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REGRESSION ANALYSIS UNDER LINK VIOLATION

BY KER-CHAU L1! AND NarHUA Duan?

University of California, Los Angeles and RAND Corporation

We study the behavior of regression analysis when there might be some
violation of the assumed link function, the functional form of the model
which relates the outcome variable y .to the regressor variable x and the
random error. We allow the true link function to be completely arbitrary,
except that y depends on x only through a linear combination Bx. The slope
vector B is identified only up to a multiplicative scalar. Under appropriate
conditions, any maximum likelihood-type regression estimate is shown to be
consistent for B up to a multiplicative scalar, even though the estimate might
be based on a misspecified link function. The crucial conditions are (1) the
estimate is based on minimizing a criterion function L(f, y) which is convex
in 6, where 8 = a + bx, (2) the expected criterion function E[L(a + bx, y)]
has a proper minimizer and (3) the regressor variable x is sampled randomly
from a probability distribution such that E(bx|Bx) is linear in Bx for all
linear combinations bx. The least squares estimate, the GLM estimates and
the M-estimates for robust regression are discussed in detail.

These estimates are asymptotically normal. With the assumption that the
regressor variable has an elliptically symmetric distribution, we show that
under a scale-invariant null hypothesis of the form H,: BW = 0, the asymp-
totic covariance matrix for BW is proportional to the one derived by treating
the assumed link function as being true. The Wald test as well as the
likelihood ratio test for a scale-invariant null hypothesis has the correct
asymptotic null distribution after an appropriate rescaling of the test statis-
tic to account for the proportionality constant between the two asymptotic
covariance matrices. For normally distributed x, the rescaling factor for
M-estimates is the same as the one used in robust regression, while the
rescaling factor for GLM estimates is related to adjustment for overdisper-
sion. Confidence sets can be constructed by inverting Wald’s tests.

The impact of the violation of linear conditional expectation condition 3 is
discussed. A new dimension is added to the regression diagnostics by explor-
ing the elliptical symmetry of the design distribution.

A connection between this work and adaptive estimation is briefly dis-
cussed.

1. Intreduction. Regression analysis is probably the most widely used sta-
tistical method other than simple descriptive statistics such as means and
frequency tables. Usually we assume a parametric model and then choose an
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estimation method appropriate for this model. However, for empirical applica-
tions, the assumed model is unlikely to be exactly true and the specification of
the model can be somewhat arbitrary. A well-known example is the choice
between the logistic and the probit regression. When the true model deviates
from the assumed model, the regression analysis based on the assumed model
might be inappropriate.

There has been a good deal of research on the behavior of regression analysis
under deviations from the assumed model. Quite often, the assumed model (or
the ideal model) is a linear one, y = a + Bx + ¢, with Gaussian error ¢. Distribu-
tion robustness, as reviewed in Huber (1981), concerns the violation of the
assumed error distribution (cf. Remark 1.2 at the end of this section). On
the other hand, data may have to be transformed to follow a linear model and
the correct transformation may be misspecified. Thus, for instance, the correct
model may be

logy=a+Bx +e¢,

but we may misspecify the transformation and assume
y?2=a+Bx+e.

Under the misspecified model, we might use the least squares regression of y'/?
on X to estimate a and B. Does this apparently fallacious regression tell us
anything? Under appropriate conditions on the regressor variable x, the answer
is yes; see Sections 2 and 5.

In the above example, we have misspecified the functional form of the model.
More generally an assumed model can take a general form
(1.1) y=g(a+Bx,¢), e ~ F(e),
where g is a given bivariate function, the link function, which relates the
outcome variable y to the regressor variable x and the stochastic error ¢, and F
is the error distribution.

In this paper we study the behavior of regression analysis when the assumed
link function might be incorrect. We allow the true model to be completely
arbitrary, except that the outcome variable y depends on the explanatory
variable x only through a linear combination Bx. (See Remark 1.1 at the end of
this section for more discussion.) The conditional distribution of y given Bx is
allowed to be completely arbitrary. This is equivalent to allowing g and F to be
both arbitrary and unknown, which implies that B can be identified only up to a
multiplicative scalar (see Observation 1 in Section 2).

The population case is studied in Section 2 where we establish a general result
(Theorem 2.1) that any maximum likelihood-type regression estimate is Fisher
consistent for the slope vector B up to a multiplicative scalar, even though the
estimate might be based on a misspecified link function, provided that (1) the
regression is based on minimizing a criterion function L(8, y) which is convex in
0, with § = a + bx, (2) the expected criterion function E[L(a + bx, y)] has a
proper minimizer and (3) the regressor variable x is sampled randomly from a
distribution such that the conditional expectation E(bx|Bx) is linear in Bx for
any linear combination bx.
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This result indicates that many maximum likelihood-type regression estimates
are “robust” in the sense that even when the assumed model is grossly misspeci-
fied, the result can still be meaningful. In the minimum, we can estimate the
ratios B,/B, consistently; those ratios measure the substitutability of different
components x; and x, of the regressor variable, and are the key quantities of
interest in many studies.

Condition 1 is satisfied for many important estimation methods, including
least squares, M-estimates with nondecreasing influence functions and general-
ized linear model (GLM) estimates with canonical link: The linear model is
specified for the natural parameter (see also Section 3.5). The convexity property
of the criterion is crucial here. Without the convexity, we may have inconsis-
tency (see Section 2.4). On the other hand, sometimes the regression may be
based on a more complicated type of criterion so our general result does not
apply immediately. Such cases may be studied on an individual basis. We
demonstrate one important case, namely the Cox regression estimate, which
turns out to be consistent as well again, due to some convexity property of the
criterion (see Section 2.5). Condition 2 is usually satisfied, but not always; see
Sections 3 and 4. Condition 3 looks rather restrictive. It is satisfied when the
regressor variable is normally distributed or is elliptically symmetric. The impact
of violations of condition 3 is studied in Section 6. It is interesting to observe
that Stein’s necessary condition for adaptive estimation, simplified by Bickel
(1982), holds under condition 3; see Section 7, where adaptive estimation is
briefly discussed.

Condition 3 has important implications in data collection and analysis. At the
design stage when the levels of x can be chosen by the statistician, elliptically
symmetric designs are favorable from the viewpoint of providing protection
against link violations according to Theorem 2.1. On the other hand, if the data
have already been collected and the distribution of x is not close to being
elliptically symmetric, we may still conduct meaningful regression analysis on
those subsamples of the data with the x distribution being closer to the elliptic
symmetry. This is particularly attractive at the exploratory stage of data
analysis; specific proposals to implement this are still under investigation. A
simulation study is conducted to illustrate the role of elliptic symmetry in
Section 6.4. There we see that a new dimension is added to the existing
regression diagnostics by exploring this design condition. Bias bound and other
asymptotic aspects are discussed in Sections 6.1-6.2.

In Sections 3 and 4 we will discuss the GLM estimates and the M-estimates in
detail. Under appropriate regularity conditions and some a priori verifiable
conditions, we show that the existence condition (A.2) in Theorem 2.1 is valid for
these estimates. However, detailed study on the likelihood equation (Section 3.3)
reveals some inherent dangers in applying GLM with the natural parameter
space being restricted (for example, the gamma family).

.Sampling behavior and inference are studied in Section 5. First, we establish
strong consistency. Then we derive the asymptotic distribution for the regression
estimates. Under the assumption (A.3’): the distribution of the regressor variable
is elliptically symmetric and the asymptotic covariance matrix for the estimated
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slope B can be written as the sum of two matrices, the first one being propor-
tional to the one derived by treating the assumed link function as being true and
the second one being proportional to B’B. For all inference problems about B
that are identifiable, the second matrix can be neglected. The proportionality
constant for the first matrix can be estimated consistently. It follows that for
any scale-invariant null hypothesis H,: BW = 0, the standard Wald and likeli-
hood ratio tests based on the assumed link function have the correct asymptotic
null distributions after being rescaled to account for the proportionality con-
stant. Inother words, those procedures are robust in validity after the rescaling.
Note that non-scale-invariant hypotheses such as H,: BW = 1 are not identifi-
able because B is identified only up to a multiplicative scalar. We can also invert
the Wald test to construct confidence sets; they have to be cone-shaped.

Under the stronger assumption (A.3”): The distribution of the regressor
variable is normal and the above rescaling has interesting interpretations. For
GLM estimates, the proportionality constant is analogous to the generalized X2
usually used to adjust for overdispersion. For M-estimates, the rescaled asymp-
totic covariance matrix coincides with what is usually used for the linear model
in robust regression. In other words, the inference for robust regression is robust
in validity not only against distribution violations but also against link viola-
tions. For the least squares estimate, the rescaled asymptotic covariance matrix
also coincides with the one based on the standard linear model. In other words,
the standard linear model inference is robust in validity against link violations.

We will postpone the review of related literature [in particular, Brillinger
(1977, 1983)] until Section 2.6, after introducing the necessary notations and
terminologies. Technical proofs are given in the Appendix.

REMARK 1.1. The assumption about the relationship between y and x made
in this paper can be called a general regression model with one component. It can
be generalized to allow 2 components: The conditional distribution of y given x
depends on x only through k linear combinations Byx,..., B,x. The single
component model can be viewed as a general form of additivity model. Multi-
component models allow nonadditivity.

REMARK 1.2. In contrast to distribution robustness, “model robustness” is
usually used when the deterministic part of the linear model is incorrect. Thus
the true model may take the form y = Bx + g(x) + ¢, where g(x) is an unknown
function incorporated into the assumed model y = Bx + ¢ to allow for model
violation. Box and Draper (1959) assumed that g(x) can be parametrized by a
linear model to account for higher order interactions or nonlinearity. See Kiefer
(1973) and Galil and Kiefer (1977) for more discussion on this finite dimensional
violation approach. On the other hand, infinite dimensional models for g(x) are
studied in Huber (1981), Marcus and Sacks (1977), Li (1982, 1984), Sacks and
. Ylvisaker (1984) and Speckman (1979). The model violations considered in these
papers are different from the link violation that we consider in this paper.

2. Population case: Fisher consistency. We shall first describe the esti-
mation methods considered in this paper. Then in Section 2.2, we discuss the role
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of link violation in our robustness consideration. The main result of Fisher
consistency for regression estimates is given in Section 2.3. Section 2.4 addresses
the convexity condition required for the criterion functions used in deriving the
regression estimates. Section 2.5 studies the Cox regression model and the partial
likelihood estimate, which does not belong to the general type of regression
estimates considered in the main result. Section 2.6 reviews related works.

2.1. Estimation methods. We consider maximum likelihood-type regression
estimates based on a specified one-parameter family of probability distributions
{Ky, 0 € O} for y and a linear relationship between 6 and x,

Yy~ K 0( Y )9

0 =a+Bx.

We assume throughout this paper that the regressor variable x is sampled
randomly from a nondegenerate probability distribution @(x) in R”. Suppose K,
has a density %,(y) with respect to an appropriate carrier measure »(y). Then
the maximum likelihood estimate of (a, B) is a solution of the following mini-
mization problem:

(2.1)

n

(2.2) minimize n~' ) L(a + bx,, ¥;),
i=1

where

(2.3) L(6,y) = —logky(y).

The consistency of m.le. when the assumed model (2.1) is true can be shown
under certain regularity conditions.

We shall consider the regression estimate based on minimizing (2.2) for any
criterion L(8, y) that is convex in 6.

An important special case which we shall study in detail is the class of
estimates based on the generalized linear models [GLM; see, e.g., Nelder and
Wedderburn (1972)] with canonical link: We assume that {K,} is a natural
exponential family (NEF). The criterion function (which will be called the NEF
criterion) can be written as

(24) L(8,y) = —y0 +4(9),

where (6), the cumulant generating function for y, is strictly convex. The
estimate (&, B) based on this criterion function will be referred to as the GLM
estimate. In Sections 3 and 5, we shall study the behavior of the GLM estimate
when the true model may deviate from the assumed GLM. Note that the
squared error criterion

(2.5) L(6,y) = —y0+6%2=(y—0)"/2 - /2

is a special case of the NEF criterion.
It is not always necessary to formulate criterion functions via probability
distributions. In particular, we will also consider location invariant criterion

functions
(2.6) L(6,y)=p(y—0)—p()
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for some convex function p which might not correspond to a proper probability
distribution. These criterion functions result in the M-estimates for robust
regression, whose behavior under distribution violation has received extensive
study; see, e.g., Huber (1981) or Portnoy (1985). We give results in Sections 4 and
5 for the behavior of M-estimates under link violation, which is a more general
form of violation than distribution violations. Note that in (2.5) and (2.6), we
have subtracted p(y) from p(y — #) to eliminate unnecessary moment condi-
tions; see Section 4. :

Of course some nonconvex criteria have also been used in many situations. An
example is the Cauchy distribution for the location family. Nonconvex criteria
can have undersirable numerical properties, such as multiple local minimizers.
Furthermore, the asymptotic behavior for the resulting estimates may also be
undesirable; see, e.g., Diaconis and Freedman (1982) for results in the robust
location estimation problems and see Section 4 for more discussions.

In many situations the criterion function has nuisance parameters. For exam-
ple, we might have a dispersion parameter

L(8,0,y) = —o " "logky(y),

where ¢ is an unknown scalar which does not depend on x. The quasilikelihood
functions of the above form are studied extensively in the GLM and related
literature; see, e.g., Wedderburn (1974), McCullagh (1983), Nelder and Pregibon
(1986) and Efron (1986). The nuisance parameters might not affect the ranking of
the criterion in terms of 6. (The dispersion parameter above is an example.) In
this case we can use any admissible values of the nuisance parameters to derive
point estimates for « and B. However, the nuisance parameters might affect the
Fisher information and need to be considered in making inference. We will
discuss GLM with a dispersion parameter in Section 5.

2.2. Link misspecification. In empirical applications, it is rare for the speci-
fied model (2.1) to hold exactly. In this paper, we assume that the true model has
the same form (2.1), but with a different one-parameter family:

Yy~ Ho(y),

(2.7)
0 =a+ Bx.

The family {H,} is allowed to be arbitrary and unknown. (The specified
family {K,} is usually our speculation about what {H,} should be.) This is
equivalent to assuming that the conditional distribution of y given x depends
only on Bx and is arbitrary and unknown otherwise. We will refer to models of
form (2.7) as the general regression models.

The class of general regression models is very rich, including transformation
models [see, e.g., Box and Cox (1964) and Bickel and Doksum (1981)], Efron’s
(1982) general scaled transformation family (GSTF), dichotomous regression
models, censored regression models, projection pursuit regression with one ridge
component [Friedman and Stuetzle (1981)] and the generalized linear models
(GLM).
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Any given general regression model of form (2.7) can be expressed in the link
function form (1.1) as

(2.8) y=2g(0,¢) = Hy'(e) = inf{§: e < Hy(5)}, e~ U(0,1).

Specifying a model of form (2.1) is equivalent to specifying a link function g and
an error distribution F in (1.1). The specified model is subject to link violation:
The true model has the same form (1.1), but with a different link function
and /or a different error distribution. If the specified link function g is believed
to be correct, while the specified error distribution F' might be wrong, we have
distributional violation.

The correspondence between models of form (2.7) and (1.1) is not unique: The
same one-parameter family {K,} can correspond to different pairs (g, F') of link
functions and error distributions. For models of form (1.1), we can always absorb
the error distribution F into the link function using the inverse c.d f.

g(0,e) =g(8, F"(u)) = &(6,u), u~UQ,1).

Therefore we can always assume that the error distribution is uniform over
(0,1). It follows that we need only specify the link function & and link violation
is equivalent to the misspecification of the link function g. (Distributional
violation can therefore be viewed as a special type of link violation.)

Under link violation, we allow both the link function g and the error
distribution F to be arbitrary and unknown. In particular, g need not be
monotonic or invertible and F need not be symmetric. The following is an
important observation.

OBSERVATION 1. When the link function g is unspecified, the intercept « is
not identified and the slope vector B is identified only up to a multiplicative
scalar. (Any location-scale change in a + Bx can be absorbed into the link
function.)

When g is unspecified, the best we can achieve is to estimate the direction of
the slope vector . (In other words, we can estimate the ratios B,/8,, but not the
magnitudes of the components B;.) For power transformation models, there have
been some controversial views on the interpretation of slope vector B [see
Hinkley and Runger (1984), with discussion]. However, the ratios B,/B, do have
a simple interpretation: They measure the amount of treatment x, required to
match the effect of a unit of treatment x;. Duan (1986) studied the power
transformation models in future detail.

REMARK 2.1. Discrete @(x) will not be considered in this section; the
direction of B is not identifiable in this case.

2.3. Fisher consistency. We shall study the large sample behavior of regres-
sion estimates based on a specified model (2.1) when the true link function is
unknown. Thus our observations (y,, x;) are i.i.d. with the conditional distribu-
tion of y given x determined by (2.7), or equivalently (1.1), and the marginal
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distribution
(2.9) x ~ Q(x).

By the strong law of large numbers,

S|

> L(a+bx;,y) - EL(a+bx,y) (as.)
i=1

if the expectation is well-defined. Call the right-side term the expected criterion
and write
R(a,b) = EL(a + bx, y).

In this and the next two sections, we shall consider the minimization of the
expected criterion. In other words, we shall first demonstrate the Fisher consis-
tency property of the estimate based on L. Under appropriate regularity condi-
tions Fisher consistency often implies strong consistency, which is studied
further in Section 5.

In order to consider the minimization of the expected criterion, we need to
consider the domain for (a, b). For convenience, we now restrict to a domain
that is stricter than necessary. Later at the end of this section we shall discuss

this domain problem in further detail.
Define @ = {(a, b): R(a, b) is well-defined and is finite}. Assume that

(A.0) Q is a nonempty convex set in R?*!,

THEOREM 2.1. Under (1.1) and (2.9), the minimization problem
(2.10) minimize R(a, b) over (a, b) €
has a solution (o*, B*) such that B* is proportional to B:
(2.11) B* =vB
for some scalar vy, provided that (A.0) and the following conditions hold:

(A.1) The criterion function L(8, y) is convex in 6 with probability 1.

(A.2) The conditional expectation E(bx|Bx) exists and is linear in Bx for all
b e R~

(A.3) There exists a proper solution for (2.10).

PROOF. Let a superscript over the expectation sign E denote conditioning in
taking the expectation. Then by Jensen’s inequality,
R(a,b) = EEP**L(a + bx, g(a + Bx, ¢)) > EL(a + E*™*bx, y)
= EL(a + (¢ + dBx), y)
for some ¢, d € R. Here we have used (A.2) to obtain the last equality. Now the

theorem follows immediately. O

If the inequality in the proof of this theorem can be replaced by a strict
inequality for all & not proportional to B, then all minimizers of (2.10) must fall
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along the direction of B. Thus any regression slope estimate based on minimizing
the criterion function L(#8, y) is Fisher consistent for B up to a multiplicative
scalar. This is the case, for example, when the criterion is strictly convex in 6.
When the convexity of L(#8, y) is not strict, we need additional assumptions to
reach the same conclusion. Nonstrict convexity will be studied further for the
location invariant criteria in Section 4.

The existence condition (A.3) does not always hold. An example is in the
application of logistic regression where we have a degenerate population with a
perfect discriminant function Bx: y=1if x> —aand y=0if Bx < —a.

A direct verification of the existence condition (A.3) may be complicated since
the dimension of the minimization domain is high. A careful examination of the
proof of Theorem 2.1 reveals that we may cut down the dimension to 2 by
dealing only with the minimization problem given in'the following condition
which may replace condition (A.3) in Theorem 2.1:

(A.3") There exists a proper solution to the minimization problem
(2.12) minimize R(a, ¢) over (a, c) € Q,

where a and c¢ are real numbers, R(a,c)= R(a,cB) and Q = {(a, o):

(a, cB) € @}.

The following lemma further reduces this two dimensional minimization
problem to a one dimensional minimization problem, which is easier to verify
and will be used in Sections 3 and 4.

LEMMA 2.1. Assume that Q is open and contains the origin. The following
condition implies (A.3'):

(A.3") For any (a, c) € Q, the solution set for the minimization problem
(2.13) minimize R(at, ct) overt € {t: (at,ct) € 2},

is nonempty and is bounded away from the boundary of {t: (at, ct) € Q}.

PROOF. First observe that R(a, ¢) is a convex function of (a,c) over the
open domain § and is therefore continuous. Suppose that (2.12) does not have a
proper solution. We can take a sequence (a,, c¢,) such that R(a,, c,) tends to
inf{R(a,c): (a,c) € @}, but {(a,, c,): n=1,2,...} does not have an accumula-
tion point in §} (otherwise the lemma is proved). By compactness, we can find a
subsequence, also denoted by (a,, c,) for convenience, such that the unit vector
aZ+ ¢2)~v%.(a,,c,) converges to some vector (a,, ¢,). Let T be the solution
set for (2.13) with @ = a,, ¢ = ¢,. Since T is bounded, we may take three points
t, < t,<t,, such that ¢, € T and ¢, ¢, & T. By the continuity of R(a, c), we
can take two small open balls with centers at (a¢;, cy¢;), i = 1,2, such that for
any point (a, c) in each ball, R(a,c) > R(ayty, cot,). Now consider the line
segment connecting (a,,c,) to (ayty, coty,). For large n, this line segment
intersects one of the two open balls. Therefore by convexity, R(a,,c,) >
R(ayty, coty)- It follows that (ayty, cot,) should be a minimizer for (2.12). O
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The domain condition in this lemma is usually satisfied for many important
estimation methods, including the M-estimates and the GLM estimates; see
Sections 3 and 4. Furthermore, Lemma 2.1 does not depend on the fact that & is
two dimensional, and can be generalized to higher dimensions with essentially
the same proof. In particular, the existence condition (A.3) may also follow from
(A.3") with @ replaced by €, if  is open and contains the origin.

The rest of this section will be devoted to the discussion of the domain
condition (A.0). First we define the domains on which the expected criterion can
be defined.

DEFINITION 2.1. The extended domain @, C R?*! is the set of (a, b) for
which L(a + bx, y) is defined with probability 1. The proper domain 2, C &, is
the set of (a, b) for which the expected criterion is well-defined, i.e., the positive
and the negative parts of L cannot both have infinite expectations. The inte-
grable domain Q C Q, is the set of (a, b) for which the expected criterion is finite
[this is the domain considered in condition (A.0)].

We shall assume that L(-, y) is defined on an interval (may be unbounded).
From this and (A.1) it follows that €, is convex. To avoid trivial cases we further
assume that €, is indeed p + 1 dimensional, i.e., it is not contained in any affine
subspaces with dimensionality less than p + 1. Otherwise, we can express a + Bx
differently and thus reduce the dimensionality of x.

LEMMA 2.2. The expected criterion (2.10) is always well-defined, i.e., O, = §,
and cannot assume the value — oo, provided that (A.1) and the following
condition hold:

(A.0") There exists at least one interior point in Q.

The proof of this lemma is given in the Appendix. It follows from the lemma
that Theorem 2.1 can be extended.

COROLLARY 2.1. Theorem 2.1 is valid with condition (A.0) replaced by (A.0")
and the integrable domain Q in the minimization problem (2.10) replaced by the
extended domain Q, (see Definition 2.1).

Proor. Under (A.1), (A.0) and the fact that R(a, b) is a convex function, &
is a convex set. Now the proof of Theorem 2.1 applies. O

2.4. Nonconvexity and normality. The conclusion of Theorem 2.1 may still
be true without convexity condition (A.1), providing that (A.2) is replaced by the
much stronger condition:

'(A.2") The regressor variable x is normally distributed.

THEOREM 2.2. Under (1.1), (2.9), (A.0), (A.2") and (A.3), the minimization
problem (2.10) has a solution (a*, B*) such that (2.11) holds.
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PrOOF. Because of (A.2'), for any b, we may write bx = {Bx + ¢, with ¢
independent of Bx and &. Then

R(a,b) = EL(a + bx, g(a + Bx, ¢))
=EE“L(a + tBx + ¢, g(a + Bx, ¢))
> minEL(a + tBx, g(a + Bx, ¢))

> minEL(a + {(Bx, gla + Bx, ¢€)).
a,y
This proves the theorem. O

It can be seen from the proof that condition (A.2’) can be replaced by the
weaker condition:

(A.2") For each b € R”, there exists some constant ¢ such that bx — {Bx is
independent of Bx.

The only case that (A.2”) will hold without knowing B is when we have (A.2').
The following is an example where the conclusion of Theorem 2.1 is false due
to the violation of (A.1) and (A.2).

EXAMPLE 1. Suppose p = 2 and x = (X, X,)’ follows a uniform distribution
on the circle x2 + x2 = 1. Assume that y = x, (so e = 0) and the criterion
L(6, y) = 0 with the equality holding only for § = + 1 — y?. Now it is clear
that EL(a + bx, y) > 0 with equality holding only for ¢ = 0, b = (0, +1). Thus
the minimizer of (2.10) is a* = 0, B* = (0, +1), but the true B is (1,0).

2.5. Cox regression. The conclusion of Theorem 2.1 may still be true for
other types of regression. We illustrate this point by studying the case of Cox
regression, a widely used model in survival analysis.

Suppose y is the survival time. Assume no censoring now (see Remark 2.2 for
the censoring case). Cox (1972) considered the following model for y:

(2.14) A(y1x) = Ao ¥)exp(Bx),

where A(y|x) denotes the hazard function given x and A,(y) is the baseline
hazard. Cox proposed estimating 8 by maximizing the partial likelihood

(2.15) L(b) = ﬁ {exp(bxi) Yy exp(bxj)>,

i=1 JER(Y)

where R(y;) denotes the risk set at time y;, namely, R(y,) = {J: ¥, = ¥;}.
The population version of maximizing the logarithm of (2.15) is

(2.16) ml.':le’bx — E{log E” exp(b%)I(§ > y)},

where (¥,%X) denotes an independent replicate of (y,x) and I is an indicator
function (taking values 0 or 1, depending on j <y or j > y).
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THEOREM 2.3. Under (1.1), (2.9), (A.2) and
(A.3"") there exists a proper maximizer for (2.16),

the maximization problem (2.16) has a solution B* satisfying (2.11).

Proor. This follows easily from the observations that for some ¢, d,
Eexp(bR)I(§ 2 y) = EYE» 7B exp(bR)I(7 > )
> E”exp( E®*b%) - I(§5 > y)
= EYexp(c+ dBx) - I(§ > y)
and that
Ebx = E(c + dBx). . O

REMARK 2.2. Partial likelihood estimates based on a specified model taking
the same form as (2.14) but with the exponential function being replaced by some
other function may not share the same Fisher consistency property we demon-
strate in Theorem 2.3.

REMARK 2.3. When there is a censoring process involved, Tsiatis (1981)
proved that the partial likelihood estimate is consistent providing that the
censoring time is independent of the survival time given the covariate x and that
the specified model (2.14) is true. However, we are unable to extend the result of
Theorem 2.3 to this general case.

2.6. Related work. The proportionality result (2.11) in Theorem 2.1 has been
known for various special cases. In this section, we give a brief review of related
published works. The earliest related result that we know about is Fisher’s (1936)
work on the relationship between the discriminant function and logistic regres-
sion. Haggstrom (1983) gave a comprehensive discussion of the OLS estimation
when the true model is the logistic regression model, a special case of the general
regression model (2.1).

Brillinger (1977, 1983) gave a general result for the OLS estimates. Under
the assumption that x is normally distributed, Brillinger showed that (1) the
OLS slope vector B is strongly consistent for the true slope vector B up to
a multiplicative scalar, when the true model has the additive-error form
y = g(a + Bx) + ¢ and (2) Vn (B — B*) is asymptotically normal with mean 0
and covariance matrix
(2.17) o?27 + 2TE(h(x)’(x — p)(x - p) }E7
where h(x) = g(a + Bx) — a* — B*x, x ~ N(p, ) and ¢2? = Var(e). Brillinger
also noted that the key to (1) is that x has linear conditional expectations, and
the strong consistency for OLS estimate holds under more general models such
as the Cox regression model, censored regression, etc. Brillinger also made an
interesting discussion on conditional inference (see Remark 6.2 for more details).
In addition, similar results were shown to hold in some important time series
problems.
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Our interest in this area was motivated in part by surprise on learning of
Brillinger’s results. Theorems 2.1, 2.2, 2.3 and Theorem 5.1 extend Brillinger’s
result 1 to estimation methods other than OLS. We also extend Brillinger’s
result 2 in Section 5.3 [see (5.2.4)] and give a useful new expression for the
asymptotic covariance matrix (Theorems 5.3.1 and 5.3.2) which relates to the
usual asymptotic covariance matrix based on the assumption that the specified
model is correct.

Goldberger (1981) derived the result (2.11) for a truncated linear model,
assuming that the ideal data follow a linear model y = « + xB + ¢, with both x
and & being normally distributed, but the datum ( y, x) is observable only if the
dependent variable y falls inside a known subset @ of the real line. Chung and
Goldberger (1984) generalized this result to a broader context in which the
underlying model is not necessarily linear and the explicit selection rule is
extended to allow either an arbitrary transformation (including censoring) of the
dependent variable or a probabilistic selection rule. Without any assumptions of
normality, Chung and Goldberger obtained (2.11) for the OLS estimates for the
case of an arbitrary transformation under the assumption that E(x|y) is linear
in y and for the case of probabilistic selection under the additional assumption
that Var(x|y) is constant.

Greene (1981, 1983) derived the same result for the OLS estimates for the
Tobit model, the truncated regression model and the probit model, under the
same normality assumption in Goldberger (1981), Ruud (1983) derived the same
result for the maximum likelihood estimates in discrete choice models under the
weaker assumption that x has linear conditional expectations. Ruud also argued
that the failure to identify the absolute magnitude of the slope vector is
unimportant and that “the ratios of the slopes yield the correct, relevant
economic information about welfare trade-offs.” Both Brillinger and Greene
demonstrated by empirical studies that for some cases the proportionality result
may still approximately hold under a modest violation of (A.2).

3. GLM estimates. Consider the NEF criterion (2.4). Since ¢(#) is strictly
convex in @, condition (A.1) is satisfied; thus the solution of (2.10), if any, is
unique. We need to verify the existence condition (A.3). The following moment
condition implies that Q, = Q [see Definition 2.1 and (A.0)]:

(B.1) © Epl<ow, Elxl<ow, Elxy|<oo,
E|Y(a + bx)| < o forall(a,b) € Q,.

3.1. Unrestricted natural parameter space. When the natural parameter
space O is the whole real line, we have @ = R?*! and = R2 Thus we can
apply Lemma 2.1 to verify (A.3) using (A.3").

LeEMMA 3.1. The existence condition (A.3") holds for the NEF criterion (2.4)
with an unrestricted natural parameter space ® = R provided that (B.1) and the
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following condition hold:
(B.2) With probability 1, the conditional expectation E(y|Bx) belongs to the set
{¢'(9): 6 € ©}.

Proor. For any (a, ¢), denote U = a + cBx. Since ft’( at, ct) is convex in ¢, it
has a proper solution if the equation

(%R(dt, ct) =0
has a proper solution. Interchange the expectation and differentiation to get
EUy = Ey'(tU)U.
Since the right-side term is nondecreasing in ¢, it suffices to show that

(3.1) lim Ey'(tU)U < EUy < lim Ey'(tU)U.
t— — o0 t— o0

Denote the limits of Y’(¢) as t = + oo by ¥’(+ o) (they can be infinite). Clearly,
lim EY'(tU)U = ¢'(+ 0)EU ,+ ¢'(—0)EU _,
t— 00 .

where U, and U _ are the positive and the negative parts of U, respectively (i.e.,
U,=UifU>0andU,=0if U< 0; U_= U — U,). On the other hand,

EUy = E[UEYy] = E[U,EY] + E[U_EY]
< EU.y'(+0) + EU_{/(- ),

proving the second inequality in (3.1). In a similar way, the first inequality in
(3.1) can also be verified. O

Applying the lemma to Theorem 2.1, we have

THEOREM 3.1. The GLM estimate, based on a NEF criterion (2.7) with an
unrestricted natural parameter space ® = R is Fisher consistent in estimating
the slope vector B up to a multiplicative scalar [i.e., (2.10) has a unique solution
and (2.11) is satisfied] under (A.2), (B.1) and (B.2).

Note that {’(6) is the expectation for the natural exponential family. Thus
condition (B.2) requires that the true conditional expectation E( y|x) be inside
the range of the expectations specified by the assumed GLM. In empirical
applications we usually have the prior knowledge about the range of the outcome
variable; thus we can make an appropriate choice of GLM which satisfies this
condition. »

REMARK 3.1. The moment condition E|y| < oo and E|xy|| < oo in (B.1) is
necessary. In particular, it is well-known that the least squares estimate is not
consistent if E|y| = oo or E|xy|| = 0. To accommodate the possibility E|y| = oo
or E|xy|| = oo, see the discussion on the M-estimate in next section.
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REMARK 3.2. It can be seen from the proof of Lemma 3.1 that (A.3") holds
for any direction (a, b) [with R(a, ¢) defined as R(a, cb); b may be different
from B] provided that (B.2) is replaced by the slightly stronger condition:

(B.2") With probability 1, the conditional expectation E( y|x) belongs to {¢'(8):
0 € 9).

REMARK 3.3. When the range of ¢ is an interval (¢, £), the proof still holds
provided that (3.1) holds with — o0, + co replaced by ¢, .

3.2. Restricted natural parameter space. When the natural parameter space
© is restricted, the domains @, [= @ under (B.1)] and Q_are also restricted.
Denote the lower and the upper bounds of © by § .and 6, respectively, and
assume at least one of them is finite. Then we have

(3.2.1) Q=2 = {(a,b): 8 < a+ bx < § with probability 1}
and
(3.2.2) Q= {(a, c): 8 < a+ cBx < § with probability 1}.

Let B and B be the essential lower and upper bounds of Bx. If B and B are
both infinite, the inequality in (3.2.2) cannot be satisfied unless ¢ = 0, an
uninteresting degenerated case. Thus we assume that at least one of the bounds
is finite. In addition, we assume B < 0 < B without loss of f generality.

If Bx has a point mass at each of the boundary points B and B (£ contains
no boundary points), we can apply Lemma 2.1. Lemma 3.1 can be shown to hold
for this case by a similar proof (see Remark 3.3). Therefore the conclusion of
Theorem 3.1, namely the Fisher consistency result, is also true. The result
remains true when § contains some boundary points; the details are omitted.

3.3. Likelihood equations. The GLM estimate is usually obtained by solving
the sample likelihood equations

(3.3.1) n' Y (x5, - x¢/(a+ bx;)] =0
i=1
(3.3.2) n 'Y [y, - ¢'(a+ bx;)] =0.
i=1
The population version of (3.3.1) and (3.3.2) is
(3.3.3) Exy— Exy’(a + bx) =0,
(3.3.4) Ey — Ey'(a + bx) =0,

which are based on the partial derivatives of the expected criterion R(a, b) with
respect to b and a. [It follows from (B.1) that these expectations exist.] In this
section we study the relationship between the minimization problem (2.10) and
the likelihood equations (3.3.3) and (3.3.4).

Throughout this section we assume conditions (B.1) and (B.2). In particular
we have by Lemma 3.1 that the solution (a*, B*) to the minimization problem
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(2.10) exists. If the domain £ (= ;) is open, we have by convexity of R(:, ")
that the population minimizer (a*, B*) is also the unique solution to the popula-
tion likelihood equations (3.3.3) and (3.3.4). On the other hand, if the domain € is
not open, the population minimizer might be a boundary point of €, in which
case the likelihood equations (3.3.3) and (3.3.4) might not have a solution. We
now discuss this problematic case in some detail.

In order for the domain € not to be open, it is necessary for the natural
parameter space © to be restricted and the random variable Bx not to have a
probability mass at both essential bounds B and B. To be more specific, we focus
on the case that ® is a half line, assumed to be (—o0,0) without loss of
generality. We also assume that Bx does not have a probability mass at B. The
domain § given in (3.2.2) is then a cone with the vertex at (0,0) and it contains
the edge {(a, ¢): (¢ > 0, a + cB) = 0}.

THEOREM 3.2. Assume that (y,X) follows the general regression model (1.1)
and (2.9) with unknown link function g and unknown error distribution F.
Assume that Bx does not have a probability mass at its essential upper bound B.
For the GLM estimate based on a NEF criterion with the restricted natural
parameter space © = (—00,0) there exist g and F such that the minimization
problem (2.10) has a solution but the population likelihood equations (3.3.3) and
(3.3.4) do not have a solution, even though (A.2), (B.1) and (B.2) hold.

The proof is given at the end of this section. We can characterize the
conditions on g and F for the existence of a solution to the population likelihood
equation (see Lemma 3.2), but unlike (B.2), these conditions cannot be verified
a priori.

Although the population likelihood equations (3.3.3) and (3.3.4) might not
have a solution, the sample likelihood equations (3.3.1) and (3.3.2) always have a
solution, provided that all observed y,’s fall inside the range {{'(8) = 8 € ©}.
To see this, consider the minimization problem (2.10) with the random vector
(¥,x) being uniformly distributed over the observed vectors {(y,x;): i=
1,..., n}. The extended domain 2, over which the sample criterion function

1
R, (a,b)=— ZL(a+bx,,y,)
is defined is the intersection of n open sets,
2,= N{(a,b):0<a+bx,<6}.
i=1
Therefore the domain €, is open. Hence if the sample minimization problem has
a solution, it must satisfy the sample likelihood equations (3.3.1) and (3.3.2).
Following from Remarks 3.2 and 3.3 and the discussion that immediately follows
the proof of Lemma 2.1, the sample minimization problem has a solution. [To see
that Remark 3.3 applies, note that if ¢ is finite, then for some i, {(a + cbx;) = 0
or #, depending on whether a + cbx; is positive or negative. It follows that ¢'(8)
or ¢’(#) is infinite; thus the second inequality in (3.1) holds. Details are omitted.]
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The sample domain 2, defined above converges to {2, although for each n,
Q c . This means that the solution for (3.3.1) and (3.3.2) may occur in the thin
strip £, — © if the population equations (3.3.3) and (3.3.4) do not have a
solution. Hence the numerical solution to (3.3.1) and (3.3.2) is highly unstable.
The curvature of the sample criterion function R ,(a, b) is very large in the strip
Q,— Q.

Now we shall prove Theorem 3.2 by characterizing the conditions on g and F
for the existence of the solution for (3.3.3) and (3.3.4). Write A = Bx. Assume
that ( y, x) follows the general regression model (2.8) and (2.9). First note that by
multiplying B to (3.3.3), we see that a necessary condition for (3.3.3) and (3.3.4)
to have a solution along the direction B is to have

(3.35) EyA = EY'(a + cA)A,
(3.3.6) Ey=Ey'(a + cA).
For a given marginal distribution @(x), whether a solution to the population

likelihood equations (3.3.5) and (3.3.6) exists or not might depend on the true link
function g(#, ) and the true error distribution F(e). We define

D, = {(Ey, EyA): y follows (2.8) for some g, F and satisfies (B.1), (B.2)},
D, = {(Ey/(a + cA), EY/(a + cA)A): (a,c) € O}.
It is clear that D, is a subset of D,. If D, and D, are the same, then for any true
model of the form (2.8), the population likelihood equations have a solution. This
would be the case, for example, if the domain © is open. However, if the domain
is not open, D, might be a proper subset of D,. The following lemma confirms

this statement and therefore proves Theorem 3.2. For convenience, we assume
Ex = 0 without loss of generality.

LEMMA 3.2. Assume (1.1), (B.1) and (B.2), ©® = (—00,0), A (= Bx) satisfies
the assumption in Theorem 3.2 and EA = 0. Then the domains D, and D, can
be characterized as follows:

@ Dy = {(n, &) m>¥(=o00), B(n — y(=o0)) <{ < B(n— ¢ (-0)
[which equals R? if '(— ) = —o0]. _

(i) Dy = {(m,§): n>¢'(—o0), EY(c(A—-B)A < <Ey(c(A— B)A},
where ¢, (c,, respectively) is the solution of ¢ such that EY'(c(A — B)) =1
[respectively, Ey'(c(A — B)) = 1] is satisfied.

Moreover, D, is a proper subset of D,.

The proof of the lemma is given in the Appendix. The following example
illustrates the use of this lemma.

ExXaMPLE 2. Consider the gamma family. The natural parameter space is
© = (—0,0) with the mean ¢'(§)= —60"' and y'(—o0) =0. Thus ¢, =
-7 'E(A - B) 'and ¢,= —n 'E(A — B)". A simple calculation shows that

D, = {(n,g); n>0,n(B+1/E(A-B)"") <¢<n(B+1/E(A - E)")}.
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Compared with
Dl = {(nag) n> 0’ "1§ < { < TIB},

we see that D, is a proper subset of D,. Hence if the true model has a
mean-covariance pair (Ey, EyA) falling outside D,, then the population likeli-
hood equations (3.3.3) and (3.3.4) do not have a solution.

REMARK 3.4. Using conditional expectation argument, it is also easy to
verify directly that the solution of (3.3.5) and (3.3.6) will yield a solution of
(3.3.3) and (3.3.4). However, it would not be immediately clear whether or not
the nonexistence of the solution for (3.3.5) and (3.3.6) implies the nonexistence of
the solution for (3.3.3) and (3.3.4) unless we have shown that the solution for the
minimization problem (2.10) must take the form (a, cA), which we have done in
Theorem 3.1 and the discussion in Section 3.2.

3.4. Noncanonical link. We have restricted our discussion of GLM’s to those
with canonical link (the natural parameter 6 is related linearly to the regressor
x), mainly because this results in a convex criterion function. Alternatively, one
might specify a GLM with a noncanonical link: The natural parameter 6 is
related linearly to the regressor x after a nonlinear reparametrization A(-),
(3.4.1) 0’ =a+ Bx=h(0).

The reparametrization is usually taken to be invertible. The criterion function is
then :
(3.4.2) L0, y) = —yh7Y(0") + y(R7Y(0")).

If the range of y is unbounded both from below and from above, the criterion
function cannot be convex in 8’ for all y. If the range is bounded from at least
one end, the criterion function (3.4.2) may or may not be convex in §’, as
illustrated in the following example.

EXAMPLE 3. A common reparametrization for the gamma family in Example
2 is
6’ =log(—9).
The criterion function for this parametrization is
L(0',y) =yexp(0') — 0,
which is strictly convex in ' provided that y > 0, a condition which should hold

for any reasonable application of the gamma family.
Alternatively, if we take the reparametrization

0/1 — 02,
the criterion function is
L(8”, y) = /0" — (log8”)/2,

which is concave in 8" for y2 > 1/6".
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4. M-estimates. The M-estimate, based on the minimization of the location
invariant criterion (2.9), is usually proposed to guard against derivations from
the assumed error distribution in the linear model y = a + Bx + &. The criterion
p is usually chosen to be convex and to have a bounded influence function.
Asymptotic results can be found in Huber (1981), Yohai and Marrona (1979),
Cheng and Li (1984), Portnoy (1985), etc. For nonconvex p, the M-estimate can
be inconsistent even for the location models [see Diaconis and Freedman (1982)].

We now study the behavior of the M-estimate under (2.1) which allows for
deviations from the linear model both in the error distribution and the link
function. We shall assume the following conditions:

(C.1) p is convex on R such that lim, , , , p(X) = + 0.
(C.2) The (one-sided) derivative p’ of p satisfies the condition that there exist
positive constants K, and K, such that for any 6, 6,

[0'(6) — p'(8)] < K,(16 — 0'] + K,).
(C3) E|lx||> < o and E|p'()|* < oo.

Condition (C.2) means that the tails of p do not go to the infinity faster than
the squared error criterion (2.5). The conditions are commonly assumed in the
robustness literature. It can be shown that (C.1)-(C.3) imply that 2 is the entire
RP*1; thus (A.0) is satisfied. It follows that & = R?, so Lemma 2.1 is applicable.
We need to verify (A.3").

LeMMA 4.1. Conditions (C.1)-(C.3) imply condition (A.3").

Proor. For any fixed (a, ¢), let U = a + cBx. The one-sided right derivative
of

R(ta,tc) = E[p(y — tU) = p(¥)]
with respect to ¢ can be written as
(4.1) — Ep'(y—tU)U,- Ep'(y - tU)U_,

where U, and U_ are the positive and negative parts of U, respectively
(U,+ U_= U). Here p’ can be treated as the left and the right derivatives for
the first and the second terms, respectively. From (C.1), we may find positive
constants a, a’, M such that p’(t) > a for t > M and p’(¢) < —a' for t < — M.
Thus applying the monotone convergence theorem we have

lim — Ep'(y —tU)U,>a’EU,.

t— + o0
Similarly we can also show that
lim — Eo(y—tU)U_> —aEU._.

t— + o0
Therefore the derivative (4.1) is positive for ¢ = + oo. The same argument also
shows that (4.1) is negative for ¢ = — oo. This implies that E[p(y — tU) — p(y)]
has a minimizer, completing the proof of our lemma. O



1028 K.-C. LI AND N. DUAN

Now applying Theorem 2.1, we see that at least one solution of (2.10) will be
in the right direction. For a strictly convex p, due to the uniqueness of the
solution, we may conclude that the corresponding M estimate is Fisher consis-
tent for estimating the slope vector B up to a multiplicative scalar. For the case
of nonstrict convexity, we have the following theorem.

THEOREM 4.1. Assume conditions (A.2), (C.1)~(C.3) and the following condi-
tions:
(C.4) For each b not proportional to B, with probability 1, the conditional
distribution of bx, given Bx is nondegenerate.
(C.5) For any real number d, the support of the random variable y — dBx is an
interval (could be infinite) with length larger than the length of the
interval of the minimizers for p(-).

Then, the minimizer for (2.10) is unique and satisfies (2.11).

PrROOF. Suppose (a, b) is a minimizer of (2.10) such that b is not propor-
tional to B. Then the inequality in the proof of Theorem 2.1 is an identity. By
(C.4) and convexity, with probability 1, p is a straight line in some neighborhood
of y — (a + ¢) — dBx. Since the support of ¥y — (a + ¢) — dBx is an interval we
see that p is a straight line on this interval. On the other hand, by convexity the
set of minimizers of p is also an interval, but with smaller length due to (C.5).
Therefore these two intervals must be disjoint; p is a straight line on each
interval. This is contradictory to the assumption that (a, ) is a minimizer
because we can always shift (a, b) to some (a’, b) so that the resulting interval
for the support of y — (a’ + ¢) — dBx is closer to the set of the minimizers for
o(+) and hence reduces the R(a, b). Therefore we have shown that any mini-
mizer should be of the form (a, cp). Now suppose there is more than one
solution. Since the solution set must be convex, we can choose a solution not in
the boundary, say (a, cp) again, and conclude that p must be a straight line on
the support of y — a — ¢Bx. The rest of the proof is straightforward and is
omitted. O

REMARK 4.1. If (C.4) is replaced by the stronger condition that

(C.4’) for any b not proportional to B, the conditional distribution of bx given
Bx does not have a finite essential maximum or minimum,

then without (C.5) we can still prove that any minimizers for (2.10) are propor-
tional to B.

REMARK 4.2. The following example shows that when both (C.4) and (C.5)
are violated, we may find some solution of (2.10) that does not fall on the
correction direction. Take

(9) = 0, for 0] < 1,
PAYI = |0 — 1, otherwise,
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(%,, X,) ~ uniform on the unit ball x2 + x <1 and y = x,. Thus we may take
a=0 and B =(1,0). But a =0, b=(0,1) is also a solution of (2.10) since
R(a, b) = 0 for this choice of (a, b). But if x; ~ uniform on (—1,1) and
x5 ~ N(0,1), x,, x, independent, then although there is more than one solution
for (2.10), they all fall on the direction of B.

5. Sampling properties. In this section we study the asymptotic properties
of the maximum likelihood-type estimates (&, B) based on the sample minimiza-
tion problem (2.2). First we establish the strong consistency and asymptotic

normality of (&, B). We then discuss how link violation affects the asymptotic
covariance matrix. The results are applied to inference problems in Section 5.4.

5.1. Strong consistency. Fisher consistency usually implies strong consis-
tency under suitable regularity conditions. A typical case is the maximum
likelihood estimate for parametric models [see, e.g., Cramér (1946), Lehmann
(1983) and Le Cam (1953)]. The results in Huber (1967), with applications to the
robust estimation problems, might also be applicable in our case here [see, also,
White (1981)]. However, instead of verifying or modifying Huber’s conditions, it
is easier to derive our results directly.

THEOREM 5.1. Assume that (A.1) and the following additional conditions
hold:
(D.1) The minimization problem (2.10) has a unique solution (a*, B*).
(D.2) (a*, B*) is an interior point of Q.

Then the set of estimates (@&, ﬁ) which solves the sample minimization prob-
lem (2.2) converges almost surely to (a*, B*).

Proor. Since R(a,b) and L(a + bx, y) are convex in (a, b), they are
continuous in a neighborhood of («*, B*). Let B be a closed hypercube contained
in £ with center (a*, B*) and width 2y > 0 on each side. Denote the sup-norm of
a continuous function on B by || - || g3. Using Mourier’s (1953) theorem for the
strong law of large numbers in Banach space, we have

-0 as,
B

1 n
(51) ”; ZL((I+ bxiryi) _R(arb)
i=1
provided that
(5.2) E|L(a + bx,y) — L(a* + B*x, ¥) ||z < 0.
The verification of (5.2) is given in the Appendix.
It follows from (5.1) that the set S, of (a, b) that minimizes

n
n'Y L(a+ bx,,y)
i=1
over B must converge to (a*, B*) almost surely. Since (a*, B*) is an interior point
of B, this means that with probability arbitrarily close to 1, the set S, is in the
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interior of B for sufficiently large n. Thus each point of S, is a local minimizer;
hence it is also a global minimizer due to the convexity condition (A 1) Again
because of convexity, no other points outside B can be a global minimizer. This
shows that the set of (&, B) defined in this theorem converges to (a*, B*) almost
surely. O

This theorem can be applied to the GLM and the M-estimates, yielding the
following results.

THEOREM 5.2. Assume that ( ¥,X) follows the general regression model (1.1)

and (2.9). The GLM estimate P based on the NEF criterion (2.4) with the
natural parameter space ® = R, is strongly consistent for B up to a multiplica-
tive scalar, under conditions (A.2), (B.1) and (B.2).

THEOREM 5.3. Assume that (y,x) follows model (1. 1) and (2.9). The M-
estimate B, based on the location-invariant criterion (2.6), is strongly consistent
for B up to a multiplicative scalar, under conditions (A.2) and (C.1)-(C.5).

REMARK 5.1. Theorem 5.2 still holds for the case that ©® is restricted,
provided that (a*, B*) is in the interior of Q. This would be true, e.g., if Bx has a
positive probability mass at both of its essential bounds.

5.2. Asymptotic normality. We assume that L(-, y) is smooth enough to
allow the usual Taylor expansion derivation for asymptotic normality. Take

M=(1 x'l)’
X XX

ln(a’ b) = Z L(a + bxia yi)a
i=1
s,(a, b) = the (p + 1) column vector of all partial derivatives of I (a, b),

i(a,b) =the (p+ 1) X (p+ 1) matrix of second order partial deriva-
tives of /,(a, b).

Clearly
@, 8) = ¥ Ly(a + bx,, 3)(1x,)
i=1
and
i(a,b)= i L, (a+ bx,, y,)M,,
i=1

where L,(-, -) is the partial derivative dL(8, y)/36, L,(-,-)is d2L(0, y)/36?
and M; is M with x replaced by x;.
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We expand s,(a, b) as
sn(a, b) = sn(a*, B*)

o fida + Ma - a), B A0 - B ar|(a - 07,5 - B
0 :
Since s,(4&, B) = 0, we see that
— n~V2% (o, B*) = [fln—lin(a*; A(@ — a*), B* + A(B — B*)) dA
0

xn'/*(& — o*, B — B*)".
By the central limit theorem,
n~%s,(a*, B*) - N(0,C),

(5.2.1)

where

(5.2.2) C = EL,(a* + B*x, y)°M.

On the other hand, the term inside the square brackets in (5.2.1) converges to
(5.2.3) A =EL,(a* + B*x, y)M.

Therefore, we have

(5.2.4) Vn (& — o, B — B*) » N(0, A"'CAY).

The result (5.2.4) can be made rigorous under conditions (A.1), (D.1), (D.2) and
the conditions:

(E.1) L, (0, y) exists and is continuous in § with probability 1.
(E.2) E||L(a + bx)||p < o and E|Ly(a + bx, y)|p- |2 < o for some
closed hypercube B in @ with center (a*, B*).

Details are omitted.

5.3. Asymptotic covariance. The asymptotic covariance matrix for B takes a
much simpler form under the assumption:
(A.2"") The regressor variable x has an elliptically symmetric distribution with

mean p and a nonsingular covariance matrix. V.

THEOREM 5.3.1. Assume (5.2.4) holds. Then under (A.2""), the asymptotic
covariance for B (i.e., the p X p submatrix obtained by deleting the first row and
column vectors from A~'CA~') has the form

(5.3.1) AV~ + kB*/B*,
where A, 1, k are scalars such that
_ EL(a" + 8*x, »)'T(x)
EL,(a* + B*x, y)I'(x)’
(5.3.3) 1= (p—1)/(ELy(a* + B*x, y)I(x)),
(5.34)  T(x)=(x—p)V ' (x—p) — (B*(x — )"/ (B*VB*).

(5.3.2) A
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In addition, if x is normally distributed, then
EL,(o* + B*x, y)’

T EL,(a* +B*x,y)’

(5.3.6) n=1/EL,(a* + B*x, y).

(5.3.5)

The proof of this theorem is based on the following lemma.

LEMMA 5.1. Under (A.2"), for any real-valued function ¢, we have
Ey(Bx)(x — p) = c,BV,
Ey(Bx)(x — p)(x — 1) = ¢,V + c;VBBY,

where ¢, ¢, c3 are scalars.

The proofs for Lemma 5.1 and Theorem 5.3.1 are given in the Appendix. In
the following sections, we discuss the implication of this theorem.

5.3.1. Maximum likelihood estimate. It is well known that for a regular
parametric setting, the asymptotic covariance matrix of the m.l.e. is the inverse
of the Fisher information matrix, under the assumption that the parametric
model is correct. But under link violation, the asymptotic covariance matrix
takes the form (5.3.1). We now compare these two matrices to understand the
effect of link violation on the asymptotic covariance.

COROLLARY 5.3.1. Suppose the criterion function L(8, y) in (2.3) is indeed
the negative of the log-likelihood function for the true model. The asymptotic
covariance matrix for the m.l.e. B based on L has the form

(5.3.7) a1+ RBHBH,

where n is given by (56.3.3) and k’ is another scalar, under conditions (A.1),
(A.2"") and the usual regularity conditions for asymptotic normality.

ProoF. The Fisher information matrix for (a, B) is A. Therefore the asymp-
totic covariance for (&, B) is A ™!, which takes the form of (5.3.7); see the proof of
Theorem 5.3.1 in the Appendix. O

Now comparing (5.3.1) and (5.3.7), we have the following important theorem,
which is useful for making inference about B.

THEOREM 5.3.2. Under (A.l), (A2"") and the regularity conditions for
asymptotic normality, the asymptotic covariance matrix of BW is changed under
link violation only by the multiplicative scalar A for any matrix W such that
BW = 0.

For GLM estimates with ® = R, we have
Li(a* +B*x, y) = —y + ¥'(a* + B*x) = —v(y,x)
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and
Lll(a* + B*X, y) = 11//,(“* + B*X) = OZ(X),

where y(y,x) and 6%(x) are the residual and variance operators for the specified
GLM. Thus if x is normal, then the rescaling factor is simply

A = Ey*(y,x)/Eo*(x),
the ratio of true residual variance Ey?( y,X) to the model-based average variance
Eo%(x). [Note that Ey(y,x) = 0, as can be seen from the likelihood equation
(3.3.4).]

For the least squares estimate, we have y” = 1; thus the rescaling factor is
reduced to Ey?(y, x). Strictly speaking, (2.5) mlsspemﬁes the variance as exactly
1; therefore the covariance matrix A ! based on the error distribution ¢ ~ N(0, 1)
needs to be rescaled by the residual variance Ey?%(y,x). When the linear model

= xB + & holds, we have Ey%(y,x) = E¢? as usual.

5.3.2. Location-invariant criterion. When the location-invariant criterion
(2.6) is used, it is well-known in robust regresswn that the asymptotic covariance
matrix for B is given by

Ep'(y — a — Bx)”
(Ep"(y - « - Bx))”
provided that the linear model
(5.3.9) y=a+Bx +e, e~ F(e),
holds [see, e.g., Huber (1981), Chapter 7]. In other words distribution violation
changes the asymptotic covariance matrix by the multiplicative scalar

_ Ep(y-a-Bx)’
Ep"(y - a—Bx)’
[If —p is indeed the log-likelihood function for the true model, the asymptotic
covariance matrix would be V™! /Ep”(y — a — Bx).]
If we allow for link violation, so that the linear model assumption (5.3.9)

might be false, the asymptotic covariance matrix should be given by (5.3.1). Since
now we have

(5.3.8)

L(a* +B*x,y) = p'(y — a* — B*x)
and
Lu(a* + B*x, y) = P"(y i B*x)’

it follows that the first term in (5.3.1) is the same as (5.3.8) (with «a, B replaced by
a*; B*) if x is normally distributed.

COROLLARY 5.3.2. If x is normally distributed, the asymptotic covariance
matrix for PW based on (5.3.8) for robust regression is robust in validity against
link violation for any matrix W such that BW = 0.
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5.4. Statistical inference. In this section, we discuss how to modify standard
parametric inference methods to accommodate possible link violations. In view
of Observation 1, only the scale-invariant inference problems are of interest to
us. For hypothesis testing problems, we consider scale-invariant null hypotheses
of the form H,: BW = 0. We consider Wald’s test and the likelihood ratio test.
We also invert Wald’s test to construct confidence regions. We assume (A.2"")
throughout this section.

5.4.1. Wald’s test. Consider the hypothesis testing problem with H,: W =
0 against H,: BW # 0, where W is a p X r matrix with rank r < p. Under link
violation, B converges to B*, which is proportional to B. Hence under H,, we
have B*W = 0. In view of Theorem 5.3.2, this 1mp11es that vVn BW converges to
N(0, AU ), where

(5.4.1) U=(0 W)A"(0 W

can be estimated consistently by U, replacing A with a method of moments
estimate A. Therefore if we divide the usual Wald test statistic

(5.4.2) x> =n(BW)U (BW)

by a consistent estimate A of A, then we would have the valid null distribution
for the test statistic. Under (A.2”), we can use the method of moment esti-
mate for A based on (5.3.2). Under (A.2'), we can use the method of moment
estimate for A based on (5.3.5). In either case, the rescaled Wald test

(5.4.3) accept Hy if x>/A < x2(1 — )
is robust in validity against link violation.
For the GLM estimate, the rescaling in (5.4.3) can be used to protect against

the misspecification of both the link function and the variance function. McCul-
lagh (1983) used the generalized X?2,

n (% - v(a+Bx,)’
D Y P

to adjust for the dispersion parameter when the NEF log-likelihood function is
correct only up to a multiplicative scalar. Note that the generalized X 2 is
analogous to the rescaling factor A; for the NEF criterion, we have

(n-p-1)7"gr (% - v(a+Bx))
n_l):gllxl/”(a + Bxi)

if x has a normal distributions (A can be interpreted as a ratio estimate, while X
can be interpreted as a regression estimate). Therefore a minor modification of
the generalized X? gives link robustness under the normality assumption (A.2).
If we have (A.2””) instead of (A.2’), a different rescaling factor based on (5.3.2)
would be required.

For the M-estimate, (5.4.3) can be used as a link-robust test. Huber (1981)
suggested a distribution-robust test based on (5.3.8), which coincides with (5.4.3)

A =
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if we estimate A and 7 using (5.3.5) and (5.3.6). Under the linear model (5.3.9),
Huber’s result does not depend on the normality assumption (A.2"). But if (A.2')
does hold, then the test is also robust under link violation. If we have (A.2"”)
instead of (A.2"), the test has to be modified by a multiplicative scalar [i.e., using
(5.3.2) and (5.3.3)] in order to be link robust.

REMARK 5.2. Motivated by the usual ANOVA for the linear model, we may
consider the use of F-test instead of x2test in (5.4.3) by replacing x%(1 — a) by
r-F ,_,.(1— a).

5.4.2. Confidence region. We may invert the Wald test to construct confi-
dence regions for B. Due to identifiability (Observatlon 1), we consider only
cone-shaped confidence sets.

For any nonzero vector v, consider testing H,: B a v. The (1 — a) X 100%
confidence region for B can be constructed by finding the set of v such that H, is
accepted at a level. This can be viewed as the Scheffé method for constructing
confidence sets for the direction of B. We now derive a simple expression for
these confidence sets.

For any vector e with unitary length, let 7, be any p X (p — 1) matrix such
that n/n, = I,_, and en, = 0. Consider the testing problem H,: BV/2q, = 0.
This is equlvalent to testing whether B is proportional to V1% Therefore the
(1 — a) X 100% confidence set for B based on inverting Wald’s test is the cone
spanned by

{eV‘1/2: llell = 1 and nf\_lﬁ_lﬁVlﬂ'fre'Ire’Vlﬂﬁ' < Xf)—l(l - "‘)}r

because the U in (5.4.1) with W = V'/?z_ equals n~! times the identity matrix
under H,. Since =, is a projection, we see that

{eV'1/2: lle]l = 1 and nf\'lﬁ_l(ﬁVﬁ’ - (eV1/2ﬁ')2) < xp-(1- 0‘)}-

Replace V' by V and rearrange the inequality. Then we have the following
(1 — a) X 100% confidence region for B:

(5.4.4) (: (BVB')’/BVB’ > BVB — n i3 (1 - @)).

In terms of the geometry based on the inner produce (v,w) = vVw’, the
confidence set given by (5.4.4) can be interpreted as the cone consisting of the
vectors having an angle with B of no more than

sin~ (\/xp_l(l - a)Xﬁ/nBvﬁ’).

Note that when (Xﬁ)'lﬁ‘;’ﬁ’ is small, the confidence set might be the entire R”.

The same technique can also be applied to construct confidence intervals for
ratios B,/B,, based on inverting the Wald tests for H, cB;, — B; = 0. Tukey type
cenﬁdence sets for (B,/B,, ..., B,/B;) can also be obtalned

5.4.3. Likelihood ratio test. In addition to the Wald test given in Section
5.4.1, we may also consider the likelihood ratio test based on twice the difference
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between the maximized criteria under H, and H,, where H, and H, are
scale-invariant hypotheses with H, C H,. For simplicity, we assume that H, is
the unrestricted hypothesis H,: B € R?. Suppose H,: B = vA for some v € R",
where A is an & X p matrix with rank h, A < p.

The likelihood ratio test is then based on

n n
Q=2 Z L(a+ ¥Ax;, ) — 2 )y L(& + ﬁxiy .)'i),
i=1 : i=1
where (G,¥) denotes the estimate for (a,v) by minimizing n™ 'Y L(a +
VvAX,, y;) over a € R and v € R". The following theorem shows that @ can be
rescaled to give the asymptotic x2 test under link violation.

THEOREM b5.4.1. Under link violation, the rescaled likelihood ratio Q/A
converges to the x2 distribution with p — h degrees of freedom under H,,
provided that the conditions (A.1), (A2"), (D.1), (D.2), (E.1) and (E.2) hold.

The proof is given in the Appendix.

REMARK 5.3. We may use F with p—h, n—p—1 degrees of freedom
instead of x2_, to determine the significance level.

6. Design condition. The most restrictive assumption we have made in this
paper is the design condition (A.2). When (A.2) is violated, the consistency result
may be invalid. This raises at least three important issues:

1. How serious is the inconsistency if (A.2) is only slightly violated?

2. How to empirically “ verify” (A.2) to the extent that the resulting bias would
not be serious?

3. How to reduce the bias when it is necessary?

These issues are discussed in Sections 6.1-6.3. Generally speaking, the vulner-
ability to link violation increases as the design distribution departs further away
from elliptic symmetry. To help the illustration of this phenomenon, a global
measure of elliptic asymmetry (EASY) based on a crucial concept, the ICE
curve, is introduced. A practical implication from our discussion is that when
conducting a regression analysis, it is worthwhile to take a closer look at the
distribution of the explanatory variable to make sure it does not bluntly deviate
from elliptic symmetry (cf. Remark 6.4). This aspect of design robustness may
have escaped most statisticians’ attention. Our point is further illustrated by a
simulation study which is reported in Section 6.4.

6.1. Seriousness of inconsistency. We denote any distribution satisfying
(A.2) by @,. To emphasize the dependence of the minimizer of (2.10) on @, the
distribution of x, we shall write 8*(Q) and o*(Q) for 8* and «*, respectively. We
assume the condition (D.1) in Section 5 for simplicity. Theorem 2.1 implies

B*(Qo) x B.
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The issue of inconsistency is discussed in two phases: (i) Examine the continu-
ity property of the function B*(-) at the point @, and (ii) bound the bias with a
measure of elliptic asymmetry for Q.

6.1.1. Continuity. To simplify the discussion, we shall concentrate on the
class of @’s with support in a bounded Borel set B in RP. The case of
unbounded support will be briefly discussed at the end.

Assume the general regression model (2.8). Define the bivariate function
£(0,,0,) = EL(0,, g(0,, ¢)) and let ® C R? be the domain of this function.
Observe that Ey%(a + bx, a« + %) = R(a, b). Assume the regularity condition

(6.1.1) £(40,, 0,) is continuous in ©.

THEOREM 6.1. Under conditions (A.1), (6.1.1) an;l (D.2) in Theorem 5.1 for
Qo, B*(+) is weakly continuous at @, with respect to the class of distributions
with support in B.

ProOF. Due to (D.2), it is possible to take a small open ball B, in RP*! with
center (a*(Q,), B*(Q,)) such that the closure @, of the set {(a + bx, a + Bx):
(a, b) € B, and x € support of Q,)} is in ®. By convexity of .£(8,, 8,) in 6,, it
suffices to show that for any sequence @, that converges weakly to @,,

(6.1.2) sup IEQn.,?(a + bx, a + Bx) — Eq #(a + bx,a + Bx)| - 0.
(a, b)eB,
Now suppose (6.1.2) is false. We may find a subsequence (a,, b,) converging to
some point, say (@, b,) such that

IEQnZ(an +b,%,a + Bx) — Eg #(a, + b,x,a + x)]

(6.1.3)
does not converge to 0.

Since @, converges to @, weakly, by Slutsky’s theorem the joint distribution of
(a, + b,x, a + Bx) under @, converges to the distribution of (¢, + b,x, @ + fx)
under Q,. But £ is continuous and bounded in ©; a contradiction to (6.1.3) is
obtained, proving the theorem. O

REMARK 6.1. For the case of unbounded support, the weak continuity result
no longer holds. In order to have (6.1.2), we need some uniform integrability
condition. In practical terms, one has to be more cautious when some design
points are remote from the center.

6.1.2. Bias bound. In this section, a bound for the bias will be derived from
the likelihood equation. We shall assume (D.1), (D.2) and that the function
L(-, y) is smooth enough to allow the usual Taylor expansion. Thus we require
that

Z(0,, 0,) is twice differentiable in 8, for each 6,.
Let &, and %, be the first and the second derivatives of .# with respect to 6,.
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The likelihood equation
Ey%(a + bx,a + Bx)(1 x)=0
has a solution at (a*(Q), B*(Q)), to be abbreviated as (aj, 85 ). Taylor expan-
sion at (a*(Q,), B*(Q,)), abbreviated as (ag, B*), leads to
Ey %\ (af + Byrx,a + Bx)(1 X))

(6.1.4) = - [foliQ(as + Mag — da"),B; +A(Bg — B¢*)) dA

X (o — af, B3 = B,
where iy(a, b) is defined to be Ey%,,(a + bx,a + Bx)M and M is defined in
Section 5.2. )
The convexity of L(-, y) implies that .%#,; is nonnegative. If we further
assume that

(6.1.5) &, = ¢, for some positive constant ¢,
then the matrix inside the brackets in (6.1.4) is bounded away from 0 by c,EoM.
Therefore a bound for the Euclidean norm of the bias is

(o — o, B — B

(6.1.6) B L
s“co (EqM)  Ey2(af + Bsx,a + Bx)(1 X)) “

When the minimum eigenvalue of the design matrix E,M, denoted by A, (@),
is bounded away from 0, the most crucial factor in this bound is the length of the
vector Ep%\(af + By x,a + Bx)(1 x'). The next lemma helps interpret this
vector. We need the notation

Qg(+) = the cumulative distribution of 8x under @,
Hy 4(t) = fﬂ __ X dQ(x).

LEMMA 6.1. The following identity holds:
E 2 (af + Bgrx,a + Bx)(1 X))

= [Li(ag + Brx, o + Bx)(d(Qs — Qo) (Bx), d(Hg 5 — Ho, 5)(BX)).

ProoF. Observe that 8j° is proportional to 8 and that the left side of the
identity equals 0 for @ = @,. The rest of the proof is trivial. O

How does the departure of @ from @, affect the bias bound? Lemma 6.1
together with (6.1.6) provides a clear picture. The integrand on the right side of
the equality in Lemma 6.1 is seen to be fixed. Thus the main factor for the bias
bound comes from two functions: (i) @4(-) — Qg(+) and (ii) Hg x(-) — Hg ().
The first function is just the difference in the marginal cumulative distributions
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along the true direction B. To interpret the second function, consider the curve
of the conditional mean Ey(x|8x = ¢) denoted as £(¢; B, @). Express Hy 4(¢) as
JE L&(t; B, @) dQp(t'). Thus the second term is the difference between the two
integrated conditional expectation curves (ICE curves, for short) of x along the
direction B.

Suppose we measure the size of the two functions discussed above by the
supremum norm. We further take the supremum over any direction 8. This leads
to two metrics: (i) d(Q, Q) = SUDye 1, g rel@p(t) — Qo(£)] and (ii) (@, Q) =
SUP; e R, e rellHg g(t) — Hg s(2)||- The first one, called the half space metric, is
popular in the study of the Vapnlk and Cervonenkis type problems and has been
considered in the robust and nonparametric statistics. The second metric is only
defined for those distributions with finite means and may be called the half space
linear metric to emphasize the linear term x in the integrand of the definition of
Hy 4(+).

QFlz)r the case that @, has bounded support, using integration by part for the
right side of the identity in Lemma 6.1, we see that the bias bound is at most of
the same magnitude as d(Q, @,) + dQ, Q)-

THEOREM 6.2. Assume (6.1.1) and (D.2) for @, and that
(6.1.7) &, and &\, is continuous in ©,

where Z,, is the derivative of £, with respect to the second argument. Then for
an elliptically symmetric Q, wzth bounded support, we have ||B5 — Bs‘|l =
0(d(Q, Qo) + d(Q, &) as d(Q, Q,) + d(Q, Q,) converges to 0.

Proor. By Theorem 6.1, for any sequence @, such that d(@,, Q,) +
d(Qn, Q,) converges to 0, aj and ,BQ converge to af and B;*. The matrix inside
the brackets of the Taylor expansion (6.1.4) converges to Eg % (af + B*x,
a + Bx)M, the Hessian matrix, which is positive definite. The rest of the
argument is trivial. O

6.2. Empiric view of the bias bound. For a given data set, the empiric
distribution of x, denoted by Q is available. If we may find an _elliptically
symmetric distribution @, with bounded support such that d(Q,,, Q,) and
d(Qn,QO) are small (say, of order n~'/2), then by Theorem 6.2 we see that the
bias bound is also small (of order at most n~'/2). Note that when @,
generated from @,, both the half space distance and the half space hnear
distance between @, and Q are O,(n~ 1/2), Thus if we conduct a significance
test for @ = @, based on these dlstances then the acceptance of the null
hypothesis leads to a bias 8*(Q,) — B;* of order no greater than n~'/2.

REMARK 6.2. Brillinger (1982) discussed the difference between the condi-
tional inference (conditional on the observed x;’s) and the unconditional infer-
ence for the least squares estimation. In order to obtain a bias bound of order
smaller than n7'/2, he considered the case that x; are generated from a
deterministic quasi-Gaussian sequence, based on Halton (1960). Adopting the
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same idea, we may show that x; can be carefully designed so that d(Qn, Q) +
d(Qn, Q,) is of order n~'(log n)" for any nondegenerate elliptically symmetric
distribution @ with bounded support. For such design sequences, the bias is
negligible compared with the variance (note that the conditional variance is
typically smaller than the unconditional variance and can be calculated in a way
similar to Section 5 before). Theoretically, we have some reservations for using
@, with an unbounded support (including the normal one), which seems to
create a problem for obtaining the identity (4.10) in Brillinger (1982). However,
this may not be a problem in practice.

6.3. Measuring elliptic asymmetry and bias reduction. We shall introduce a
measure of elhptlc asymmetry, called EASY, for Q which indicates how
vulnerable Q may be to link violation. Bias reduction will be based on subsam-
pling, using EASY as a criterion.

Throughout this section, we assumed that x;’s are normalized so that Q has
mean 0 and covariance 1.

To begin with, recall from the discussion in Section 6.1.2 that the major
factors for the bias bound are an Qop and Hy " HQ Since @, is arbi-
trary as long as it satisfies (A.2), we may choose Q0 to mlmmlze the effect of
these factors, hoping that it may lead to a sharper bias bound.

We shall consider only those @,’s that have the same marginal cumulative
distributions as Q along the direction B. This restriction exterminates the first
factor. Furthermore, to eliminate the boundary effect (due to integration by
part), we require Q0 to have the same mean as Qn, implying that HQ (oo)

( o0) = 0. Let %’ be the class of all @,’s satisfying these constramts and
the ‘condition [1mphed by (A.2)] that E(x|8x)  B. From % , we shall choose a
@, to minimize the supremum norm of the difference between ICE curves Hy
and Hgy , up to a constant vector (note that the derivative of a constant is 0).

Denote the pro_]ectlon of a vector v onto the orthogonal complement of a
unitary vector e by v,, i.e., v, = v — (v, e)e. Then we have

(633)  int int |H,, ~ Ho,, = vl = int |(Ho, () — o),
Geometrically, the right side of (6.3.1) is the minimum of the radii of the
cylinders with axes parallel to 8 that are circumscribed outside the empirical
ICE curve. This quantity provides a measure of straightness for the empirical
ICE curve.
Now since 8 is unknown, conservatively we take the supremum over S to get
the measure of elliptic asymmetry EASY:

EASY(Q,) = sup inf “ Hy (- )_”) ”
B € RP vER

"The domain of EASY can be extended to any @. It is not hard to see that
EASY(Q) = 0 if and only if @ is elliptically symmetric in R” or its linear
subspaces (including straight lines). The larger the value EASY(Qn) is, the more
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serious the bias in estimating the direction of 8 under link violation may be.
Thus EASY may be viewed as a design diagnosis criterion which serves the
purpose of alerting us against the possible ill effects due to the link violation.

When EASY(Q,,) is large, we know that our design is vulnerable to link
violation. Thus we should be more concerned about model checking or model
searching to ensure that our final regression model is highly accurate (but
unfortunately the effectiveness of such efforts may be limited). In addition to
this, we may search for subsamples (or more generally, distributions @, with
supports contained in the support of Qn) that have lower EASY and run the
regression analysis on these subsamples [for instance, to get a point estimate we
may minimize Eg L(a + bx, y)], hoping for the results to be reliable. Moreover,
different estimates obtained from different subsamples can either be combined to
increase efficiency or be compared to check if the one component model assump-
tion is violated or not. Further works need to be done in order to offer a practical
guidance on this last aspect.

REMARK 6.3. A less conservative measure of the vulnerability to link viola-
tion is simply to estimate the quantity in (6.3.1) by plugging in 8 = 8.

REMARK 6.4. All discussions in this section deal with the “worst” case
situation. However, empirical study by Brillinger and others suggests that quite
often the bias may be negligible even for a moderate violation of the design
condition.

6.4. A simulation study. As an illustration of the impact of elliptical asym-
metry on the regression estimates, we have conducted the following simulation
study. We take the regressor to be bivariate, which we denote as x = (x,, x,)'.
We take the design points to be distributed evenly over the square —0.5 < x, <
0.5, —0.5 < x, < 0.5:

2i-m—-1 2j—-m—1
®10%20) =\ Q= 1) " 2(m-1) |
We take the true model to be
y=k(Bx)+e &~ N(0,0?%),

where 8 = (cos §,sin8) and k(-) is antisymmetric, continuous and piecewise
linear:

t=1,....m, j=1,...,m.

0.374¢, if 0 < ¢ <0.135,
0.0477 + 0.0211¢,  if0.135 < ¢t < 0.321,

k(t) = { 0.2554 — 0.626¢, if 0.321 < ¢ < 0.468,
—0.0477 + 0.0211¢, if t > 0.468,
—k(—1), ift<0.

This design satisfies condition (A.2) only for 8 = 0, 7/4, #/2 and 37 /4, i.e.,
B =(1,0), 1/v2,1/V2), (0,1) and (1/V2, —1/V2). For our illustration, we
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TABLE 1 B
Distribution of § and §
Standard Quantiles
Mean deviation  0.05 0.10 0.25 0.50 0.75 0.90 0.95
6 —o0.282 0.084 —0420 -0339 —0.339 -0283 —0226 —0.174 —0.144
d 0419 0.060 0322 0342 0378 0420 0460 0496  0.518

take 6 = 0.416, i.e., B = (0.915,0.404), for which the symmetry condition (A.2) is
violated. We take m = 20 and ¢ = 0.025.

Under the given assumptions, the least squares estimate £ is normally dis-
tributed with expectation

B* = E(B) = (0.0477, —0.0138)
and a diagonal covariance matrix
Cov(f) =2, 7 =0.00412.

The direction of E(f) differs from that of B by 0.697 rad (~ 40°). The first
row of Table 1 summarizes the distribution of the direction of B, ie., 6=
tan~( ,82/ ,Bl), which is estimated from 10,000 draws from the bivariate normal
distribution for 8, using the RANNOR function in SAS. The estimated direction
is practically always in the fourth quadrant, which is at least 0.416 rad away
from B.

To reduce the bias, consider the following subsampling procedure: Ignore the
design points in the four corners of the square and apply the linear regression to
the subdesign {X: x? + x2 < 0.25}. The subdesign is very close to being spheri-
cally symmetric. The least squares estimate B based on this subdesign is
normally distributed with expectation

B** = E(B) = (0.0904,0.0403)
and a diagonal covariance matrix
Cov(B) =71, 7= 0.00593.

The direction of the expectation B** is 0.420 rad, which is, as expected, almost
identical to that of the true direction 6; the two are different by less than 0.004
rad.

The second row of Table 1 summarizes the distribution of the estimated
direction § = tan~( Ez/ﬁl) based on this subdesign. There is a probability of
about 0.9 for the estimated direction to be within 0.1 rad (~ 6°) from the true
direction 6 = 0.416 rad. Furthermore, the estimated direction is practically
always in the first quadrant, which is at least 0.282 rad away from of 8*, the
expected estimated direction based on the complete design. .

Despite the substantial bias of the full design estimate B, it is not easy to
detect the model violation by most standard diagnostic tools. As an illustration,
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TABLE 2
Linear regression, R? = 0.1036

Y

Variable d.f. B t
Intercept 1 —0.0022 -0.99
x, 1 0.0484 6.67
Xy 1 —0.0087 —-1.20
- Mean

Source d.f. Square F
Model 2 0.0445 22.94
Error 397 0.0019

we generate a data set according to the above specifications, using the RANNOR
function in SAS to generate the &’s. Table 2 summarizes the linear regression of
y on x, and x,. The estimated direction § = —0.178 differs from the true
direction by 0.594 rad (~ 34°). We carried out some standard diagnostic tech-
niques but failed to detect the model violation. For instance, the linear regression
of ¥y on x;, x5, x7, x5 and x,x, shows none of the three quadratic terms is
significant at the nominal 5% level; the combined F-test has a nominal P-value
of 0.985. The more parsimonious test, Tukey’s 1 degree-of-freedom test, has a
nominal one-sided P-value of 0.432. Figure 1 is the usual residual plot (residual
versus prediction scatter diagram) for regressing y on x,, x,. There does not
appear to be any interesting patterns in the plot. If we treat the residuals as
being independent, we can partition the residuals by the ranks of the predicted
values, then use a one-way ANOVA to test for the presence of patterns. Using 20
partitions with 20 observations in each, the test has a nominal P-value of 0.943.
All of these residual-based diagnostic tools suggest that the fitted least squares
model is satisfactory (cf. Remark 6.5 below).

On the other hand, Table 3 summarizes the least squares regression of y on x,
and x,, restricted to the subdesign, for the same data set. The estimated
direction, § = 0.502 rad, different from the true direction by only 0.086 rad
(~ 5°), is dramatically different from the original estimate §. Thus the consider-
ation of elliptical symmetry of the design distribution adds a new dimension to
regression diagnostics. This new viewpoint is rather different from the more
popular one based on the concept of the leverage point; the latter is a local
sensitivity analysis, while the former is a global violation analysis.

REMARK 6.5. It might be possible to detect model violation in this example
by examining the residuals more thoroughly. For example, if we plot the
residuals against a number of pos51ble linear combinations of x, and x,, rather
than just the fitted combination fx, it is possible to detect nonlinear patterns
from those residual plots against the linear combinations near 8x. However, such
procedures might lead to spurious patterns [cf. Huber (1985), Section 21] and
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Figure 1 Residual
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Fi1c.1. Residual plot.
TABLE 3
Linear regression for subdesign, R? = 0.2664
Variable df. B t
Intercept 1 —0.0014 —0.58
x, 1 0.0850 8.86
Xy 1 0.0466 4.86
Mean
Source d.f. Square F
Model 2 0.0835 51.01
Error 281 0.0016

might not be easy to apply when the dimensionality of x is higher. Other
possibilities include nonparametric regression techniques such as kernel esti-
mates, thin plate spline, partial spline [Engle, Granger, Rice and Weiss (1986)
and Wahba (1984)] and projection pursuit regression [Friedman and Stuetzle
(1981)]. Eubank (1988) provides a nice account on nonparametric regression.

REMARK 6.6. For the full design, we have a probability of ®(4.20) = 1.000 to
reject the hypothesis that the slope vector 8 is proportional to (0.915,0.404), the
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true direction, using a standard two-sided 5% level test. Therefore the full design
almost certainly misleads us to the false conclusion that B is significantly
different from (0.915,0.404). On the other hand, if the regression analysis is
restricted to the subdesign, the probability of rejecting this hypothesis is only
0.0014. The test based on the subdesign also has a probability of ®(7.57) = 1.000
to reject the false hypothesis that the slope vector is proportional to 8*.

7. Adaptive estimation. The discussion so far has been from the viewpoint
of robustness, so the criterion function used for regression is already given. We
may also ask the question of how to obtain an efficient estimate of 8 (up to a
multiplicative scalar) under the general regression model (2.8) with g, F being
unknown. It turns out that under the elliptical symmetry condition for x,
(A.2""), we may estimate B (up to a proportionality scalar) as well as if g and F
are known. In other words, adaptive estimation is possible here.

The main tool we shall use here is the device given by Bickel (1982), a paper
which the reader is expected to be familiar with in order to follow the discussion
below.

Bickel (1982) discovered that for many semiparametric problems (i.e., those
with both parametric and nonparametric components), there is a convexity
structure for the nonparametric component. Utilizing convexity, he simplifed
Stein’s necessary condition for adaptive estimation. In the following we shall
demonstrate that the convexity condition and the simplified Stein necessary
condition [called the generalized S* condition in Bickel (1982)] hold. We also
briefly discuss how to obtain an adaptive estimate without giving the regularity
conditions and the proofs. The distribution of x will be assumed known in our
discussion although for constructing an adaptive estimate it may be unknown as
well.

7.1. Convexity. The convexity condition in Bickel (1982) amounts to the
following: For each fixed (a, B), the set of distributions

{distribution of (y,x): (1.1) holds, g, F arbitrary}

is a convex set in the sense that any mixture of two distributions in this set also
belongs to this set.

To see why this condition holds for our case, we need only to observe
that under (1.1) the conditional distribution of y given x takes the form
H(a + Bx, y) where H(¢, -) is an arbitrary distribution function for each ¢.

7.2. Generalized S*. Let l(y,x, a, B, h) be the logarithm of the density for
(y,x) when the conditional density of y given x is h(a + Bx, y). Clearly, the
vector of partial derivatives of / with respect to a and B is

’ !’

) h
(y,%x,0,B,h) = 7{(01 + Bx, ¥), xf(“ +Bx, )|,

where A'(t, y) = dh(t, y)/dt. Write the information matrix I = El'l and its



1046 K.-C. LI AND N. DUAN

inverse in block form,

L, I, . et
I—(I21 Ly’ = oz

where I,, and I'' are scalars. Suppose we are interested in estimating ¢(B)
where ¢ is any differentiable function (could be vector-valued) such that
®(cB) = ¢(B) for any scalar c¢. ‘

Now define {(y,x,a, B, h) = I(y,x, a, B, )10, p(B)), where ¢(B) denote
the matrix of partial derivatives of ¢. The generalized S* condition is
(7.2.1) E,.l(y,x,a,B, h) =0, forany h, h*,
where the subscript of E indicates the true conditional distribution.

The proof of (7.2.1) is given below. First using Lemma 5.1 we see that

L,xBV and I,,x V+ cVBBV

for some scalar c. Then using the identities
-1

(7.2.2) I = (122 - 21(111)_1112)
and ' '

(7.2.3) L%+ 1,I2=0

we see that

(7.2.4) I V1 + c'B'B

and

(7.2.5) I « B

for some scalar ¢’. In addition, the homogeneous restriction of ¢ implies
(726) B4 (B) = 0.

Finally using Lemma 5.1 again, we see that

(7.2.7) E,l(x,y,a,B, h) = (x,c"BV),

where * and c¢” are scalars. Putting together (7.2.4)—(7.2.7), we easily obtain
(7.2.1) as desired.

7.3. Adaptive estimation. A general recipe of constructing an adaptive esti-
mator is given in Bickel (1982). To apply his method, all we need is to be able to
find a consistent estimate of I( y, X, a, B), which is seen to be proportional to

’

h
—(a+ Bx, ) - XV "(B).

Thus, we have to estimate h’/h(t, y). In principle this is not hard, using
techniques from the nonparametric density (and its partial derivative) estima-
tion based on the data (& + ﬁxi, ¥,), i =1,..., n. Here we need to impose the
identifiability constraint a* = a, B* = B, as was done in Bickel (1982). The
details on the mode of consistency and regularity conditions as well as practical
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guidance for choosing the appropriate smoothing parameter involved in the
density estimation will be examined more closely in the future.

APPENDIX

Proor oF LEMMA 2.2. For almost any (x, y), we can take a supporting
hyperplane for the criterion function L at an interior point (a*, b*) in Q. The
hyperplane can be taken as

H(a, b;x,y) = L(a* + b*x, y) + ((a — a*) + (b — b*)x)L,(a* + b*x, y),

where L, is the right-side derivative of L with respect to 6. Take a closed cube
B c Q centered at (a*, b*). For any (a, b) in B, the supporting hyperplane is
bounded from above by L(a + bx, y), therefore its expectation is either finite or
— 0. However, the case of — oo can be ruled out by considering the two points
(a, b) € B and 2(a*, b*) — (a, b) € B together: If the expectation of the sup-
porting hyperplane is —co at one of the two points, then expectation at the
other will be + co0. Therefore EH(a, b; X, y) is finite for all (a, b) € B and hence
for all (a, b) € RP*!. This is a finite lower bound for all (a, b) € €. The proof
of this lemma is complete. O

PROOF OF LEMMA 3.2. (i) Observe that Ey = EE“g(a + A, &) = h(A), where
h(A) is defined by A(A) = E4g(a + A, ¢). Similarly, EyA = Eh(A)A. Thus D,
consists of those pairs (Eh(A), Eh(A)A) for some h such that A(A) > J'(— ).
We shall consider only the case that y/(— o) > — o [the case y(—o0) = — o0 is
trivial].

By the assumption EA = 0, we have

Eh(A)A = E(h(A) — /(- 0))A < E(h(A) - ¥/(-))B.

Therefore (ER(A), Eh(A)A) belongs to the set described in (i) of Theorem 3.2.

On the other hand, for any point (7, {) in the set described in (i), we can find
corresponding A by considering only those A which take the form A(A) =a +
Y(— ), ¥(— ) or a, + Y(— o) depending on A > b;, b, <A < b, or A < b,,
where a,, a,, b,, b, are constants with b, > {(n — ¥(—00))~! > b,. This com-
pletes the proof of part (i). . _

(ii) For a fixed ¢ > 0, the largest a such that (a,c) € € is a = —cB. Now
since Ey'(a + cA) is increasing in ¢, we have

EJ/(a +cA) < Ey'(c(A - B)).
On the other hand, since Ey’(c(A — B)) is decreasing in ¢, we have for ¢ > ¢,,
Ey'(c(A - B)) < Ey'(¢n(A - B)) =n.
Therefore C, is the largest c such that there exists some a to satisfy
(A1) Ey'(a+ cA) =n.

Now we need the following lemma.
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LEMMA A. Subject to (A.1), EY’'(a + cA)A is an increasing function of c.

The proof of this lemma is given later. Continuing the proof of part (ii), we see
that by this lemma, the largest value of Ey’(a + cA)A, subject to (A.1l), is
achieved at c¢ = ¢,. Similarly, we can show that the lower bound is also as
specified in (ii) of Theorem 3.2, completing this part of the proof. O

Proor oF LEMMA A. First observe that due to the constraint (A.1), a is a
function of c¢. Now taking the derivative with respect to ¢ on both sides of (A.1),
we get

Ey’(a+ cA)(a’+ A) =0,
leading to .
a' = —-Ey’(a+ cA)A/Ey"(a + cA).
On the other hand,

d
Ec—Ez[/(a + cA)A = Ey”’(a+ cA)A® + a’EY"(a + cA)A

_ [Ey(a + cA)A?][EY(a + cA)] — [Ey’(a + cA)A]
- Ey”’(a + cA)

>0,
where the last inequality is due to the Cauchy—Schwarz inequality. This com-
pletes the proof of Lemma A. O

ProoF OF (5.2). The proof is essentially the same as the proof for Lemma
2.2, noting that over a closed cube, the convex function L(a + bx, y) —
L(a* + B*x, y) assumes its sup at one of the 27*! vertices of B and the
supporting hyperplane also assumes its inf at one of the vertices. O

PROOF OF LEMMA 5.1. First take & = V" %(x — ), B = BV/? and (-) =
Y(- + Bu). It suffices to show that for some scalars c,, c,, ¢;, we have

(A.2) Ey(Bx)% = c,B
and
(A.3) EJ(BR)x% = c,I + c,f'B.

Note that X is spherically symmetric with EX = 0 and Vark = I. Let u be the
projection of X’ to the orthogonal complement of B. Clearly, given BX, u is
spherically symmetric in the orthogonal complement of . Therefore,

EP*x' = EP*(u + Bx - (|2 B)
, =Bx- (B2 B,
proving (A.2) with ¢, = Ey(B%) - Bx - ||B||~2 Similarly,
EFxx = (Bx)’- |BI"% - BB + EP*uu
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and
EPwu = c/(1-|BI"*BB’),
where ¢’ = EPX{|%||> — (B%)?||B|I"2}/(p — 1). Therefore (A.3) holds with
¢, = ES(B){I%I* - (B=)1BI"%)/(p ~ 1)
(A4) =(p-1)TEYBR){(x = p)V (x —p)
—(B(x — n)*(BVB) ). O

REMARK. (A.2) can be proved directly from assumption (A.2), but (A.3)
depends on the elliptic symmetry assumption (A.2""). -

ProOF OF THEOREM 5.3.1. Without loss of generality, assume that p = 0.
Then by Lemma 5.1, we see that C and A take the block form

C- * BV

T laVB eV + VBBV
A= * BV

T e VB eV + VBBV

where ¢,—c, are scalars, with ¢; = 77" and ¢, = A~ [see (A.4)]. Now noticing
that A takes the same form as the information matrix I in Section 7.2, we may
use the same argument to find

A_1= ( ¥ C7B )’

B e T+ coB'B

where cg = c;' =1. Now the result (5.3.1) follows immediately from matrix
multiplication. '

To see that (5.3.5) holds, we simply observe that in the proof of Lemma 5.1,
the scalar ¢/ = 1 under the normality assumption. O

PRrOOF OF THEOREM 5.4.1. First, it is clear that without loss of generality we
may assume p = 0 and V = I. Similar to the usual parametric model case, we
approximate /,(a, b) locally by a quadratic function

I(a,¢)=1,+ (a—a*b—B*)s,+ s(a—a*, b—PB*)i(a—a*b-Pp*),
where 1, s,,i, are defined in Section 52 with the argument (a, B*) being

n
omitted for simplicity. Now minimizing the right-hand side of this expression
over (a, b) € RP*! and over (a, b) = (a,vA) for v € R", respectively, we see
that '

Q= Ir?r’}ineR”i;l/zsn - i,;/*(a,vA) ’
veR" a

=||H,(i,"%s,,)

2

b
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where H, is the projection matrix from R?*' to the orthogonal complement of
the linear space {(n~',)"/*(a,vA): a € R,v € R"}. Now asymptotically, i~'/%s,,
is normal, with mean 0 and covariance

* c,B*
-1/2 -1/2 _ 1
A CA ( Clﬂ*l }\I + C3B*,B* ) .

On the other hand, H, converges to a projection matrix H with the property

— 1/2
0 = HA ( A,V,)

* c,B* a

for any a € R, v € R”. Since B* is of the form vA, we see that the asymptotic
covariance for H (i, '/%s,) is an idempotent matrix with rank p — A after being
rescaled by A~?, proving the desired result. O
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