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A GEOMETRIC INTERPRETATION OF DARROCH AND
RATCLIFF’'S GENERALIZED ITERATIVE SCALING!
BY IMRE CsIszZAR

Hungarian Academy of Sciences

Darroch and Ratcliff’s iterative algorithm for minimizing I-divergence
subject to linear constraints is equivalent to a cyclic iteration of explicitly
performable I-projection operations.

1. Introduction. The following problem often occurs in statistics: Given a
probability distribution (PD) @ on a finite set 2" and a linear family

(1) &= {P: gP(x)f,-(x) =a;i=1,..., k}

of PD’s on %, find the I-projection of @ on %, i.e., that P* which minimizes the
(Kullback-Leibler) I-divergence

P(x)

Q(x)

(2) I(P|Q) = ¥ P(x)log

subject to the linear constraints in (1).

In addition to being inherent to Kullback’s “minimum discrimination infor-
mation” approach [3, 4] and to maximum entropy methods (maximizing entropy
is the same as minimizing divergence from the uniform distribution on %), this
numerical problem arises also in maximum likelihood estimation; cf. Section 3.

When & is a product space and .Z in the set of all PD’s with given marginals
of certain kinds, a very intuitive method known as iterative proportional fitting
or iterative scaling is available for computing I-projection on .#. This method is
extensively used in the analysis of contingency tables; cf., e.g., [3] and the
references in [1] and [2].

I-projection on a general linear family (1) can be determined by “generalized
iterative scaling” due to Darroch and Ratcliff [2]. The author and some of his
colleagues have been wondering for some time whether this method also has an
intuitive interpretation, within the framework of I-divergence geometry [1]. In
this communication, using a suitable extension of the sample space %', general-
ized iterative scaling is shown to be equivalent to a cyclic iteration of explicitly
performable I-projection operations. Whereas this renders the convergence of
Darroch and Ratcliff’s algorithm a consequence of Theorem 3.2 of Csiszar [1], it
should be noted that the proof of the latter—while more intuitive—is mathe-
matically very similar to the original proof of the former [2].
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2. The result. Following Darroch and Ratcliff [2], we start with the obser-
vation that any linear family of PD’s has a representation (1) with nonnegative
functions f; satisfying

k
(3) Y f(x) =1 foreveryx €%.
i=1

Henceforth we assume that & is so represented. Then, of course, the constants
a; in (1) are also nonnegative, and their sum must be 1. Unlike in [1], we do not
require the a;’s to be positive. We do assume, without any loss of generality, that
Q(x) > 0 for every x € Z.

Introduce = %' X ¥ where ¥= {1,..., k}, let Q be the PD on & defined by

(4) Q(x,i) = Q(x)f,(x) -

and let & be the linear family of those PD’s Pon & which are of form
(5) B(x,i) = P(x)f(x)

and whose % marginal equals a = (a,,..., a;).

Then there is a one-to-one correspondence between the I-projection P* of @
on % and the I-projection P* of § on £, namely
(6) P*(x,i) = P*(x)fi(x).

We recall Theorem 3.2 of Csiszar [1]: Let & be the intersection of linear
families &),..., &, of PD’s on a finite set and let @ be a PD to which there exists
P € & with P < Q. Then the sequence of PD’s recursively defined by letting P,
be the I-projection of P,_, on &, (where &, = &; if n = mk + i), with Py = Q,
converges pointwise to the I-projection of @ on &. We also recall, from the proof
of this theorem, that I(B,,,||P,) > 0 as n — .

Now, let .2, be the family of those PD’s on 2= % X % whose #marginal is
equal to a and let &, be the family of the PD’s on & of form (5). Then
P=L NZL, and the above theorem applies whenever ¥+ 0. Thus the cyclic
iteration of I-pro_]ectlons on %, and .S,”z leads to a sequence of PD’s P - P*,
More exactly, let P Q and, for n=0,1,..., let P2n +1 be the I-pro;ectlon of
P, o OI1 .,Sf’ and P2n+2 the I-projection of P2,,+1 on f Then
(7) lim B, = P*.

n— oo

The iteration yielding the PD’s P can be given explicitly. To this end, write

B,,, [which, by definition is of form (5)] as

(8) PZn(x’l)=Pn(x)fi(x)’ n=0’1:“~’

where Py = @. It is well-known (and easy to check) that if a family of PD’s is
defined by a fixed marginal, I-projection on this family is obtained simply by
scaling. Thus the I-projection of P,, [cf. (8)] on %, is given by

® P i) = BOAE, a,= TR®R).

i,n
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Here we understand § = 0. Notice that a, , is always positive if a; is, provided
that P, is strictly positive on

(10) Z*= {x: f(x) > 0 for some i with a; > 0}.

The latter certainly holds for n = 0 and can be verified, by induction, for every
n; cf. below. . . .

Next, the I-projection P,,,, of P,,, , on %, is obtained by minimizing the
I-divergence of PD’s of form (5) from 132;: +1» i.., by minimizing

P(x)f(x) P(x) @,n |,
;iP(x)fi(x)log B fx)arar, ;P(x)[log @) " Zilfi(x)log o |
cf. (3). Write
.k o\ fi®)
(1) Roo() = BT (2]

where 0° is understood as 1. Then, denoting by c,,, a constant that makes
Cp+1R,.1 @ PD, the last sum equals I(Pl|c,.,R,.,) + logc, . It follows that
the minimizing P is P,,, = ¢,,,R,., and the minimum, i.e., I(P,, ol P, 1)
equals log ¢, ;. Thus

k A\ fix)
(12) Presld) = P @), Boa®) = e =)
In particular, this completes the inductive proof of the positivity of P, on 2.
By (6), (7) and (8) we have P, — P*.Sincelog c,,, = I( P, 5||Ps,+1) = 0and
P, = c,R,, this means that also R, — P*. Finally, substituting P, = ¢, R, in
(11) and (9), it follows that R, satisfies the recurrence

k a. \fi®
19 R =ROI[55] + b TR,
with R, = P, = Q.

But (13) in exactly the generalized iterative scaling algorithm of Darroch and
Ratcliff [2], which, we believe, thereby has been given an intuitive under-
standing.

3. Discussion. As the PD’s P, in Section 2 are positive on Z* [cf. (10)]
they are everywhere positive if 2= % (in particular, if each a; is positive). In
this case it also follows [by induction, using (12)] that each P, belongs to the
exponential family

k
00 & { Qi Q) = Qe 2 ()],
i=1
If the I-projection P* = lim,_, P, is everywhere positive, it can be concluded
that also P* € &, whereas otherwise P* belongs only to the closure of &. Recall
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that P* is everywhere positive iff there exists at least one everywhere positive
P e #Z (cf., e.g., Csiszar [1], Remark to Theorem 2.2).

Clearly, the exponential family (14) does not depend on the actual representa-
tion of % in the form (1). Changing this representation amounts only to a
reparametrization of &. In particular, £ can always be represented in terms of
strictly positive functions f; satisfying (3), making Z* in (10) equal to . Hence,
by the previous paragraph, the I-projection of @ on .# always belongs to the
closure of &. .

Darroch and Ratcliff [2] proved the convergence of their algorithm under the
hypothesis that an everywhere positive P €. % exists and also showed that
P* € &. We see that their hypothesis is needed only for the latter, whereas
P, - P* (or R, —» P*) always holds whenever ¥+ &.

It is a simple fact (dating back at least to Kullback [4]) that if a P* € N &
exists, it satisfies

(15) I(P||Q) = I(P||P*) + I( P*||Q) forevery P 2.

This “Pythagorean identity” implies, in particular, that if #N & is nonvoid, it
consists of a single PD and this equals the I-projection of @ on .. The result of
[2] cited above is of interest also because it establishes that #N & is, indeed,
nonvoid if an everywhere positive P € . exists at all. For a direct proof that
under the last hypothesis the I-projection of @ on £ belongs to & and that the
Pythagorean identity (15) holds for the I-projection P* of @ on .Z even if
P* ¢ &, see Csiszar ([1], Corollary 3.1, where Z is not required to be finite).

Finally, let us briefly discuss the significance of computing I-projections for
maximum likelihood estimation (cf. also [2] and [4]). For an i.i.d. sample from an
unknown distribution on %, the log-likelihood as a function of the underlying
distribution @ can be written as

nY P(x)log Q(x),

where P in the empirical distribution of the sample. Comparing this with (2)
shows that maximizing the likelihood over a given family of PD’s @ called the
model family, is equivalent to minimizing I( P||Q).

Suppose that the model family is an exponential family as in (14). Let & be
the linear family (1) defined by the same functions f;, with constants a; equal to
the sample averages of the f;’s, i.e.,

a;= LP(x)f,(x).

It is easy to see (and well-known) that all PD’s in the exponential family (14)
have the same I-projection P* on .. Thus by (15), with P = P, we have
(16) 1(P1Q,,....,,) = I(PIP*) + I(PIQ,, ....,,)

for each @,  , €¢. It follows that if P* € &, the left-hand side of (16) is
minimized by @, ., = P* ie, the (unique) ML estimate of the unknown
distribution equals the I-projection of @ on £. On the other hand, if P* is not in
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¢ only in its closure, the left-hand side of (16) can be made arbitrarily close to
but is always larger than I( P||P*); hence in this case the ML estimate does not
exist.
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