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Robust nonparametric estimators: for regression and autoregression are
proposed for ¢- and a-mixing processes. Two families of M-type robust
equivariant estimators are considered: (i) estimators based on kernel methods
and (ii) estimators based on k-nearest neighbor kernel methods. Strong
consistency of both families is proved under mild conditions. For the first
class the result is true under no assumptions whatsoever on the distribution
of the observations.

1. Introduction. There are many nonparametric methods for estimating
the regression function in the i.i.d. case [see for instance Collomb (1981) for a
review], some of which have been extended to time series models.

Two of the most common methods in nonparametric regression are kernel and
k-nearest neighbor kernel methods, introduced by Nadaraya (1964) and Watson
(1964) and by Collomb (1981), respectively. Both of them are weighted averages
of the response variables and therefore are highly sensitive to large fluctuations
in the data. Thus, these estimates are not asymptotically qualitatively robust as
defined for stochastic processes in Papantoni-Kazakos and Gray (1979), Cox
(1981) or Boente, Fraiman and Yohai (1987) where the concept of asymptotically
strongly robust (ASR) is introduced. Robust estimators can be obtained via
M-estimates. A first approach in the i.i.d. case was given in Tsybakov (1982) and
Hardle (1984), who studied pointwise asymptotic properties of a robust version
of the Nadaraya-Watson method when scale is known. Later on, Hardle and
Tsybakov (1988) extended their previous results to M-type scale equivariant
kernel estimates. See also Boente and Fraiman (1989), who consider robust scale
equivariant nonparametric estimates using nearest neighbor weights and weights
based on kernel methods by applying a robust location functional to estimates of
the conditional empirical distribution function of the response variables.

In this paper we study the case when the observed sample has serial depen-
dence.

Let {(X,,Y;): t > p + 1)} be a strictly stationary process, X, € R” and Y, € R.
For x € R? let ¢(x) = E(Y;|X, = x). The Nadaraya—Watson regression estima-
tor defined by

T

(1.1) or(x) = X wq(x)Y,

t=p+1
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where

T
W (x) = th(x’ Xpi1reeos XT) =K((Xt - x)/hT) Z K((X‘r - x)/hT)’

T=p+1

K is a nonnegative integrable function on R” and A, > 0, was applied by
Watson (1964) to a meteorological prediction problem. Later Roussas (1969),
Bosq (1980), Doukhan and Ghindes (1980, 1983), Collomb (1982, 1984), Robinson
(1983), Yakowitz (1985) and Doukhan, Leon and Portal (1985) studied asymp-
totic properties of such estimators and predictors. In particular, these estimators
are used for a pth order autoregressive model, i.e., a strictly stationary real
valued process {Z,: t € N} satisfying

(1.2) Z,=g(X,) + e,

where X, = (Z,_y,...,Z,_,), Y, = Z,, e, is independent of {Z,_,,Z, ,,...} and
E(e,) = 0.

We consider processes {(X,,Y,):¢>p + 1} not necessarily defined from -
{Z,: t € N} and in this way we also include the i.i.d. case, although we always
have in mind a pth order autoregressive model. This framework also includes
the transfer function models of Box and Jenkins (1970).

As noted above, ¢p(x) is a type of weighted average of the observations
(Yt >p + 1} and can be viewed as minimizing the quadratic loss function
LAY, — ¢7(x))?w,p(x). Evidently, ¢,(x) is highly sensitive to the effect of just
one isolated disparate observation Y,, particularly if the corresponding X, is
close to x. Note also that strong consistency results for these linear methods
require that |Y,| < M < oo for all ¢ see Collomb (1984) or Peligrad (1986).

Robinson (1984) adapted robust M-estimators of a location parameter with
kernel weights to time series models replacing the quadratic loss function by a
loss function related to a convex function p with bounded derivative ¥, and
established a central limit theorem for such estimators when scale is known. A
similar approach was considered by Collomb and Hardle (1984) who established
uniform convergence of this family of estimators for @-mixing processes. In this
paper, we consider robust scale equivariant nonparametric M-estimators based
not only on kernel methods but also on k-nearest neighbor kernel methods for
which we obtain strong pointwise convergence under quite mild conditions. We
follow the approach developed in Boente and Fraiman (1989).

More precisely, let (X,Y) be a random vector with the same distribution as
(X,, Y,). The robust conditional location functional g(X) = E¥(Y|X) defined in
Boente and Fraiman (1989) is the essentially unique o(X )-measurable function
8(X) that verifies

(1.3) E{m(X)y[(Y - g(X))/s(X)]} =0

for all integrable function A, where o(X) is the o-algebra generated by X, s(X)
is a robust measure of the conditional scale, e.g.,

(14) s(x) = med(|Y — m(x)|) = MAD(x),
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m(x) = med(Y|X = x) is the median of a regular version F(y|X = x) of the
conditional distribution function and y: R — R is a strictly increasing, bounded
and continuous function. When the distribution of Y|X = x has half or more
than half of its mass at one single point we redefine s(x) = 1. If the conditional
distribution function F(y|X = x) is symmetric around ¢(x) and ¢ is odd, we
have g(x) = ¢(x). Then, in this sense it is a natural extension of the conditional
expectation E(Y|X).

In Theorem 2.1 of Boente and Fraiman (1989) it was shown that the solution
of (1.3) exists, is unique and measurable. The weak continuity of the functional
so defined was proved in Theorem 2.2. Then, we obtain consistent and asymp-
totically strongly robust estimates of the autoregression function by
applying this functional to estimates F.(y|X = x) of F(y|X = x), verifying that
Fr(y| X =x) -, F(y|X =x) as T - oo as. (), where —  stands for weak
convergence and p denotes the marginal distribution of the vector X.

We will consider two families of estimators of F(y|X = x).

1. Estimators based on kernel weights. These are defined by

T
(1.5) Fr(yl X =x) = X wqe(x)I,(Y),
t=p+1
where A = (— o0, y], I, denotes the indicator function of the set A and w,, is
defined in (1.1).
2. Estimators based on k-nearest neighbor kernel methods. These are defined by

T
(1.6) Fr(ylX=x)= Y @q(x)L(Y),
t=p+1
where
wﬂ(x) = th(x’ Xp+l" LR XT)
T
=K((X,- x)/HT)/ Y K((X,-x)/Hyp),
T=p+1

Hy is the distance between x and the k-nearest of x among X, ,,..., X and

k = ky is a fixed integer. In particular, when K(t) = I, <1)(¢), where || - || is
any norm on R 7, we obtain the uniform %-NN estimate.

Denote by sy(x) and §7(x) the scale measures corresponding to Fr(y|X = x)
and F(y|X = x), respectively, as defined in (1.4). The corresponding robust
nonparameteric estimates of g(x) are given by the unique solutions of

T
(1.7) t=Z“th(x)¢ [(Y. - gr(x))/sr(x)] = 0
and
(1.8) t=2+lwt'r(x)¢[(yt - éT(x))/gT(x)] =0,

respectively.



ROBUST NONPARAMETRIC AUTOREGRESSION 1245

We obtain strong pointwise consistency of both families of estimates, when
the observations (X,,Y,) have a ¢- or an a-mixing dependence structure [see
Billingsley (1968) and Rosenblatt (1956), respectively]. For kernel weights, the
consistency results hold without requiring any regularity condition to the distri-
bution of the process. In this sense they can be considered distribution-free
results. For k-nearest neighbor kernel weights, it is required that the vector X
have a density f(x).

In Sections 2 and 3, assumptions and strong pointwise consistency results are
stated for kernel and k-nearest neighbor kernel weights, respectively. In Section
4, two useful exponential inequalities for ¢- and a-mixing processes, respectively,
are stated and the almost everywhere weak convergence of the conditional
distribution functions defined in (1.5) and (1.6) is proved.

As is well known the concept of a-mixing (strongly mixing) processes includes
¢-mixing (uniform strongly mixing) processes. The ¢-mixing condition is rather
restrictive when we are considering autoregressive models while a-mixing pro-
cesses generally include a pth order autoregressive model as defined in (1.2).
However, we consider both cases separately. In the ¢-mixing case we obtain a
better convergence rate on the window bandwidth A, than for strong mixing
processes. We also do not require a geometric condition on the mixing coefficients
for p-mixing processes. Some examples of possible models under consideration
are given in Section 2.

2. Asymptotic results for robust nonparametric estimates based on
kernel methods. We will consider the following set of assumptions.

Al. yY: R — R is a strictly increasing, bounded and continuous function such
that lim Y(u) =a>0andlim,_,__y(u)=>b<0.

u— o0

A2. Either of the following statements holds.

(a) s(x) is given by a functional which is weakly continuous at F, for almost
all x.

(b) ¥ is odd and F(y|X = x) is symmetric around g(x) and a continuous
function of y for each fixed x.

H1. Either of the following statements holds.

(a) The process {(X,,Y,): t = p + 1} is a strictly stationary ¢-mixing process
(uniform strongly mixing), i.e. [Billingsley (1968), page 166], there exists a
nonincreasing sequence of positive numbers {¢(n): n € N}, with

lim ¢(n) =0
n—oo
such that for any integer n,
IP(A N B) — P(A)P(B)| < ¢(n)P(A),

where A € M}, ,, B€ M3, and M, is the o-field generated by the random
vectors {(X,,Y,):u <t < v}.
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(b) The process {(X,,Y,): t > p + 1} is an a-mixing process (strongly mixing),
i.e. [Rosenblatt (1956)], there exists a nonincreasing sequence of numbers
{a(n): n € N} with lim ,_, _ a(n) = 0 such that for any integer n,

|P(A N B) — P(A)P(B)| < a(n),

where A € M}, , and B € M3 ,. We also assume that the mixing coefficients are
geometric, i.e., there exist 0 < p < 1 and @ > 0 such that a(n) < ap™

REMARK 2.1. The ¢-mixing condition is rather restrictive when we consider
autoregressive processes, for instance a stationary gaussian process is ¢-mixing if
and only if it is m dependent for some m < oo [see Ibragimov and Linnik (1971),
Theorem 17.3.2], as was noted by Collomb and Hzrdle (1984), where they suggest
that a natural context should be the case of strong mixing processes. As is well
known, the class of strong mixing processes (a-mixing) generally includes the
pth-degree autoregressive model defined by (1.2). However, in the ¢-mixing case
we obtain a better convergence rate on the window bandwidth A, than for the
strong mixing processes and we do not require a geometric mixing condition as in
the a-mixing case.

H2. K: RP > R is a bounded nonnégative function satisfying
alyy <(u) < K(u) forsomea >0, r>0,

a,H(|lul) < K(u) < aH(|lul),

where a, and a, are positive numbers and H: R*— R™ is bounded, decreasing
and such that t?H(t) > 0 as t > .

H3. The sequence {h;: t € N} is such that
hy—>0 and Thf - o asT — co.

H4. (a) When we are dealing with ¢-mixing processes we require the se-
quences {h;:T € N} and {p(n): n € N} to satisfy the following: There exist
A > 0 and a nondecreasing sequence {n,: T € N} such that

1<ny<T, To(ny)/np<A
and
Th2/(nplogT) » o asT - .

(b) In the a-mixing situation we will use: There exists § > 0 such that
TY4(h2)*+9/4/log T — 0 as T - oo.

REMARK 22. (a) If {Z,:t€ N} is a strictly stationary ¢- or a-mixing
process, then {(X,,Y,): ¢ > p + 1} is also a ¢- or a-mixing process, respectively.
(b) Assumption H4(a) has been introduced by Collomb (1984) and as was
noted in his paper, H4(a) is fulfilled in the following three interesting situations:

(i) The process {(X,,Y,): ¢ > p + 1} is m-dependent [p(n) = 0 for n > m]. In
this case what is required is just Th®/logT — o as T — 0.
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(i) {(X,, Y,):t > p + 1} is a geometrically ¢-mixing process, i.e., there exist
0 <p<1and a> 0 such that ¢(n) < ap™ If we choose n, = clog T, where
¢ > —1/log p, then the required rate is Tht/log?T — o0 as T — co.
. (iii) There exist w > 1 and a > 0 such that ¢(n) < an~". In this case we are
requiring that Thf/(TY**) 1ogT) > o as T = 0.

REMARK 2.3. All the consistency results can also be obtained, without
requiring that the a-mixing coefficients have geometric behaviour, by using an
exponential inequality due to Carbon (1983) instead of Lemma 5.2. However,
Lemma 5.2 gives a weaker condition on the bandwidth selection. More pre-
cisely, Carbon’s inequality requires that there exists a sequence {n,: T € N},
1 <np<T for which the kernel bandwidth satisfies Thy/(nylogT) — oo,
Té(ny)/n% < A and Ta(n;)**/*Tn;' < B, where A and B are positive con-
stants and &(n) = L7 ,a(i). In particular, in a geometric a-mixing process
h; must satisfy the stronger requirement T''~AY2h%/logT — oo for some
0<B<1.

We will need the following lemma which can be found in Boente and Fraiman
(1989), Theorem 2.2. '

LEMMA 2.1. Assume Al and A2. Let {F,(x,y)} be a sequence of distribu-
tion functions such that
F(yX=2x) -, F(yX=x) as.(p),

where F,(y|X = x) stands for the conditional distribution function of F,(x, y).
Then we have that

E{(Y|IX) > E¢(y1X) a.s.(n),
where by E¥(y|X) we denote the robust conditional location functional solution
of (1.3) and (1.4) when the vector (X,Y) has distribution G.

Lemma 2.1 entails that the following result be a consequence of the almost
everywhere weak convergence of Fp(y|X = x) to F(y|X = x) established in
Theorem 4.1 of Section 4.

THEOREM 2.1. Under Al and A2 and H1-H4 we have that:

(a) gr(x) = g(x) a.s. as T — oo for almost all x(p).
(b) gr(x) is asymptotically strongly robust (ASR) at p.

REMARK 2.4. Note that in Theorem 2.1 we do not impose any restriction on
the probability distribution p of the vector X. Hence the results obtained are
robust and distribution-free in the sense that they are true for all u.

3. Asymptotic results for robust nonparametric estimates based on
nearest neighbor kernel weights. For the case of the k-nearest neighbor
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kernel methods we will require instead of H2, H3 and H4 the following assump-
tions.

H2'. The vector X has a density f(x). K: R? - R is a bounded nonnegative
function, [ K(u)du = 1 and either of the following holds:

(@) K(u) < ey < ry(00).
(b) f is bounded and [K2*%u)du < oo, where 8 = 0 if Hi(a) holds and
8 = 25,/(1 — &) if Hi(b) holds.

H3'. The sequence {k;: t € N} satisfies 2y — oo and kr/T — 0 as T — oo.

H4'. (a) For ¢-mixing processes we require: The sequences {k;: T € N} and
{p(n): n € N} are such that k;/(n;logT) — o as T — oo, where n; is as in
Hd4(a).

(b) In the a-mixing case we will require: There exists 8§ > 0 such that
{074 /(T4 4 10gT) > w0 as T — oo.

H5. K(uz) 2 K(z) for all u € (0,1).

REMARK 3.1. Remark 2.2(b) holds changing Th£ by k;. Then for the
uniform k-NN weights in the i.i.d. case we obtain the necessary and sufficient
conditions on &, obtained by Devroye (1982).

THEOREM 3.1. Under Al, A2, H1 and H2'-H5' we have that:

(a) 87(x) — g(x) a.s. as T — oo for almost all x(p).
(b) 87(x) is ASR at p.

As in Section 2 this result follows from Lemma 2.1 and the almost everywhere
weak convergence of FT( y|X = x) to F(y|X = x) established in Theorem 4.2.

COROLLARY 3.1. Under Al, A2, H1 and H2'-H5' the solution g4(x) of
Yy, - £2(x) ) N
$r(x) ’

i.e., the robust unzform k-NN estimator, is ASR and strongly consistent for
alnwst all x.

1 Fr
k—TZtl/

t=1

REMARK 3.2. If F(y|X = x) is a continuous function of x and f is continu-
ous and bounded or f is continuous and K has a compact support, then it is
easy to see that the results in Theorems 2.1 and 3.1 hold for all x.

4 Estimating the conditional distribution function. In this section we
will study the strong consistency of Fr.(y|X = x) and FT( y|X = x), defined by
(2.4) and (2.5), respectively, to F(y|X = x). Collomb (1984), Theorem 1 proves
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the complete convergence of F,(y|X =x) at each continuity point x of
F(y|X = x) for p-mixing processes requiring some regularity conditions on the
marginal density of X. In Theorem 5.1 we show the complete convergence of
F,(y|X = x) for almost all x, for ¢- and a-mixing processes under no assump-
tions whatsoever on the distribution of the vector (X, Y). In this sense it can be
considered a distribution-free result. In Theorem 5.2 we show the complete
convergence of Fp(y|X = x) under some weak regularity conditions stated in
assumption H2'.

Given a Borel set A C R we denote by ¢,(x), ép(x) and ¢(x) the functions

T

ép(x) = t=Z lth(x)IA(Yt)’
. T
¢p(x) = =Z lth(x)IA(Yt)a

¢(x) = E(L(Y)IX = x),

where w,;, and ,; are defined in (1.5) and (1.6), respectively. In this section, A
will stand for A. '

We will use the following lemma due to Collomb [(1984), Lemma 1] which
gives a sharper bound than a similar result obtained by Bosq (1975).

LEMMA 4.1 (Bernstein inequality for ¢-mixing processes). Let {A;} be a
sequence of -mixing random variables satisfying E(A;)) = 0, |A) < d,
E(]A)]) < 8 and E(A2%) < D. Denote $(m) = L™ ,¢(i) for each m € N. Then for
each a > 0 and n € N we have

o|£a
i=1
where C, = 2exp(3e’?np(m)/m), C, = 6(D + 48D$(m)) and where o and m

are, respectively, a positive real number and a positive integer less than or equal
to n satisfying amd < 1.

> a) < C,exp(—aa + a®nC;),

For the case of a-mixing processes we will use the following exponential
inequality due to Doukhan, Leon and Portal (1984), Theorem 6.

LEMMA 4.2 (Bernstein inequality for a-mixing processes). Let {A;} be a
sequence of geometrically a-mixing random variables satisfying E(A;) = 0 and
|A)] < 1. Given 0 <8 <1, denote y=2/(1—-98) and o = sup{||All,,i € N}
where ||A,||Y = E(|A,|"). Then there exist constants C, and C, which depend only
on the mixing coefficients, such that

n C —-C, a'/?
P( Y Al> a) < —lexp(———z’" ),

1/4.1/2
= 8 n'/%s

where C, ,, = C, if Yno < 1 and C, , = Cyn*’*e"/* if yno > 1.
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4.1. Consistency of the conditional distribution function for kernel weights.
The following result from real analysis will be needed. It is proved in Greblicki,
Krzyzak and Pawlak [(1984), Lemma 1]. We will denote by p the probability
measure of the vector X.

LEMMA 4.3. Let K satisfy H2 and g be an integrable function. Then

JE(52)sman | [ 5 u(a) » g(x) asho0
for almost all x(p).

When K(t) = I, <1)(¢) this result may be found, for instance, in Wheeden

and Zygmund (1977), page 189.
Throughout this section S, will be the closed ball of radius r centered at x.

THEOREM 4.1. Assume H1-H4. Then:
(i) ¢7(x) = ¢(x) a.s. for almost all x.
(i) limg_, , sup, |Fp(¥|X = x) — F(y|X = x)| = 0 a.s. for almost all x.

Proor. (i) Let
ar=E(K((X - x)/h)),
br = E(K((X - x)/h)$(X)),
M = L(Y)K((X, - x)/h)/ar

and
§r = K((Xt - x)/h)/aT'
Then
_ 1 X p\br
br(x) = (;gﬂm— E(na) + (1= 7)o

1 T p
—(? Y ((r—E(tg)) +1- ?)

t=p+1

By Lemma 4.3, b;/a; — ¢(x) as T — oo for almost all x(p), so it is enough
to show that

S
(4) z (mr = E(ng)) = >0 as.asT—
t=p+1
and
1 T
(4.2) T Y (¢4—E(¢7)) 20 as.asT - .
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If (4.1) is proved, (4.2) follows by taking A = R. We will consider separately
the ¢- and the a-mixing cases.

Denote by A; = (0,7 — E(n;r))/T. Then we have E(A;)=0 and || <
¢(Tar)™! = d where ¢, = sup, K(u).

(a) Suppose that (X,,Y,) is a ¢-mixing process satisfying H4(a). Then as
E(A%) < ¢(T%a;) ' =D and E|A;| < 2T ! = 8, by Lemma 4.1 we have

P(Sy/T| > ¢) < cpexp(—ae + «*TCy),

where c¢; = 2 exp(3Ve To(n)/n), Cr = 6(T%a;) 'c,(1 + 8¢(n)) and
anc(Tarp) ' < i, a >0 and n € N. Then, if we choose a = fTar/(nc,) and
B = 5 we get

P(ISy/T| > ¢) < cpexp(—BTarg(e, T,‘n)/(ncl)),
where g(e, T, n) = ¢ — aTC;.
As in Lemma 2 of Collomb (1984) it is easy to see that g(e, T, n) >
emin (3, ¢,/2) and ¢y < c for all T > Tj,. Therefore

P(|S;/T| > ¢) < cexp(—¢Tay/16n) < cexp(—eaTp(S,,)/16n)

by H2. 4
Then as h?r?/u(S,,) = (d\,/dp)(x), where A, is the p-absolutely continu-
ous part of the Legesgue measure on R ?, H4(a) implies the complete convergence
of S;/T by taking n =n, if np, > cworn=n, > nyif np=n, for T > T,,.
(b) Suppose now that (X,,Y,) is an a-mixing process verifying H4(b). Let
y =2/ — 8) > 2. Then we have that

E(|Ai|7) = ‘;—YE(M;'T - E(mT)I’)

< 2y_IE( Y+ E(ng)") N P i Y
. . < —
== T«y IntTI ("hT) = (TaT)‘Y ( h ) + aT

< o B, —yx)/h)) 2
(Tar) (Tar)’

Sr
T

C
P( > e) < —lexp(—C2el/2(T1/4a;}+5)/4))
8

Then T2 < 2¢17YV7/(T*%a} /") where o = sup{E(|A,|")"/",i € N} and
as by H4(b), lim_, , 2¢t~Y7/(ak '/YT*/%) = 0, by Lemma 5.2 we have
8
C
< —exp(— C,TV*u(S,,)" ")
and the desired result follows from H4(b) as h"r"/p,('S,h) - (dA,/dp)(x).
(ii) Follows from (i) by an argument similar to the one used to prove the
Glivenko—Cantelli theorem. O
REMARK 4.1. If A=R and K(¢) = Iy .,(¢) we have |ng/T|, <0+
E(n;)/T =0 + (1/T). Then as |ng/T|l, = (Tay '/")"' we have that
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[T 43 +9/4]7t < [TY%6 + T~ '/2]"/2 Therefore, the required convergence rate
of the window bandwidth A for a-mixing processes is sharp in the sense that it is
the best possible rate that can be obtained from the exponential inequality given
in Lemma 5.2.

4.2. Consistency of the conditional distribution function for nearest neighbor
kernel weights. In this section we will also require that the marginal distribu-
tion of the vector X has a density f(x). Lemma 4.5 also shows that Theorem 4.1
holds without requiring H2.

LEMMA 44. Under H2' and H3 we have that for any Borel set A C R,
h_pE(K((Xp+l - x)/h)IA(Yp+1)) - f(x)¢(x) ash—0
for almost all x.

Proor. Using Lemma 4.3 and H2', it is easy to see that the problem can be
reduced to considering the case where A = R, i.e., it is enough to show that

(4.3) }{i_,n})h‘pE[K((X —x)/h)] = f(x) for almost all x.

When f is bounded and continuous at x, (4.3) follows easily from the
dominated convergence theorem. Let now f be any bounded measurable func-
tion [f(x)dx = 1 and g, be a sequence of nonnegative continuous and bounded
functions such that lim, , [ |f(z) — g,(2)|dz = 0 and sup, g,(x) < M for all
k >k,

For each fixed k& we have

L = limsup
h—0

7 [B((z = x)/R)f(2) dz — f(x)

(44) < limsup|h? [K((z - x)/h)gy(z) dz — gy(x) | + lgu(x) = f(x)

h—0

+limsuph™» [K((2 - x)/higu(z) - £(2)] dz.

As g, is continuous and bounded, the first term on the right in (4.4) is zero.

Consider first the case when K(u) < ¢ 1<)

Given ¢ > 0, let E, = {x: L > ¢}. Then, an argument analogous to that of the
Lebesgue differentiation theorem [see, for instance, Wheeden and Zygmund
(1977), page 106] using the Hardy-Littlewood maximal function of ( f — g,) and
Chebyshev’s inequality leads to

IE,|, < 2¢ea(p) [If(y) — gu()dy + 267" [If () — g(»)l b,

where | - |, stands for the outer Lebesgue measure and a(p) is a constant

e
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depending only on p. By letting £ — oo it follows that |E,|, = 0 and therefore
h™P fK((z —x)/h)f(z)dz = f(x) as h — 0 for almost all x.

Finally suppose that H2(b) holds. Given & > 0 choose r such that
f1u> K () du < ¢/4M. Then

ho? [K((z = )/h)g(2) = 1(2)dz < b7, [ lgw(2) ~ 1(2)ldz

+2M [  K(u)du<c(g,—1)"(x) +e/2

lu|>r

and the proof follows as above. O

LEMMA 4.5. Assume that H1, H3, H4 and H2' hold. Then for any Borel set
A C R we have that
T
Y K((X,—x)/R)I,(Y) > f(x)6(x) a.s.asT

t=p+1

Th?

for almost all x.

PrROOF. Denote by 7,7 = h"PK((X, — x)/h)I,(Y;). Then by Lemma 4.4 it
suffices to show that

1T S,
T Y (n,T—E(n,T))=—T——>O as.asT — oo.

t=p+1

We will use again Lemmas 4.1 and 4.2 for ¢- and a-mixing processes, respec-
tively, with A; = (0,7 — E(n,7))/T.
By Lemma 4.4 we have

h? [K*((z - x)/h)f(2) dz > f(x) [K*(u)du asT - oo
and
h? [K((z ~2)/B)[(z) dz > f(x) asT > oo

for almost all x.
Then

E(82) < (T?h?) 'hPE(K*((X,,, — x)/h))
< (T2hp)_12f(x)fK2(u) du=D,

E(A) < 2T % 7E(K((X,,, — x)/h)) < 4f(x)T" =8

for T > T, and |A;| < (Th?) 'sup, K(u) = d. For ¢-mixing processes the proof
follows as in Theorem 4.1 from Lemma 4.1.
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Finally, using Lemma 4.4 we obtain

o=E(A)" < %[(E('ﬂﬁ'))lﬁ + E("’iT)]

1 1/y
< | () )[R )+ 2f(x)] < T-(hP)0 10w
and Lemma 4.2 implies the desired result as in Theorem 4.1. O

Lemma 4.6 proved in Boente and Fraiman (1988) shows that the complete
consistency of the density estimators proposed by Loftsgaarden and Quesenberry
(1965) and studied by Wagner (1973) still holds for ¢- and a-mixing processes.

This result will be used in proving the complete consistency of Fp(y|X = x).

We will denote by A the Lebesgue measure on R ? and by V, the closed ball of
radius r centered at 0.

LEMMA 4.6. Let {X,:t > p + 1} be a strictly stationary process with density
f(x) satisfying H1. Define HP = | Xz, — x||” where k = ky verifies H3' and H4'.
Then

fr(x) = kp(TA(Vy,)) = f(x) completely, for almost all x as T — oo.

The proof may be found in Boente and Fraiman (1988).

The following lemma can be found in Collomb (1980), page 162.

Let (X,, B,), 1 <t < T, be a sequence of random vectors X, € R?, B, R*
and k: R X R? - R* a measurable function such that
(4.5) u<u =k(u,z) <k(u,z)VzeRP.

Denote by cp(D) = L, Bk(D, X,)/Zi-1 k(D, X,).

LEMMA 4.7. Let (Dr)rc y be a sequence of random variables. If for all B,
0 < B < 1, there exist two sequences (Dj)y < n and (Df)r < v satisfying

(4.6) Dr<Dr VT and ILp..p..p;y—1 as,
(4.7) ’ cr(Dy) » ¢ and cp(Df) > c a.s.,
T T
(4.8) Y k(D;, X,)| ¥ k(D#, X,) > B a.s.,
t=1 t=1

then cp(Dg) — c.

THEOREM 4.2. Under H1 and H2-H5' we have that:
@) $T(x) = ¢(x) a.s. as T — oo for almost all x.
(i) limy_, , sup,cglFr(¥1X = x) — F(y|X = x)| = 0 a.s. for almost all x.

ProoF. (i) Take in Lemma 4.7, B,=I,(Y,), Dy=H; and k(u,z)=
K((z — x)/u). For all x such that f(x) > 0 denote hy = [ky/(Tf(x)N(V,)]'/?.
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Then A, satisfies H3 and H4. Given 8 € (0,1) define Dy = D7 (B) = hpB'/?P
and Dj= D#(B) = hof~ /.

The proof follows as in Collomb (1980), Proposition 2 using Lemmas 4.5
and 4.6.

(ii) Follows as in Theorem 4.1. O
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