0.057 and the p-value of the LRT equals
0.057. Therefore, at the 0.05 level, the model of strict collapsibility over A is not
rejected using either the IUT or the LRT.

For testing strong collapsibility, the LRT of B ® A|C is 343.61 on 8 d.f. with
p-value = 0 and the LRT of C ® A|B is 25.20 on 12 d.f. with p-value = 0.014
implying the p-value for the IUT and LRT is 0.014. Thus, at the 0.05 level, the
strong collapsibility model is rejected even though the strict collapsibility model
is not rejected.

Since the LRT of B ® C|A is 11.81 on 9 d.f. with p-value = 0.224, one might
test B® C given B ® C|A. The LRT associated with Sg** is 349.76 on 2 d.f.
with p-value = 0 and with Sj** is 22.67 on 3 d.f. with p-value = 0. Thus, both
the IUT and the LRT p-v alue for marginal independence is approximately 0.
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The LRT for independence of B and C computed using the BC-marginal table is
17.96 on 3 d.f. with p-value = 0 agreeing with the test of B ® C given B ® C|A.

6. Concluding remarks. The results of this paper revolve around the
parametrization in (3) and (4) of the strict collapsibility model. This is certainly
not the only way to reparametrize the model; for example, as pointed out by
Cohen (1985), the { f,} could be eliminated by removing the restriction on I1g ;.
Of several different parametrizations investigated, this one was selected for
several reasons. First, it is symmetric in its treatment of 2 and g which
simplifies the discussion. Also, the sets making up the union are open so that the
LRT can be applied to each set separately while still appealing to regular
asymptotic theory.

No claim is made as to this being the best parametrization in the sense of
creating the most powerful test. The intent is only to identify a test at least as
powerful as the LRT and to expose the complexity of the strict collapsibility
model as rooted in its union nature.

This parametrization of the strict collapsibility model, however, reveals that
testing strict collapsibility hinges on the size of the table. When K > I + J — 1,
one test of strict collapsibility is the LRT having an asymptotic x3 distribution
with d = (I — 1)(J — 1)K. When K < I + J — 1, however, one can test strict
collapsibility via an IUT, based on LRT of individual models, which is asymptot-
ically at least as powerful as the LRT for strict collapsibility.
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