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COHERENT INFERENCE FROM IMPROPER PRIORS AND
FROM FINITELY ADDITIVE PRIORS

By Davip HEATH AND WILLIAM SUDDERTH!

Cornell University and University of Minnesota

Conditions are given for the formal posterior of an improper prior to be
coherent and applied to translation models. An example is given of a proper
countably additive statistical model and a finitely additive prior for which
there is no posterior.

1. Introduction. A notion of coherence for statistical inference was intro-
duced in a previous paper [6]. It was shown that an inference is coherent if and
only if it corresponds to the posterior of a finitely additive prior. A similar result
was proved for predictions and predictive inferences in [8]. (See Regazzini [10]
for a clear exposition of a different notion of coherence.)

In practice many Bayesians use improper, countably additive priors to repre-
sent diffuse prior knowledge rather than finitely additive priors. There are
several reasons for this including the relatively easy calculation and the essential
uniqueness of the formal posterior of an improper prior and the lack of familiar-
ity with the finitely additive theory. As was shown by examples in [6], the use of
an improper prior sometimes results in a coherent inference and sometimes not.
The obvious problem is to find an effective criterion for determining when an
inference from an improper prior will be coherent.

Bayesians have long justified their use of improper priors by arguing that they
can be approximated in some sense by proper priors. A useful discussion is given
by Stone [11] who defines a notion of approximation which we adapt for our
purposes. Our first result (Theorem 3.1) is that an improper prior leads to a
coherent inference if and only if it can be approximated by proper priors in this
sense. Even this result is difficult to apply in specific examples. However, it can
be used to derive a sufficient condition for coherence which is often easy to
verify. This condition is presented in Theorem 3.2 and applied in several
examples.

A Bayesian, who seeks to avoid incoherent inferences, might be advised to
abandon improper, countably additive priors and use only finitely additive
priors. One difficulty with this approach is that not every finitely additive prior
has a posterior. Examples of this phenomenon presented heretofore have in-
volved finitely additive conditional distributions for the observations as well as a
finitely additive prior. An example is presented below in which the conditional
distributions are countably additive with finite support. Thus it can happen
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908 D. HEATH AND W. SUDDERTH

that, even for a standard statistical model, a finitely additive prior leads to no
inference.
The next section contains the necessary definitions and preliminary results.

2. Preliminaries. For any set S, P(S) denotes the collection of finitely
additive probability measures defined on all subsets of S. If f is a bounded,
real-valued function defined on S and y € P(S), then the y-integral of f will be
written y(f), [fdy or [f(s)y(ds).

Let ® and X be nonempty sets corresponding to the set of possible states of
nature and the set of possible outcomes for a certain experiment, respectively. A
statistical model p is a mapping which assigns to each § € © an element p, of
P(X). An inference q assigns to each x € X an element g, of P(0). (In our
earlier paper [6] we did not require each g, to belong to P(®) and considered the
more general notion of a “conditional odds function.” We impose the new
restriction here in order to simplify the exposition and also because it is a
natural requirement recommended by de Finetti [3], page 339.) Thus p is a
conditional probability distribution on X given ® and ¢ is a conditional
distribution on © given X. Let B(0) and B(X) be given o-fields of subsets of ©
and X, respectively. The model p is called measurable if every p, is countably
additive on B(X) and if, for every A € B(X), the mapping 6 — p,(A) is
B(0®)-measurable. A measurable inference q is defined similarly. The standard
models and inferences of statistics are, of course, measurable.

An inference ¢ might correspond in practice to a system of confidence
intervals, a posterior distribution or a fiducial distribution. For an operational
interpretation, regard g, as a conditional odds function used by the statistician
to post odds on subsets of O after observing x. The inference q is called coherent
if it is impossible for a gambler to devise a system based on q, which consists of
placing a finite number of bets on subsets of © after x is observed and which
attains an expected payoff greater than some positive constant for every 6 € 0.
(See [6] for the precise definition.)

An element 7 of P(0®) will be called a prior. A prior # and model p determine
a marginal m € P(X) by the formula

(2.1) m(s) = [py(4)n(d0)

for bounded functions ¢: X — R. Let B = B(0) X B(X) be the product o-field
on ® X X. An inference q is called a posterior for the prior =, the model p being
understood, if

(2:2) [ [$(8, %)py(dx)m(db) = [ [4(6, x)q.(d8)m(dx)

for all bounded, B-measurable functions ¢: ® X X — R. In other words, g is a
.conditional distribution for ® given X under the measure on B determined by =
and p as defined by the left-hand side of (2.2).

The model p and inference g are called consistent if there exist = € P(®)
and m € P(X) such that (2.2) holds for all bounded, B-measurable ¢.
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The following proposition summarizes a few results from [6] and [7].

ProPOSITION 2.1. The following are equivalent statements about an infer-
ence q relative to a given model p.

(a) q is coherent.

(b) q is the posterior of some prior .

(c) p and q are consistent.

(d) For every bounded, real-valued B-measurable function ¢ on © X X,

il;fpo(%) < supg,(¢%),
where ¢y(x) = ¢(0, x) = ¢*(0).

The results of the proposition are stated as in [6] and [7] for general p and ¢
which are not necessarily measurable. Thus the inner integrals in (2.2), corre-
sponding to py(¢y) and q.(¢*), need not be measurable functions of § and x,
respectively. This is the reason why = and m must be defined on all subsets of
their respective spaces ® and X. Now if p and q are measurable, then so are the
functions p,(¢,) and g,(¢*) and we need only specify 7 and m on B(®) and
B(X), respectively, for (2.2) to make sense. It is also easy to see that the
proposition remains true for measurable p and q if we consider priors and
marginals to be defined only on the appropriate o-fields.

Let M(®) and M(X) be the collections of countably additive measures
defined on B(®) and B(X), respectively. By an improper prior is meant an
element 7 of M(®) such that #(0©) is infinite. Suppose that, for a given
statistical model p, there is a reference measure » € M(X) such that every p, is
absolutely continuous with respect to ». Let f(-|6) be the density for p,. For
x € X, define

F(x10)n(do)
[H(xityn(ar)

whenever the denominator is finite and not zero and let g, be an arbitrary fixed
element of P(0®) otherwise. The inference ¢ is called the formal posterior of the
improper prior . If f(:|-) is B-measurable and if the denominator above is
v-almost everywhere finite and positive, then g is a measurable inference. Of
course, if 7 is proper and countably additive on B(®), then the ¢ given by (2.3)
is a genuine posterior for # and is coherent by Proposition 1. (Another approach
to evaluating improper priors is in Eaton [5].)

(2.3) q.(db) =

3. Approximation by proper priors. Let a and 8 be measures on B(0)
and define the total variation distance by

61 lla= Bl = sup | foda— fods

where L_(0) is the space of bounded, real-valued, B(® )-measurable functions on

isup|o|<1,¢ € Loo(e)}’
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©. Next consider an inference § and a prior # € P(®) which has marginal m and
posterior g. Define

(32) d,(4,4) = [lg. - Gm(ds),

which can be thought of as the expected distance between the inferences ¢ and §
when the expectation is calculated from the marginal of the prior .

DEFINITION. The inference § is approximable by proper priors (a.p.p.) if
(3.3) inf d,(q,q) =0,
where the infimum is over all 7, ¢ such that # € P(®) and q is the posterior of

a. If # is an improper pl'lOI‘ with formal postenor g, we say that 7 is
approximable by proper priors if § is.

As mentioned in the introduction, this notion of approximation was inspired
by Stone [11, 12] who did not, however, consider finitely additive priors.

THEOREM 3.1. An inference § is coherent if and only if it is approximable by
proper priors. '

ProoOF. If § is coherent, then, by Proposition 2.1, there exists # € P(0) with
posterior ¢ = § and d,(g,§) =0
Suppose now that § is a.p.p. We will use Proposition 2.1(d) to show that § is

coherent.
Let ¢ € L (0O X X) and & > 0. Set b = sup|¢|. Choose = € P(0) with poste-
rior q such that

d,(q,4) <e/b.

Then
|fa#Im(aw) - [aeIm(as)|
< [la(¢) - G.(¢7) |m(dx)
< (supl¢|)d,(q, G) <e.
Hence

[Po(s5)7(d8) = [q.(67)m(dz)

< [a(¢")m(dx) + ¢
and consequently,
sup§,(¢*) > iI(}fPo((l’o) — &

Because ¢ is arbitrary § satisfies Proposition 2.1(d). O
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Suppose now that 7 is an improper prior, py(dx) = f(x|0)r(dx) for every
0 € © and 7 has formal posterior q as in (2.3). The natural and often used way
to attempt an approximation of ¢ by proper priors is to truncate = to a set of
finite measure. To be precise, let K € B(®) satisfy 0 < #(K) < co and define
the truncation of = to K as the proper prior 7; where

(3.4) e (9) = ;(—1,5 [#(0)n(@0), s<L(0).

Let g% and my be the posterior and mafginal determined by g, respectively.
Formulas (2.1) and (2.3) specialize to give

1
mx(¥) = ooy L Jy@pa(dn)n(ab), YELX),

(3.5) J #(6)i(x16)w(d6)
g¥(9) =% ,  $€L,(0).
/K f(x18)7(d6)

It seems likely that, for measurable models, whenever q is a.p.p., it can be
approximated by truncations. However, we have not proved such a result.

For a certain class of group invariant problems, Stone [11, 12] showed that
Haar measure, used as an improper prior, could be approximated in a sense close
to the present one by truncations. A similar result was obtained for amenable,
locally compact groups in [6]. Suppose X = ® = G is such a group and the
model p is a generalized translation family p,(dx) = f(0~'x)»(dx), where » is
right Haar measure. If » is used as an improper prior, the corresponding
inference is

(3.6) q.(d8) o f(87'x)v(d0)

and is coherent by [6], Theorem 3. Stone [13] has also given examples which
illustrate that this inference need not be coherent if G is not amenable.

In general, the criterion of approximability by proper priors seems difficult to
apply directly. For example, it follows from the discussion above that, if p is a
translation family on the line such as the N(6,1), then Lebesgue measure df
gives a coherent inference. However, it remains unclear whether improper priors
such as 82 df will do so. The next result gives a sufficient condition for coherence
which allows us to check that the corresponding inference is coherent.

Suppose 7 is an improper prior with formal posterior g. For each K € B(0)
such that 0 < m(K) < oo, define

(3.7) B(K) = [q(K*)my(de).

Here my is the marginal on X determined by the truncated prior mg. The
number B(K) is the posterior probability under = that 6 ¢ K averaged under
the truncation of = to K. More crudely, B(K ) is the chance that g says ©® ¢ K
given that © € K.
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THEOREM 3.2. If
(3.8) inf{B(K):0<w(K) <o} =0,
then w is approximable by proper priors. Indeed, given K € B(®) with
0 <7(K) < o, B(K) < d,(q%, q) < 2B(K).

Proor. It suffices to prove the inequalities. For the first inequality, notice
that, for all x, ¢X(K*°) = 0 and so, by (3.1),

g, — a1l = q.(K°).

The first inequality now follows from (3.2) and (3.7).
To prove the second inequality, let ¢ € L_(0) and sup|¢| < 1. The inequality
will follow from (3.1), (3.2) and (3.7) once it is shown that

(39) la:(¢) — af(¢)| < 2¢.(K°), mgas.
To verify (3.9), first use the triangle inequality to see

+ — K
ny'dqx I/K‘pdqx J » da

Because sup|¢| < 1, the first term on the right side of (3.10) is obviously bounded
by q,(K¢). To obtain the same bound for the second term on the right side of
(3.10), use (2.3) and (3.5) to rewrite it as

(3.10) la.(¢) — aX(9)] <

.

[ #(x18)(d0) [ f(x16)7(as)
J ¢ daX ||t - E———| < gX(K)E
3.11) Ik [i(x16)n(ab) [1(x18)7(a8)
=1Xq,(K°). O

By Theorems 1 and 2, condition (3.8) is a sufficient condition for the formal
posterior ¢ to be coherent. Again we do not know whether it is necessary. The
condition can often be checked as will be illustrated in the next section with two
examples.

4. Two applications to translation families. In this section, ® = X = R4,
d-dimensional Euclidean space and df or dx has its usual interpretation as
Lebesgue measure. The prior # will be a fixed improper prior

n(d6) = g(0) db,

where the prior “density” g is nonnegative and Borel measurable. The model p
is assumed to be a measurable translation family given by a family of densities

py(dx) = f(x — 0) dx,

where f is Borel measurable. Assume also that the denominator on the right side
of (2.3) is Lebesgue almost everywhere finite and positive so that (2.3), which



COHERENT INFERENCE FROM IMPROPER PRIORS 913

gives the formal posterior ¢ of #, can be rewritten as
f(x —6)g(8)

(4.1) h(blx) = :
[1(x ~ 9)e(s) do

where h(f|x) is a density for g,. Write |§| for the Euclidean norm of § € R? and
let @, be the truncation of 7= to the ball B, = {6: || < n}. Let q™ be the
posterior for 7, and the Bayes formula then gives the density below for g
x—0)g(0
(4.2) h(o) = —E=0e®
[ 1z = 9)8(9) do

So that (4.2) will be valid, assume #(B,) < oo for all n. For simplicity assume
@(B,) > 0 also. However, there is no real loss in generality because we will only
need below that «(B,) is positive for n large and this follows from our
assumption that 7(0) = co.

If the tails of the prior density g grow too rapidly, the inference ¢ need not be
coherent even for quite well-behaved translation models.

EXAMPLE 4.1 (Stone [13]). Suppose ® = X = R!, p, is N(0,1) and g(9) =
exp(af) where a > 0. Use (4.1) to see that ¢, is N(x + a,1). In Proposition
2.1(d), take ¢ to be the indicator function of the set S = {(6,x): § < x + a} and
notice that

Po(99) =Pyl 0 — a,00] = p[—a, 0] > 1,
while
qx(¢x) = qx[—oo,x + a] = qO[_OO,a] = %.

Thus ¢ is incoherent.

The critical feature of this example is the exponential growth of the prior
density g. The normal model could be replaced by many translation families
including, for example, the uniform translation model where p, is the uniform
distribution on the interval [0, # + 1]. Thus the exponential growth of g is too
much even when the p, have compact support. Here is a condition which rules
out such growth for g.

GROWTH CONDITION (GC). For every a > 0, lim, _, . (7(B,,,)/[7(B,)]) = 1.

Notice that a prior density which behaves asymptotically like a polynomial
will satisfy GC.

The next lemma gives another sufficient condition for coherence when =
satisfies GC. In its statement m, denotes the marginal determined by the
truncated prior «, and the model p.
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LEMMA 4.1. Assume w satisfies GC and let a > 0. Then the following are
true.

(@) m(B,_,) 2> 1asn— oo.
(b)m( _a) > lasn— oo
(¢) gis coherent if

(4.3) lim ﬂ( S f j f(x— 6)g(8) dodx = 0.
(d) q is coherent if
(4.4) sup /Bm fB :g(ﬂ) fx - 8) d?dx < .

ProOF. (a) This is obvious if ¢ = 0 and immediate from GC if a > 0.
(b) Let & > 0. Choose b > 0 such that py(B;) > 1 — & Then py(B, + 0) =
DPo(B,) > 1 — ¢ for all 8. Now calculate:

m(Byed) = [ By )m(d0) 2 [ p(Broo)mi(dh)

n—a—b

> f Po(By+ 0)m(d@0) 2 (1 =~ )m(Byoos)-
(The next to last inequality holds because B, + § € B,_, for § € B,_,_,.) Now
use part (a). '
(c) and (d) Let € > 0. By (3.7) and part (b),
B(B,) = [a(By)m(dx) <e+ [ a(B)m,(dx)

for n sufficiently large. By Theorems 3.1 and 3.2, the coherence of g will be
established if we show

(4.5) Jlim [ g (B)m,(dx) = 0.

To see this, let f, be the density for m, which is given by

1) = gy J 1 = () a0
and use (4.1) to write
[ f(x—0)g(0) as

Qx(Brf) = = ¢
[#(x~6)g(6) db
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Hence

1
[, adBIm(&) <

and (4.5) follows from (4.3).
Now (4.5) also follows from (4.4) because 7(B,) — oo. O

[, [ 1= 0)e(0) db

The final two conditions of Lemma 4.1 can be viewed as joint growth
conditions on the densities for the prior and the model. We will now apply these
conditions to two special situations.

THEOREM 4.1. Suppose ©® = X = R'. Assume w(df) = g(0)d0 is an im-
proper prior with g bounded and py(dx) = f(x — 0)dx is a translation family
such that [|x|f(x) dx < oo. Then the formal posterior q is coherent.

ProOF. Because g is bounded, it satisfies GC and it suffices by Lemma 4.1(d)
to show that

(4.6) I chf(x —0)dfdx < 2E)Z|,

where Z is a random variable with density f(x).
Use the fact that —Z has density f(—x) and calculate as follows:

chf(x—ﬁ)dﬂ=fnoof(x—ﬁ)d0+fjoof(x_o)d9

=f:xf(—0)d0+f:xf(0)d0
=P[-Z>2n—-x]+P[Z=>n+x].

Hence,

f_nnchf(x —0)dfdx = f_nn{P[-Z >n-x]+P[Z>n+x]}dx
= joz"{P[—z >y]+P[Z>y])dy
= 2["'P[1z] > y] dy
< 2E)Z|. o

THEOREM 4.2. Suppose ® = X = R' and p, ~ N(0,1). Let =(0) be an im-
proper prior satisfying GC and

(4.7) 8(6)/16" > k& as 0] - oo
for some positive constants r and k. Then the formal posterior q is coherent.
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ProOF. Let f be the density for p, — N(0,1). For every s >0, f(x) is
O(|x|~*). Thus the theorem will follow from the next lemma. O

LEMMA 42. If 7 is as in Theorem 4.2 and if f(x) = O(|x|~%) for some
s > r + 2, then the formal posterior q is coherent.

PrOOF. The proof is an application of Lemma 4.1(c). First use (4.7) to choose
t > 0 so that g(8) > (k/2)|0|" for |6 > t. Then, for n > ¢,

n n
7(B,) = [ g(6)d(6) = k[ 07d0 = k'(n"" = ¢™),
n A
where %’ is a constant independent of n. Use (4.7) again to see that g(8) < 2k|6|

for |0| sufficiently large. Thus (4.3) and the lemma will be proved once we show
that

fB jB 167 — 67 d6 dx < cn”

for some constant ¢ > 0 and n sufficiently large. To see this, change the order of
integration to get

(4.8) 0| |x—01"°dxdf
Sl
and calculate the inner integral for |6| > n:
[ w-8rde< [ (61~ )"
B, , B,
n—1 -8
=2 6] - dx
[ 61— =)

<c (8l —n+1)"°"h
Thus (4.8) is dominated by a constant times

f 1017(16) — n +1) """ do = 2f°°or(g Cn+1)*d8
By e
= 2f°°(u +n—1)u""du
1
= 2(n - l)r/w(u/(n - 1) + 1)'u—s+1du
1
<2(n- l)rfoo(2u)ru—8+ldu
1

= 2r+1(n _ l)r/wu"s“du
1

<e(n-1)". m|
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It would be interesting to know whether Theorem 4.2 generalizes to higher
dimensions.

Both Theorems 4.1 and 4.2 illustrate that coherence of an inference from an
improper prior depends on the relationship between the prior and the model, and
not on the prior alone. In fact, given any improper prior #(d@) = g(6) d@, there
is a model p for which the formal posterior ¢ is incoherent. For example, if
® = R' and g is locally integrable and everywhere positive, then a simple
transformation ¢ = ¢(0) gives a prior n'(d¢) = e? d¢ and the normal model of
Example 4.1 will lead to an incoherent inference.

5. A measurable model and finitely additive prior for which there is no
coherent inference. In contrast to the situation with improper priors, the
posterior of a proper prior is, by Proposition 2.1, always coherent. However, it
can happen that a finitely additive prior has no posterior for a given model p.
Examples of this phenomenon are given in [4] and [9]. In these examples the
measures p, are only finitely additive. Here is a simple example in which p is

measurable.
Let X=0=Z=1{0,+1,1+2,...} and let p be the translation model such

that ,
Po{0+1} =py{0—1} =3
for all 4. Take the prior 7 to be of the form
7= (p+72)/2

where p is countably additive with support the set A of integers divisible by 4
and » is purely finitely additive and supported by the set B of integers equal to
2 modulo 4. Thus p(A) = 1 and p{n} > 0for n € A; »(B) = 1 and v{n} = 0 for
all n. (This example is related to one of Dubins [4], page 205.)

LEMMA 5.1. There is no posterior for the prior .

PROOF. Assume, to get a contradiction, that = has a posterior ¢ and let m
be the corresponding marginal on X. Let O be the set of odd integers. Clearly,
pe(0O) =1for § € E = AU B and, by (2.1), m(O) = 1 also.

The key point is that g,(A) = 1for all x € 0. To see this, suppose x = 4n + 1,
write P for the joint distribution and calculate

P[0 =4n,x = 4n + 1] = 7{4n}p,{4n + 1} = p{4n} /4.
Also,
P[0 =4n,x =4n + 1] = m{4n + 1}q,{4n} = p{4n}q.{4n} /4.
Hence
| 9:(A) = g,{4n} = 1.
Similarly, if x = 4n + 3,
9.(A) = g.{4n + 4} = 1.
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Thus
P(AXX)= qu(A)m(abc) =1.

But
P(AXX)=m(A) =13,

a contradiction. O

Our final result will imply the existence of approximate posteriors in the
example just given. To formulate the result, let 7 be a prior and p be a model.
Then 7 and p determine a probability distribution P on ® X X by the formula

(5.1) P(4) = [py(Ag)(d6),

where A € © X X, Ay = {x: (0, x) € A}. For ¢ > 0, an inference q is called an
e-posterior for = if

P(4) - [a(a%)m(dw)]| <

for every A C ® X X. Here m is the marginal of P on X as in (2.1) and A* =
(6: (8, x) € A).

(5.2)

PROPOSITION 5.1. Let X =0 = (0,41, +2,...} and let p be a translation
family so that py(A) = p(A — 0) for A c X. If p, is countably additive, then
every prior w has an e-posterior for every ¢ > 0.

PrOOF. We can assume p, has finite support. To see this, let 0 < § < ; and
use the countable additivity of p, to choose a finite set F ¢ X such that
DPo(F) > 1 — 8. Define a new translation family p? by taking

p3(B) =po(B N F)/p(F)
for B c X. Then define pi(B) = pS(B — 0) and define P® by (5.1) with p,
replaced by p?. Then

|P’(A) — P(A)| < 38

for every A € © X X.

Assume now that py(F) = 1, where F is finite. Let L = {(0,x): x + § € F}.
Notice that the #-section of L is L, = F — @ so that, by (5.1), P(L) = 1. Next
consider the partition of L whose elements are the x-sections L* = F — x.
Because each L* has the same number of elements as F, it follows from Dubins
([4], Proposition 1, page 95) that there is a g satisfying (5.2) forevery A € © X X.

O

The proposition still holds (with the same proof) if the integers are replaced
by any countable group. We do not know if it holds for translation families on
larger groups such as the real numbers. We also do not know whether the
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conclusion necessarily holds when every p, is countably additive but p is not a
translation family. The conclusion need not hold for finitely additive p as is
shown in [4] and [9].

Acknowledgment. We want to thank two referees who made a number of
useful suggestions and saved us from an erroneous proof of an earlier version of
Theorem 4.2.
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