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INADMISSIBILITY OF THE EMPIRICAL DISTRIBUTION
FUNCTION IN CONTINUOUS INVARIANT PROBLEMS

By QIqING YU
University of California, Los Angeles and Zhongshan University

Consider the classical invariant decision problem of estimating an un-
known continuous distribution function F, with the loss function L(F, a) =
[(F(t) — a(t))’[F(¢)]°[1 — F(¢)]? dF(t), and a random sample of size n
from F. It is proved that the best invariant estimator is inadmissible when:

1.n>0,-1<a,B<0and -1<a+§8.

2.n>0,-1<a=8< -1
3. n>1,(()a=—land B=0,o0r (ii) a =0and B = —.l.

4. n>2,a=B=—-1.

Thus the empirical distribution function, which is the best invariant estima-
tor when a = B = —1, is inadmissible when n > 3. This extends some results
of Brown.

1. Introduction. This paper presents results on the inadmissibility of the
best invariant estimator of a continuous distribution function. The background
of the problem is as follows.

Aggarwal (1955) introduced the problem of the invariant estimation of an
unknown continuous distribution function F(¢), with the loss function

(11) L(F,a) = [(F(t) - a(£)}*h(F(2)) dF (1),

based on a sample of size n from F(¢). This decision problem is invariant under
monotone transformations. It turns out that all the nonrandomized invariant
estimators are of the form

n
(1.2) d(t) = ¥ ud(¥,<t< ¥y),

i=0
where 1( E) represents the indicator function of the event E, Y, = — 0, Y, ; =
+o00 and Y; < --- <Y, are the order statistics of the sample X,,..., X,, and
Ug, ..., U, are constants. The best invariant estimator, denoted by d(¢), has
constant risk and has the form (1.2) with

(1.3) u, = folt”l(l — )" h(t) dt/jo‘ti(l — )" 'h(t)dt, i=0,...,n.

Much study has been devoted to the theoretical properties of the best
invariant estimator. A long outstanding open question [see, for example,
Ferguson (1967)] has been “Is the best invariant estimator minimax?” Whether
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or not the best invariant estimator is admissible is another interesting question.
Read (1972) established asymptotic inadmissibility of the best invariant estima-
tor for some special h(¢) with the loss (1.1). Brown (1988) gave an important
result in this respect. He proved that, when A(¢) = 1, the best
invariant estimator is inadmissible for all sample sizes n > 1.

The most interesting case is when A(t) = ¢~ 1(1 — t)~ L In this case, the best
invariant estimator, F(¢) =1 /nX?_ 1(X; < t), is the empirical distribution
function (empirical c.d.f.). Aggarwal (1955) pointed out that it is not admissible if
h(t) = t*1 — t)?, a > —1and B > —1, with at least one inequality being strict,
since it is not best invariant. Dvoretzky, Kiefer and Wolfowitz (1956) showed
that it is asymptotically minimax for a wide variety of loss functions. Brown
(1988) proved that it is admissible if the parameter space of continuous distribu-
tion functions is replaced by the family of all distribution functions.

If the loss function is taken to be

L(F,a) = [(F(t) - a(£)*F(t) (1 ~ F(¢)) " dW(2),

where W(t) is a finite nonzero measure, and the parameter space is the family of
all distribution functions, then the problem does not have an invariant structure.
Phadia (1973) proved that the empirical distribution function is minimax for all
such W(t). Cohen and Kuo (1985) showed that the empirical distribution
function is admissible for the loss

L(F,a) = [(F(¢) - a(£))*F(¢)"(1 - F(2))" dW(2),

where —1 < a, B8 < 1, W is a finite nonzero measure and the parameter space is
the family of all distribution functions.

In this paper, the classical setup, having the loss (1.1) with A(t) = t%1 — t)5,
is considered. In Sections 2 and 3, the inadmissibility of the best invariant
estimator is proved in the following cases, extending the result of Brown (1988):

n>0,-1<a B<0and -1<a+p.
n>0,-1l<a=B8<—-3.
n>1,(a)a=—-1land B=0or(b)a=0and 8= —1.
n>2 a=8= -1

S e

We conjecture that the best invariant estimator is inadmissible for:

()n>1land —-1<a, 8<0.
(i@n=>2a=-1land -1<B<0or(b)n>2 -1<a<OandB=—1.

In Section 2, we prove the inadmissibility of the empirical c.d.f. for n > 2. The
estimator d, we used to improve on the empirical c.d.f. is displayed in (2.3.0)
and explained in Remark 2.2. Also, we give the improved estimator d, [see
(2.3.9)] for the best invariant estimator in case 3(a) above. In Section 3, we prove
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the inadmissibility results for cases 1 and 2 above. The improved estimator for
the best invariant estimator is basically Brown’s estimator d, [see (2.1.4)]. In
Section 4, we give a brief discussion of the estimators dg, d, and dp.

2. Inadmissibility of the empirical distribution function.

2.1. Notation and remarks. Let ©® = {F: F is a continuous distribution
function on R'} denote the parameter space and Xj,..., X, be a sample of size
n from F in ©. Let

(2.1.1) A = {a(t); a(?) is a nondecreasing function from R' into [0,1]}
denote the action space. Let L(F, a) be the loss function, where
L(F,a) = [(F(t) - a(8))*h(F(t)) dF(¢),
212) (F,a) = [(F(2) - a(£))*h(F(t)) dF(2)
h(t) =t*(1 - ¢t)?, a,8> —1.

Then the decision problem (0, A, L), with observations Xj,..., X,, is invari-
ant under monotone transformations. The best invariant estimator is

(2.1.3) do(X,t) = la+1+ il(Xist)]/(n+2+a+B),

i=1
with constant risk R(F,d,) =1/(n+ 2 + a + 8). When a = 8 = 0, the best

invariant estimator is dy(¢) = [1 + X7, 1(X; < ¢t)]/(n + 2). Brown (1988) con-
structed an estimator

(2.1.4) dy(t) = dy(t) + X &xi(t)/[2(n + 1)(n + 2)],
i=1
where
1, ifx <0<t
(2.1.5) £(t) = {—1, ft<0<ux,
0, otherwise,

and used it to improve on d(¢).

REMARK 2.1. Note that Brown’s estimator has the form

(2.1.6) dg(t) = [a +1+ ): (X, < t)]/(n +24+a+pB)+ ch gx,(t).

i=1

There is another equivalent expression for dg(t). Let Y= —o0, Y,,, = +
and Y,,..., Y, be the order statistics of X,,..., X,. Given a fixed point s, say
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s = 0 here, let

I=max{j>0;Y; < s},
(2.1.7) { i< s)
i.e., I + 1is the rank of s among s,Y},...,Y,.

Define Y/, ..., Yn"+2 to be the order statistics of (Y, — o0, + o0, 8), i.e,,
Y, ifo'sjs I,

(2.1.8) Y}’ = (s, ifj=I+1,
Y, fI+1<j<n+2

Then Brown’s estimator can be expressed as

n+1 .
(2.1.9) dp(t) = ¥ a,2(Y <t <Y},
j=0
where
(j+a+)/(n+2+a+B)—c(n-1),
£0 < i
(2.1.10) ay; = f0<y<1,

/ (j+a)/(n+2+a+B)+ecl,
ifI<j<n+1.

Note that both Y/ and a; are functions of I. In order to guarantee that dy(t) is
a nondecreasing function of ¢, we need a,; < a;;,,, j = 0,1,..., n. In particular,
when I =j =i, wehave i/n— c(n—1i)<i/n+ cithatis, ¢ > 0.

REMARK 2.2. Brown’s estimator does not improve on d,(¢) when a« = —1 or
B = —1. In particular, when a« = 8 = —1, it does not improve on the empirical
distribution function. For example, when a = —1, if there is an estimator dj
improving on d,, then ¢ # 0. Otherwise, they are identical [see (2.1.6)]. Let I = 0
and t < Y? (=s). By (21.8) through (2.1.10), dg(¢) = apl(YQ <t < YP) =
—cn. By (2.1.1), dg(t) = —cn > 0. Since ¢ > 0 (see the end of Remark 2.1), it
follows that ¢ = 0, a contradiction.

As we can see, the best invariant estimator gives mass 1/(n + 2 + a + B)
to each of the observations and gives mass (a + 1)/(n+ 2 + a + B8) and
(B+1)/(n+2+ a+ B)to —oo and + oo, respectively. So, when a > —1 and
B > —1, Brown’s estimator shrinks the best invariant estimator as follows. For
each negative observation, it moves some positive mass from + oo or 0; for each
positive observation, it moves the same amount of mass from — oo to 0. This is
equivalent to assuming that there is a pseudoobservation at 0.

We can explain why Brown’s estimator does not work when a = 8 = —1 from
this point of view. When a = 8= —1, the best invariant estimator is the
empirical c.d.f., which gives no mass to —oco and +co. However, Brown’s
estimator still tries to move some mass from — oo or + co to 0. Because of this, it
is not a proper estimator of a distribution function (lim,_ __ d(¢) <0 or
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lim, , , . d(t) > 1), especially when all the observations have the same sign. If
an estimator can improve on the empirical c.d.f. (by shrinking the latter in a
manner similar to Brown’s estimator), it is reasonable to believe that the
shrinking should be done only when the pseudoobservation 0 is between the true
observations, and we should consider shifting some mass from certain observa-
tions to 0 or to some other observations.

The improved estimator d,, proposed in (2.3.0), modifies the empirical c.d.f. as
follows. The original observations X, ..., X, are augmented with a pseudoobser-
vation at 0 and the order statistics Y}, ..., Y/, | are formed. If I observations are
negative, 0 < I < n, then mass ¢, is shifted down from Y/,, to Y/ (toward 0)
and mass c,_ is shifted up from Y{ to Y/ (again toward 0). Values of c,,..., c,_,
are given in (2.3.2) or (2.3.3). Note that the estimator is always a distribution
function. .

This is certainly not the only improved estimator. For instance, one can easily
construct different estimators that improve on d, when n = 3. The idea is to
reassign weights to the order statistics Y/,..., Y/, ,. Note that the weights might
change if the rank I+ 1 of 0 (among Y],..., Y., ) changes. However, if the
sample size n is large, the complexity in adjusting the (n + 1) X (n + 2) [see
(2.2.3)] variables makes the process extremely difficult. Finding a sample form
that works and determining the constants c,, ..., c,_, are the points considered
in the next section.

2.2. A new class of estimators. Consider a new class U of estimators which
have the form

n+1
(2.2.1) d(Y,t)= ¥ a,1{¥/ <t<Y.,},
Jj=0
where
u;+ ¢, ifo<j<I=i,
a1j= . _ .
u,_ ,+cec;, ifl=i<j<n+1,
(2.2.2) e
a+1+j

uj=—————
T o n+2+4a+p’

J,i=0,...,n,and a;; < a,;,,, for all possible i and j [so that d(t) is really an
estimator]. An alternative form of (2.2.1) is

n n+1

(2.2.3) d(Y,t)= ¥ Y aA{Y <t<¥},I=i}.
i=0 j=0

Abusing notation, we will identify d(Y, ¢) with the (n + 1) X (n + 2) matrix
(a;;), say, d =d(Y,t) = (a;))
We first need to compute the risk function of d(Y, t).
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LEMMA 2.1. Assume d = d(Y, t) has the form (2.2.1) and p = F(0). Then

R(F,d) = Z Z f aij)zh(t)(?)(’;__;)tf(p — )71 -p)"dt

lOJO

(2.2.4) z": "ilfl h(t)(] r 1)(,’; 1)(1 _ gy

=0 j>i

x(t—p) ''pidt.
For proof, see Yu (1986).

2.3. The main results. For the cases n = 1, 2, it turns out that no estimators
in U can improve on F(t). In fact, F' is admissible when n = 1, 2 [Yu (1986)].
However, when n > 3, there are estimators in U that can improve on F(t).

THEOREM 2.2. Ifn > 3 and h(t) = t (1 — t)™, then the empirical distribu-
tion function is not admissible. Indeed, the estimator d, is better than F(t),
where

n+1

(2.3.0) Z a A{Y <t<Yh}.
Here
1 n-—1
0 0 - P 1
1 1 n-—1
0 - —=2c,_, - + 2¢, 1
n
(2.3'1) (aij)= 1... 2 n_l... e,
0 - —2¢ — + 2¢,_, 1
n
1 2
0 — — 1 1
n n
2¢;, ifj=n,i=1,...,n—1,
o = —-2¢c,_;, Hj=1l,i=1,....,n-1
Y [see (22.2)],i=0,...,n, j=0,...,n +1,
(2.3.2) 0, otherwise,
e(1,4), ifn=38
Co1yee+yCl) = . or a very small e > 0
(e ) {(%»%»%), fn=4 / i
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and
_ ek(n - E)[(n— k)(n—4) + n]
(2.3.3) K (n—1)(n-2) ’
k=1,...,n—1,if n=>5.

Note that if we write dy = (a;,), then a,;=1-a,_; ,.,_; for all 7, ;. This
results from the symmetry of the loss function.

Proor. We first check that dy(¢) is nondecreasing in ¢, i.e., that the values
in each row of (2.3.1) are nondecreasing. It suffices to check that if & is small
enough, we have 1/n —2¢;<2/n, i=1,...,n—2, and 1/n—2¢, , <1/n
[see (2.3.1)]. The first inequality is true as long as c; is small enough. The last
inequality holds if ¢,_, > 0 which is true by (2.3.2) and (2.3.3). So dg € U [see
(2.2.1)].

Using (2.2.2), the difference in the risks R(F, dg) — R(F, F) simplifies greatly
because a lot of components in (2.3.1) are the same as those in F(¢). In fact if
c,= +r =¢C,_ OthendQ—FThus,

R(F,dg) — R(F,F)

LV R SO T

i=1
X(p—-1t)""'1-p)"'dt

R R

n-1 n-1 _
Z fl _4ci(t_ —Ci)n(n . l)t_l
=1 1-p n 12

x(t=(1-p)" (1 -p)at

1 n—1 n—1), n—1-i_
+j;)—4ci(t— " —ci)n( ; )t (t—p) p'dt|.

Define

7o) = T |1 ("7 ) e amp - py e
(2.3.4)
+j:cfn(n : 1)t“(t -p)" ' ip dt],

(2.3.5) Bi(p)=/ln(t— n_l,)(”; 1)t“(t p)" ' ipidt,

P n

n—1

(2.3.6) A(p) = X ¢[Bi(p) + B(1-p)].

i=1
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Then R(F,dg) — R(F, F) = —4A(p) + 4T(p). Note that T(p) > 0 for all
p € (0,1), so we need to show that A(p) > 0 for all p € (0,1). For simplicity, we
just verify the case n > 5. The proofs for the cases n = 3 and 4 are similar. It
can be shown (see the Appendix) that

(2.3.7) A(p) =ep(1 - p).
Now by (2.3.7) and (2.3.4),

lim A(p) =¢ nczn—_1+cz' ) = ! >0
p—0+ T(p) 'n—-2 ! en[(n—2)(n—1) + 4]
Similarly, lim 1 A(p)/T(p) > 0. So we can extend A( p)/T(p) to be contin-
uous and positive on the closed interval [0, 1]. Thus, given ¢ > 0, we can find a
& > 0 such that A(p)/T(p) > 8 for all p € [0,1]. By (2.3.2), (2.3.4) and (2.3.7),
A(p) = O(¢) and T(p) = O(&?), so we can find an & small enough such that
A(p)/T(p) > 1 for all p € [0,1], that is,

<0, ifpe(0,1),
<0, otherwise.

R(F, dg) - R(F, F) = —4A(p) + 4T(p){ 0

The proof of Theorem 2.2 only shows the existence of an ¢ > 0 such that the
estimator dg, improves on F(t). The following is an example of dgo which
improves on F(t) when n = 3.

ExAMPLE 2.3. When n = 3, let ¢ = }. Then

0 0 5 2 1
o i1-41 1 241

(2.3.8) do = posor o a
0 3-% 3 3ts 1
0 3 2 1 1

and

00 1 2 1

R 0 3 3+ 21

K= do = o L 2 2 3

3 3 3
0 & 2 1 1

Let D(p) = R(F, dy) — R(F, F), where p = F(0). Then, by Lemma 2.1 and

tedious computation, we have
D(p) = (- %)(p - p*) + (#)[-P*log p - (1 - p)’l0g(1 - p)].
Note that if p € (0,1):
(i) (d*/dp*)D(p) = (2p — 1)/[12p(1 —p)] =0 onlyat p = ;

(ii) D(p) =D - p).

(iii) D(p) < O near O or 1.

(iv) D(1) = (=1 + log2)/48 < 0.
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So

3 = 1
R(F,dg) — R(F, F)| S0 HFO) =4
< 0, otherwise.
It is clear that the largest improvement is at p = ; and the percentage

improvement is about 1.3%.

Using similar methods, we can prove other inadmissibility results. The follow-
ing theorem, whose proof is put in the Appendix, is one such result.

THEOREM 24. If n > 2 and h(t) = t™?, then the best invariant estimator d,,
is inadmissible. Furthermore d, can be improved by d,, where

0 0 1 n—1 . n
n+1 n+1 n+1
0 1 9 1 n-—1 n 9
+ ‘ +
n+1 €3 n+1 n+1 n+1 “
1 2 n—1
2.3.9 d, =10 + 2 .
(2.39) ! n+ 1 n+ 1 n+l n+1
0 1 2 n-1 n
n+1 n+1 n+1 n+1
0 1 2 n n
n+1 n+1 n+1 n+1

Here ¢, = c¢/n, ¢y =2c¢c/[n(n —1)], ¢c= —2¢/[n*(n—1)] and c is a small
positive number.

REMARK 2.3. The improved estimator d; [see (2.3.9)] can be interpreted as
follows. If there is only one negative observation, then a small amount of mass
(2¢/n) is moved from + oo to the largest observation and a small amount of
mass (4c¢/[n%(n — 1)]) is moved from the smallest observation to 0. If there are
only two negative observations, mass 4¢/[n(n — 1)] is moved from + o to the
largest observation. In the other cases the estimator remains the same as the
best invariant estimator. Note that now the best invariant estimator gives mass
1/(n + 1) to + o0 and 0 to — oo.

COROLLARY 2.5. If n>2 and h(t) = (1 — t)™!, then the best invariant
estimator is not admissible.

REMARK 2.4. When n =1 and a = —1 or 8 = —1, there is no estimator d
in U such that d is better than d,. In fact d, is admissible in these situations
[Yu (1986)].
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3. Some extensions of Brown’s result. In Section 2 and Brown’s paper,
the inadmissibility of the best invariant estimator in the two most important
cases, i.e, a =8 =0 or —1, have been considered. Of interest also is the
inadmissibility problem for general a and 8. Note that Brown’s estimator looks
much simpler than the estimators we used in Section 2. Since, if a > —1 and
B > —1, the best invariant estimator assigns positive weight to — o0 and + o0, it
is natural to raise the question: Is it possible to use Brown’s estimator d, [see
(2.1.6)] to improve on d,, for general a and 8? We have some positive answers to
this.

For convenience, in this section, we assume

(3.1) R(t)=t(1-t)?, B> —1.

The difference between the risks of dg(¢) and d(¢) has a very nice form as the
following lemma shows; its proof is tedious but not difficult. For proofs of the
following lemmas and theorems, see Yu (1986).

LEmMA 3.1. Under the above assumptions and notation,
R(F’ do) - R(F’ dB)

. 4n '
(3.2) = mf\(%a,ﬁ) — 4nc®T(p, a, B),
where p = F(0),
A(p, o B) = [p(a+ 1)/(a+ B +2)] ['n(t)de~p [ h(r) dt
(3.3) P
—(a+ B+ 3)f0pth(t) dt + (a + 1)foph(t) dt
and
T(p,a,B) = [p+ (n— 1)p?] ['h(t) dt
(3.4) d

+[a-p) +(rn- 1A -p)’] foph(t)dt.

The next lemma provides a convenient tool to judge the inadmissibility of d,.

LEmMA 32. If —-1<a, <0 and A(p,a,B) > 0 [see (3.3)] for all p
(0,1), then d, is inadmissible.

By verifying the sufficient condition of Lemma 3.2, we have the following
inadmissibility results.

THEOREM 3.3. Suppose thatn > 1and —1 < a, B < 0. Then d,, is inadmis-
sible if either i) —1 <a+ Bor (i) —1<a=4.
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REMARK 3.1. It may be that d; improves on d, for all a, 8 € (—1,0]. At
least it is most likely that the best invariant estimator d, is inadmissible in the
above cases.

REMARK 3.2. One might wonder whether Brown’s estimator d; works for
a, B > 0. But unfortunately the answer is “no.” This can be seen as follows.

First note that c¢ in (2.1.6) is nonnegative (see the end of Remark 2.1). Assume
that « > 0 and 8 > —1. For convenience, write A(p) = A(p, a, B) [see (3.3)]. It
can be shown that

lim 4'(p) = [t*{(1-t)fde— [to(1 - t)’ dt <.
p—0* 0 0

Note that A(0) = 0, s0 A(p) < 0 for p near 0*. For p near 0*, Lemma 3.1 yields
for ¢ > 0,

4nc

___—A _ 2
n+2+a+,B (p’a7B) 4nc T(p’aaﬁ)<0y

R(F’ dO) - R(F’ dB) =
since T(p, a, B) = 0V p € (0,1). Therefore, d; cannot improve on d,,.

4. Summary. The estimators dg [see (2.3.0)], d, [see (2.3.9)] and dj [see
(2.1.4)], improving on d, in thecasesa = 8= —1,(a,B) = (—-1,0)and a = 8 =
0, respectively, coincide with our intuition. The unknown distribution function F
is continuous, whereas d,, being a step function, is discontinuous. If d, is
inadmissible, then it is expected to be improved by an estimator which is
somewhat smoother than d,. Each of the three estimators above considers 0 as a
pseudoobservation and readjusts the weights so that the new estimator becomes
smoother. Each of them shrinks d, in a similar manner as follows. Given a and 8
(note that d,, is essentially a function of « and B), let

S={ee{—w,+0w, X,,..., X,}; d, assigns positive weight to e} .

If inf S < 0 < sup S, some weight is shifted from inf S or sup S toward 0, though
not necessarily to 0 itself.

The difference between Brown’s estimator dp and the type of estimators d,
and d; proposed in this paper is as follows.

1. Brown’s estimator shifts weight to 0 only, whereas d, and d, shift weight to
an observation among (0, X,,..., X,). This observation may or may not be 0
[depending on I; see (2.1.7)].

2. Brown’s estimator shifts weight only from —co and + oo, whereas d, and d,
shift weight from Y] or Y, also.

In general, there is little doubt that if d, does not assign positive mass to + oo
and — oo simultaneously and if it is not admissible, then it can be improved only
by estimators similar to dg or d,. It is also likely that if d, does assign positive
mass to + oo and — co simultaneously, then d,, is inadmissible iff an estimator of
Brown’s type improves on d,,.
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APPENDIX

Proor oF (2.3.7). It follows from (2.3.5) that

s |
(—1)""_"%]p"“ln p+ [—(;1_):_!]17"

) n—1-—1i o _ _an-1
+ (_l)n—l—l_l_ Z (_l)n—l—z—j(n 1 l)—]pn_l
Jj=1

J nj
n—2-i . 1 . n—1
kfn—1-—1 b
+ -1 -
kz;'o(')( k )(n—i—k n(n—l—i—k))p ’
i=1,...,n — 1. Thus [where c; is as in (2.3.3)],
n_t n_1 . _q\n-—-1
Y ¢B(p)=p"'Inp ¥ ci(—l)"‘l“n(n ; 1) -

i=1 i=1 .

(A1) x{1+n;::i(n—]}—i)(_1)j”,;1}
+:i21 £ (" V-0 (115 )

e(—p + 4p? — 3p?)
—ep(1 - p)(1 - 3p).
By (2.3.6) and the above expression,
A(p)=—ep(1-p)(1-3p) —ep(1—p)(1 -3 +3p)
=¢ep(l - p). =
ProOF OF THEOREM 2.4. It is easy to check that if ¢ [see (2.3.9)] is small

enough, the values in each row of (2.3.9) are increasing. Thus d, € U. Using
Lemma 2.1, it can be shown that

R(F,d,) - R(F, dy) = —4A(p) +. 4T(p),

(2.3.7)
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where A(p) = cp(1 — p)* " '/[n(n — 1)(n + 1)] and
T(p) = j(;pncgdt(l -p)" 14+ j:ncfp(t -p) 't tdt
+ flén(n —1)e2p(t — p)" ¢t ' dt.
p

Thus

TG0 | Y P | R
peo T(p) [ |™" 2(n-1?  n(n-1) '

Also

.

LA o/[n(n? - 1) .
p—1- T(p) [ -n+c2 (n(n-1))/2+ck n]
Thus we can extend A(p)/T(p) to be continuous and positive on [0,1]. Hence
we can find ¢ small enough such that A(p)/T(p) = 1 on [0,1]. It follows that
<0, ifF(0)+#0orl,
<0, otherwise.

0.

R(F, d,) - R(F, d,) = —4A(p) + 4T(p){ 0
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