A GEOMETRIC INTERPRETATION OF DARROCH AND RATCLIFF'S GENERALIZED ITERATIVE SCALING¹

By Imre Csiszár

Hungarian Academy of Sciences

Darroch and Ratcliff's iterative algorithm for minimizing *I*-divergence subject to linear constraints is equivalent to a cyclic iteration of explicitly performable *I*-projection operations.

1. Introduction. The following problem often occurs in statistics: Given a probability distribution (PD) Q on a finite set $\mathscr X$ and a linear family

(1)
$$\mathscr{L}=\left\{P: \sum_{x} P(x) f_i(x) = a_i, i = 1, \dots, k\right\}$$

of PD's on \mathcal{X} , find the *I*-projection of Q on \mathcal{L} , i.e., that P^* which minimizes the (Kullback–Leibler) *I*-divergence

(2)
$$I(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

subject to the linear constraints in (1).

In addition to being inherent to Kullback's "minimum discrimination information" approach [3, 4] and to maximum entropy methods (maximizing entropy is the same as minimizing divergence from the uniform distribution on \mathscr{X}), this numerical problem arises also in maximum likelihood estimation; cf. Section 3.

When \mathscr{X} is a product space and \mathscr{L} in the set of all PD's with given marginals of certain kinds, a very intuitive method known as iterative proportional fitting or iterative scaling is available for computing *I*-projection on \mathscr{L} . This method is extensively used in the analysis of contingency tables; cf., e.g., [3] and the references in [1] and [2].

I-projection on a general linear family (1) can be determined by "generalized iterative scaling" due to Darroch and Ratcliff [2]. The author and some of his colleagues have been wondering for some time whether this method also has an intuitive interpretation, within the framework of I-divergence geometry [1]. In this communication, using a suitable extension of the sample space \mathcal{X} , generalized iterative scaling is shown to be equivalent to a cyclic iteration of explicitly performable I-projection operations. Whereas this renders the convergence of Darroch and Ratcliff's algorithm a consequence of Theorem 3.2 of Csiszár [1], it should be noted that the proof of the latter—while more intuitive—is mathematically very similar to the original proof of the former [2].

Received June 1988.

¹Research supported by Hungarian National Foundation for Scientific Research, Grant 1806. AMS 1980 subject classifications. 62B10, 65K10.

Key words and phrases. Generalized iterative scaling, I-divergence geometry, minimum discrimination information, maximum entropy, maximum likelihood.

1410 I. CSISZÁR

2. The result. Following Darroch and Ratcliff [2], we start with the observation that any linear family of PD's has a representation (1) with nonnegative functions f_i satisfying

(3)
$$\sum_{i=1}^{k} f_i(x) = 1 \quad \text{for every } x \in \mathcal{X}.$$

Henceforth we assume that \mathscr{L} is so represented. Then, of course, the constants a_i in (1) are also nonnegative, and their sum must be 1. Unlike in [1], we do not require the a_i 's to be positive. We do assume, without any loss of generality, that Q(x) > 0 for every $x \in \mathscr{X}$.

Introduce $\mathscr{Z} = \mathscr{X} \times \mathscr{Y}$ where $\mathscr{Y} = \{1, \ldots, k\}$, let \tilde{Q} be the PD on \mathscr{Z} defined by

$$\tilde{Q}(x,i) = Q(x)f_i(x) .$$

and let $\tilde{\mathscr{L}}$ be the linear family of those PD's \tilde{P} on \mathscr{Z} which are of form

(5)
$$\tilde{P}(x,i) = P(x)f_i(x)$$

and whose \mathscr{Y} -marginal equals $\mathbf{a} = (a_1, \dots, a_k)$.

Then there is a one-to-one correspondence between the *I*-projection P^* of Q on $\mathscr L$ and the *I*-projection \tilde{P}^* of \tilde{Q} on $\tilde{\mathscr L}$, namely

(6)
$$\tilde{P}^*(x,i) = P^*(x)f_i(x).$$

We recall Theorem 3.2 of Csiszár [1]: Let $\mathscr E$ be the intersection of linear families $\mathscr E_1,\ldots,\mathscr E_k$ of PD's on a finite set and let Q be a PD to which there exists $P\in\mathscr E$ with $P\ll Q$. Then the sequence of PD's recursively defined by letting P_n be the I-projection of P_{n-1} on $\mathscr E_n$ (where $\mathscr E_n=\mathscr E_i$ if n=mk+i), with $P_0=Q$, converges pointwise to the I-projection of Q on $\mathscr E$. We also recall, from the proof of this theorem, that $I(P_{n+1}||P_n)\to 0$ as $n\to\infty$.

Now, let $\tilde{\mathscr{L}}_1$ be the family of those PD's on $\mathscr{Z}=\mathscr{X}\times\mathscr{Y}$ whose \mathscr{Y} -marginal is equal to \mathbf{a} and let $\tilde{\mathscr{L}}_2$ be the family of the PD's on \mathscr{Z} of form (5). Then $\hat{\mathscr{L}}=\tilde{\mathscr{L}}_1\cap\tilde{\mathscr{L}}_2$ and the above theorem applies whenever $\mathscr{L}\neq 0$. Thus the cyclic iteration of I-projections on $\tilde{\mathscr{L}}_1$ and $\tilde{\mathscr{L}}_2$ leads to a sequence of PD's $\tilde{P}_n\to\tilde{P}^*$. More exactly, let $\tilde{P}_0=\tilde{Q}$ and, for $n=0,1,\ldots$, let \tilde{P}_{2n+1} be the I-projection of \tilde{P}_{2n} on $\tilde{\mathscr{L}}_1$ and \tilde{P}_{2n+2} the I-projection of \tilde{P}_{2n+1} on $\tilde{\mathscr{L}}_2$. Then

$$\lim_{n\to\infty}\tilde{P}_n=\tilde{P}^*.$$

The iteration yielding the PD's \tilde{P}_n can be given explicitly. To this end, write \tilde{P}_{2n} [which, by definition is of form (5)] as

(8)
$$\tilde{P}_{2n}(x,i) = P_n(x)f_i(x), \qquad n = 0,1,\ldots,$$

where $P_0 = Q$. It is well-known (and easy to check) that if a family of PD's is defined by a fixed marginal, *I*-projection on this family is obtained simply by scaling. Thus the *I*-projection of \tilde{P}_{2n} [cf. (8)] on $\tilde{\mathscr{L}}_1$ is given by

(9)
$$\tilde{P}_{2n+1}(x,i) = P_n(x)f_i(x)\frac{a_i}{a_{i,n}}, \quad a_{i,n} = \sum_x P_n(x)f_i(x).$$

Here we understand $\frac{0}{0} = 0$. Notice that $a_{i,n}$ is always positive if a_i is, provided that P_n is strictly positive on

(10)
$$\mathcal{X}^+ = \{x: f_i(x) > 0 \text{ for some } i \text{ with } a_i > 0\}.$$

The latter certainly holds for n = 0 and can be verified, by induction, for every n; cf. below.

Next, the *I*-projection \tilde{P}_{2n+2} of \tilde{P}_{2n+1} on $\tilde{\mathcal{L}}_2$ is obtained by minimizing the *I*-divergence of PD's of form (5) from \tilde{P}_{2n+1} , i.e., by minimizing

$$\sum_{x,i} P(x) f_i(x) \log \frac{P(x) f_i(x)}{P_n(x) f_i(x) a_i / a_{i,n}} = \sum_{x} P(x) \left[\log \frac{P(x)}{P_n(x)} + \sum_{i} f_i(x) \log \frac{a_{i,n}}{a_i} \right];$$

cf. (3). Write

(11)
$$R_{n+1}(x) = P_n(x) \prod_{i=1}^k \left(\frac{a_i}{a_{i,n}} \right)^{f_i(x)},$$

where 0^0 is understood as 1. Then, denoting by c_{n+1} a constant that makes $c_{n+1}R_{n+1}$ a PD, the last sum equals $I(P\|c_{n+1}R_{n+1}) + \log c_{n+1}$. It follows that the minimizing P is $P_{n+1} = c_{n+1}R_{n+1}$ and the minimum, i.e., $I(\tilde{P}_{2n+2}\|\tilde{P}_{2n+1})$, equals $\log c_{n+1}$. Thus

(12)
$$\tilde{P}_{2n+2}(x,i) = P_{n+1}(x)f_i(x), \qquad P_{n+1}(x) = c_{n+1}P_n(x)\prod_{i=1}^k \left(\frac{a_i}{a_{i,n}}\right)^{f_i(x)}.$$

In particular, this completes the inductive proof of the positivity of P_n on \mathscr{X}^+ . By (6), (7) and (8) we have $P_n \to P^*$. Since $\log c_{n+1} = I(\tilde{P}_{2n+2} || \tilde{P}_{2n+1}) \to 0$ and $P_n = c_n R_n$, this means that also $R_n \to P^*$. Finally, substituting $P_n = c_n R_n$ in (11) and (9), it follows that R_n satisfies the recurrence

(13)
$$R_{n+1}(x) = R_n(x) \prod_{i=1}^k \left(\frac{a_i}{b_{i,n}} \right)^{f_i(x)}, \qquad b_{i,n} = \sum_x R_n(x) f_i(x),$$

with $R_0 = P_0 = Q$.

But (13) in exactly the generalized iterative scaling algorithm of Darroch and Ratcliff [2], which, we believe, thereby has been given an intuitive understanding.

3. Discussion. As the PD's P_n in Section 2 are positive on \mathcal{X}^+ [cf. (10)] they are everywhere positive if $\mathcal{X}^+ = \mathcal{X}$ (in particular, if each a_i is positive). In this case it also follows [by induction, using (12)] that each P_n belongs to the exponential family

(14)
$$\mathscr{E} = \left\{ Q_{t_1, \ldots, t_k} : Q_{t_1, \ldots, t_k}(x) = c_{t_1, \ldots, t_k} Q(x) \exp \sum_{i=1}^k t_i f_i(x) \right\}.$$

If the *I*-projection $P^* = \lim_{n \to \infty} P_n$ is everywhere positive, it can be concluded that also $P^* \in \mathscr{E}$, whereas otherwise P^* belongs only to the closure of \mathscr{E} . Recall

1412 I. CSISZÁR

that P^* is everywhere positive iff there exists at least one everywhere positive $P \in \mathcal{L}$ (cf., e.g., Csiszár [1], Remark to Theorem 2.2).

Clearly, the exponential family (14) does not depend on the actual representation of $\mathscr L$ in the form (1). Changing this representation amounts only to a reparametrization of $\mathscr E$. In particular, $\mathscr L$ can always be represented in terms of strictly positive functions f_i satisfying (3), making $\mathscr X^+$ in (10) equal to $\mathscr X$. Hence, by the previous paragraph, the *I*-projection of Q on $\mathscr L$ always belongs to the closure of $\mathscr E$.

Darroch and Ratcliff [2] proved the convergence of their algorithm under the hypothesis that an everywhere positive $P \in \mathcal{L}$ exists and also showed that $P^* \in \mathcal{E}$. We see that their hypothesis is needed only for the latter, whereas $P_n \to P^*$ (or $R_n \to P^*$) always holds whenever $\mathcal{L} \neq \emptyset$.

It is a simple fact (dating back at least to Kullback [4]) that if a $P^* \in \mathcal{L} \cap \mathscr{E}$ exists, it satisfies

(15)
$$I(P||Q) = I(P||P^*) + I(P^*||Q) \quad \text{for every } P \in \mathcal{L}.$$

This "Pythagorean identity" implies, in particular, that if $\mathscr{L} \cap \mathscr{E}$ is nonvoid, it consists of a single PD and this equals the *I*-projection of Q on \mathscr{L} . The result of [2] cited above is of interest also because it establishes that $\mathscr{L} \cap \mathscr{E}$ is, indeed, nonvoid if an everywhere positive $P \in \mathscr{L}$ exists at all. For a direct proof that under the last hypothesis the *I*-projection of Q on \mathscr{L} belongs to \mathscr{E} and that the Pythagorean identity (15) holds for the *I*-projection P^* of Q on \mathscr{L} even if $P^* \notin \mathscr{E}$, see Csiszár ([1], Corollary 3.1, where \mathscr{E} is not required to be finite).

Finally, let us briefly discuss the significance of computing *I*-projections for maximum likelihood estimation (cf. also [2] and [4]). For an i.i.d. sample from an unknown distribution on \mathcal{X} , the log-likelihood as a function of the underlying distribution Q can be written as

$$n\sum_{x}\hat{P}(x)\log Q(x),$$

where \hat{P} in the empirical distribution of the sample. Comparing this with (2) shows that maximizing the likelihood over a given family of PD's Q called the model family, is equivalent to minimizing $I(\hat{P}||Q)$.

Suppose that the model family is an exponential family as in (14). Let \mathcal{L} be the linear family (1) defined by the same functions f_i , with constants a_i equal to the sample averages of the f_i 's, i.e.,

$$a_i = \sum_{x} \hat{P}(x) f_i(x).$$

It is easy to see (and well-known) that all PD's in the exponential family (14) have the same *I*-projection P^* on \mathcal{L} . Thus by (15), with $P = \hat{P}$, we have

(16)
$$I(\hat{P}||Q_{t_1,\ldots,t_k}) = I(\hat{P}||P^*) + I(P^*||Q_{t_1,\ldots,t_k})$$

for each $Q_{t_1,\ldots,t_k} \in \mathscr{E}$. It follows that if $P^* \in \mathscr{E}$, the left-hand side of (16) is minimized by $Q_{t_1,\ldots,t_k} = P^*$, i.e., the (unique) ML estimate of the unknown distribution equals the *I*-projection of Q on \mathscr{L} . On the other hand, if P^* is not in

 $\mathscr E$ only in its closure, the left-hand side of (16) can be made arbitrarily close to but is always larger than $I(\hat{P}||P^*)$; hence in this case the ML estimate does not exist.

REFERENCES

- [1] CSISZÁR, I. (1975). I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 146–158.
- [2] DARROCH, J. N. and RATCLIFF, D. (1972). Generalized iterative scaling for log-linear models. Ann. Math. Statist. 43 1470-1480.
- [3] GOKHALE, D. V. and KULLBACK, S. (1978). The Information in Contingency Tables. Dekker, New York.
- [4] Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES P.O. Box 127 BUDAPEST 1364 HUNGARY