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ON ESTIMATING THE DEPENDENCE BETWEEN
TWO POINT PROCESSES!

By Hani Doss
Florida State University

To assess the dependence structure in a stationary bivariate point
process the second-order distribution can be very useful. We prove that the
natural estimates of this distribution, based on a realization A4, < A, < ---

<A,, B, <By< -+ < Bn‘B are asymptotically normal and we present a
method for constructing approximate confidence intervals for this distribu-
tion.

1. Introduction and summary. Let (N,, Ng) be a stationary bivariate
point process on R. This article is concerned with statistical methods for
discovering and quantifying an association between the two processes from a
realization A; <A, < -+ <A, , By <B,< .-+ <B, over a long period of
time T. The paper is motivated by certain problems that arise in neurophysiol-
ogy, which are very briefly described as follows [for further details see, e.g.,
Bryant, Ruiz Marcos and Segundo (1973)].

Two neurons, A and B, are monitored over a period of time T during which
each neuron fires a sequence of impulses. The problem is to determine whether or
not the impulse times are associated. An association between N, and Nz may be
construed as evidence that either the two neurons are communicating or that
they both share input from a third source.

Another problem arises in certain neurophysiological studies of learning and
memory. An animal is to be taught (trained) to perform a certain task. Now
consider two “connected” neurons, A and B, which are essential in the perfor-
mance of this task. Record the impulse times during a period before the learning
experience, obtaining a realization of (N ¢, N*%), and during a period of time
well after the learning experience, obtaining a realization of (N, N3%*). The
processes NP and NP may be dependent. The problem is to determine
whether or not this dependence is “stronger” for the processes N and N2 A
neurophysiologist may consider a change in the strength of the dependence as
evidence that learning has taken place.

The two problems have very different statistical character. Let S be a
statistic that “measures” the dependence between two point processes. The first
problem is one of testing the hypothesis that N, and N are independent and
requires only knowledge of the distribution of S under the assumption that N,
and N, are independent. The second problem is much more difficult: To
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750 H. DOSS

compare S across two situations we must know the distribution of S when the
two point processes are dependent.

In a more general context, Ripley (1976, 1977) introduced a measure K,
defined on an appropriate space, that summarizes the second-order properties of
the process. Before describing this measure, we need to state some assumptions
and introduce some notation. Let N;(s, t) denote the number of events of type i
occurring in the interval (s, t], for i = A, B. Assume that each process has no
multiple occurrences and that the intensities

1
(1) No= lim —P(N(¢, ¢+ k) >0} fori=4,B
are finite. [The existence of these limits was proved by Khintchine (1960).] The

A,’s then have an interpretation as mean number of occurrences per unit of time:
For t, < t,,

(2) EN/(¢,t,) =A(ty—t) fori=A,B.
[This follows from Dobrushin’s lemma and Korolyuk’s theorem; see Leadbetter
(1968).]

We now give an informal description of the measure K, adapted to the
present context.

The measure K is defined on the Borel subsets of R, and for ¢, < ¢,, writing
K(t,, t,) for K{(t,, t,)}, we have

1
K(t,t) = }‘——E{NA(tl, t,)|a B point at ¢ = 0}
A
3)

1
= TE{NB(_tz’ —t,)|an A point at ¢t = 0} |.
B

Note that if N, and Ny are independent, then
(4) K(tl’ t2) =t -1,
regardless of the values A, and A 5. Thus, K represents Lebesgue measure on R.

Ripley proposed the estimate of K(t,, t,) given by

ng ny

Y YI{A,- Bie(t,t)},

ABllJl

(5) K(t,t,) =

where I{-} denotes the indicator function (actually, the estimate proposed by
Ripley has an edge correction for points near the boundary of the period of
observation; this edge correction will not concern us).

Previous work on the estimator K is concerned with spatial processes. The
results center on using K to test that a single process is Poisson [Ripley (1977),
Ripley (1981), Chapter 8 and Silverman (1976)] and on using K to test for
independence of two processes [Lotwick and Silverman (1982) and Diggle and
Milne (1983)].
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In this paper we study the asymptotic properties of K( t,, t;). The contribu-
tions of this paper are twofold:

©) first, a proof that under certain regularity conditions, as nz — oo,
6 A

\/@(K(tv t,) — K(t,, tz)) ~d */V(O: 02(t1: tz))?
(7)  second, a method for constructing consistent estimates of (¢, t,).

Besides providing the basis for a test of independence between N, and Ny, (6)
and (7) enable one to test whether or not K(¢,, ¢,) has changed in the experimen-
tal situation described earlier.

The cross-intensity function defined by

1
(8) Agp(w)= lm -—P{N,(u+¢t,u+t+h)>0; Ng(t, t+hy) >0}
hy, hy—0 hyhy

is related to K by
1
9) K(t,t,) = }\A—}\Bftl Aup(u) du.

Under the independence hypothesis, A ,5(u) = A A g for all u. Brillinger (1976)
considered the random function

np ny
(10) Jig(u) = Y Y I{A;- B;e (u—h,u+h)}

i=1j=1
and showed that under suitable regularity, if » — 0 and T — oo in such a way
that AT remains constant, then for ul — u,, [uf — ul|>2h, 1 <k <k' <M,
JIg(ul) are asymptotically independent Poisson random variables with means
2hT\ (1), for k=1,..., M. Thus, A,(u) = (JT(u))/2hT can be used to
estimate A 4 z(u) at a finite number of points. .

In practice one would graph the two functions X 4p and K over a finite range,
say [—L, L] [i.e., graph K(—L, t) for —L < t < L]. Although from a mathe-
matical viewpoint A, p and K contain essentially the same information, the
statistical properties of their estimates are quite different: Estimation of A, is
akin to estimating a density, and from Brillinger’s result the variance of A A 18
of the order 1/AT. On the other hand, estimation of K is akin to estimating a
distribution function, and from (6), the variance of K is of the smaller order
1/ngz. A graph of A ap may, however, indicate features (spikes, location of
maxima and minima, etc.) that cannot be easily seen in the graph of K. Clearly
the two approaches are complementary.

2. Asymptotic distribution of the K-function. Let
(11) U,p(t, t,) = E{Ny(t,, t;)|a B point at ¢ = 0}.
We may estimate U, (¢, t,) by

np ny

(12) Ounltn ) = — % L I{(4,~ Be (t,1,)).

B i=1j=1
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Letting
n;
(13) X,=— fori=A,B,
T
we note that
1
(14) K(t,t,) = UAB(tI’ t,) and K(tv ty,) = _UAB(tv ty).
A

To prove asymptotlc normality of K (Theorem 2) we will prove joint asymptotic
normality of (U, Lag(tes o), X A) We will in fact find it necessary to first prove joint
asymptotic normality of (UAB(tl, ty), X /5\ B 1/5\ ). The delta-method (i.e., a
first term Taylor expansion) applied to the function f(x, y,2) = xz/y then
yields the asymptotlc normahty of K( t,, t,). We also obtain the joint asymptotic
normality of (U Lt ), X4, A ) by applying the delta-method to the function
&(x, y,2) = (%, y/2,1/2).

We now need to give the statistical setting of our asymptotic investigation.
The functions U, z(¢,, t,) and K(¢,, ¢,) involve the notion of the Palm measure.
That is for & > 0, we consider the conditional distribution of the process
(N,, Ng) given that there is a B point in the interval (0, ¢) and take the limiting
distribution of (N,, Ng) as ¢ — 0. Intuitively, this corresponds to selecting a B
point “arbitrarily” and considering the process with that point labeled the
origin. This notion is discussed for univariate processes by Leadbetter (1972) and
for bivariate processes by Wisniewski (1972). We will assume that the process is
observed during a period of length T starting immediately after the occurrence
of an “arbitrary” B point, say B, (thus, we will be working with the Palm
measure). This mode of sampling is called semisynchronous sampling by Cox and
Lewis (1972); see Wisniewski (1972) for some fundamental properties related to
it. Also, for the sake of convenience, we will assume that the period of observa-
tion ends with a B point.

We now consider two subfields of the o-field on which the Palm measure is
defined. Let #% and #g,, denote the o-fields generated by all events
occurring before B and after B, + u, respectively. Let

15) a(u) = sup{| P(E, n E,) - P(E)P(E,)|;
E e #8, E, e F2,,V o(Ns(0,u))}.

If a(u) - 0 as u > oo, then the distant future is virtually independent of the
past. We will actually need stronger conditions on a(-).
Let 8> 0, 7> 1,0 < 7 <1 be any constants satisfying

n+1
(16) (n—B+1)7>1.
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Assumptions:

Al [Pla(t)]t? dt < co.

A2, sup_ E{[Ng(j, j + 1)]"| a B point at ¢t = 0} = D < .

0 < j<oo
A3. E{[Ny(t,t,)"*70=™) a B pointat ¢ = 0} < oco.
A4, E[(B, — B)*t*70-7] < oo,

A5. E[N,(B,, B)]*¢+74-™ < o,

Before stating our theorems we discuss our assumptions, and compare them
with those of Brillinger (1976) As mentioned earlier, our proof of asymptotic
normahty of K (t,, t,) requires first a proof of joint asymptotic normality
of (UA s(t, t2), X /f\ B 1 /f\ ). We will accomplish this by representing
(Uas(ty, t,), Aa/Ap,1/85) as a sum of a trivariate stationary sequence
((TO, T®, T®)}, to which we will apply a central limit theorem for stationary
sequences. Now any such theorem must assume a moment condition on
(TO, T®, T®) and also a mixing condition on {(TV, T®, T/®)}. In general,
weakening of the moment condition must be compensated by strengthening of
the mixing condition and vice versa. Assumptions 3-5 provide moment condi-
tions on (T®, T®, T{®). Assumption 2 ensures that the B process “moves
along” rapidly enough so that Al, the mixing condition imposed on the point
process, translates into a mixing condition for the sequence {(T\V, T\®, T/®)}.
Relationship (16) describes in a technical way the interplay between the mixing
rate on the point process and the moment condition on (T(V, T®, T{®).

The conditions assumed by Brillinger (1976) neither imply nor are implied by
A1-A5 of the present paper. Brillinger assumes a mixing condition on
the bivariate point process and also that the “second-order moments” A; ()
(i, j = A, B) exist and are continuous [he also assumes existence and continuity
of the “third- and fourth-order moments”; see equation (2.2) of his paper] This
condition on A, A g(+) is not satisfied by the following process: Nj is a P01sson
process and N, is Ny shifted to the right by one unit. In this case, A ,5(1) =
This process does however satisfy A1-A5. Conversely, it is easy to find procosses
(N,, Ng) satisfying all of Brillinger’s conditions, but not those of the present
paper. Perhaps the simplest example is the following. Let N, and Ny be
independent, N, being a Poisson process and Ny being an equilibrium renewal
process on (— o0, o0) [for a definition and a construction see Karlin and Taylor
(1975), pages 517-519] with interarrival distribution having a first moment but
no second moment. Then A4 is violated and it is not difficult to check that this
process satisfies all of Brillinger’s conditions.
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THEOREM 1. Assume Al and A2. Let U,g(t,, t,), Uty t;) and X, for
i = A, B be defined by (11), (12), and (13), respectively.
(i) Under A3, we have as ng — o,
s (Uas(ty, t5) — Usp(ty, t)) =4 #7(0,72(t1, 8,)).

Furthermore, any estimate $%(t,, t,) of the form (25), satisfying (27) and (28),
is a consistent estimate of y%(t,, t,).
(ii) Under A4 and A5 we have as ng — oo,

\/;l—B_(XA — A Ap— )\B)' =g A(0, A).
Furthermore, any estimate A of the form (57) [refer to (49) and (51)—(56)],
satisfying (27) and (28) is a consistent estimate of. A.
(iii) Under A3—-A5 we have as ng — oo,
\/E(IjAB(tl’ t2) - UAB(tl’ t2)’ XA - AA’ XB - >‘B)' —d M(O’E(tl’ tz))-

Furthermore, any estimate i(tl, t,) of the form (56) [ refer to (49) and (51)-(55)],
satisfying (27) and (28), is a consistent estimate of X(t,, t,).

ProOF OF (i). We begin by showing asymptotic normality. Let U; and U, be
defined by

IJi, = E I{AJ-E (Bi+ t1’Bi+ t2)}I{'BOS‘4J'S B"B}
Jj=-
and
U= Y I{A;e(B;+t,B+1t)}.
Jj=—00
Note that
. 1 2
17) Upp(ty; t5) = e 2 U

Bi=1
It is clear that ¥.72,U; — X7'2,U; = O,(1). Thus, it suffices to prove the result with
U;’s instead of U;’s in (17). Observe that the sequence {U;}3X _, is stationary,
with mean U, (), t,) and finite variance (by A3). The U;’s may be far from
independent: For small %, U, and U, , may be nearly identical. If, however, U,
and U, , are “nearly independent” for large %, then one can still hope to have a
central limit theorem effect. The proof consists of translating Al, the mixing
condition on the point process, into a mixing condition on {U;} that allows the
application of an appropriate central limit theorem for stationary sequences.
Let p(k) be defined for 2 = 1,2,... by

. (18) p(k) = sup{lP(El N E,) - P(El)P(Ez)l;
E €o(...,U_, ), E, € 6(Uy, Upyy,.-.) )
[Here, o(...,U_,,U,) denotes the o-field generated by {...,U_,;,U,}, and
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similarly for o(U,, Uy, 4,...).] The function p(-) is called the mixing coefficient
of the sequence {U;}. Our goal is to prove that ©%_,[u(%k)]" < co. It will be more
convenient, however, to show instead that ¥%_,[n(2%)]" < . The two condi-
tions are equivalent since p(-) is nonincreasing.

Let £>1 be fixed, let E, €o0(...,U_,), E, € 6(U,,...) and consider
P(E, N E,). Let

C—k = {B—k - BO < _Ilkl/(ﬁ+1)]]} an.d Ck = {Bk - BO > I[kl/(ﬁ+l)]l},

where [ ] denotes the integer part. We may write
(19) P(E, N E,) = P{(E,nC_,) N (E, N C,)}
+P{(E, N Ey) N (C, U CR)},
where the superscript ¢ denotes complementation. ’

Consider the first term on the right side of (19). For all large %, since
Furthermore, E, N Cy, € F, 1p/+vy4,, V 0(Np(0,[£/E+D] + t,)). Therefore
(20) P{(E, N C_,) N (EyN Cp)} < P(E,)P(E,) + a([E/#*V] + ¢,).

The second term on the right side of (19) is obviously less than or equal to
P(C<,) + P(Cf). These last two probabilities are dealt with in the same way.
Consider P(Cf). Observe that

1) P(Cy) < P{one of the intervals (B, + j, B, + j + 1),
Jj=0,1,...,[k/**D] — 1 has at least [ £#/**V] points}.

By A2, Chebyshev’s inequality and Boole’s inequality, the right side of (21) is
less than or equal to [&/A*D]D[kA/(B+D] " Combining this with (20) and
handling the opposite inequality in a similar way, we obtain

» p.(2k) < a(llkl/(ﬁ+1)]| + tl) + RV/B+DD[ B/ (B+D]-n,
Assumption Al implies that

(22) Y {a(l[kl/(ﬁﬂ)]l + tl)}T < o0.
k=1
Combining (22) and (16) we obtain that ¥%_;[#(2%)]" < co and hence that
(23) L [w(k)]" < co.
k=1

Assumption A3 implies that
E [U12(1+1'/(1-‘l'))] < o0.

This, together with (23) allows us to apply Theorem 1.7 of Ibragimov (1962) to
conclude that the series ¥Y3_,Cov(U,, U,) converges absolutely and that as
ng— oo,

\/E(vAB(tl’ ty) — Uap(ty, tz)) d JV(O’YZ(tv tz)),
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where

(24) v3(t,, t,) = VarU, + 2 Y. Cov(U,, Uy,).
h=1

Consider next the estimation of vy%(¢,t,). Let », = Cov(Uy,U,) for h =
0,1,2,..., so that y%(¢, ¢,) = vy + 2X%_,v,. Let
M

(25) ?2(t1’ t2) = ﬁo +2 Z ch";h’
h=1

where 7, is the sample covariance at lag A,
1 ng—h-1

(26) B, = — E}o (U, - U)(U,,-U).

[Here U = (1/n,)L72,U..] We will assume that

M

(27) M=M, satisfies—l‘f/—:,—)OasnB—»oo

? (ng)
and that the constants ¢, = c{"# satisfy
() foreach ng = 4,5,6,..., 1 > ¢{" > c¢{"® > ... > c{f® =0,

and for fixed k, c¢{"® —» lasng — .

The choice of constants M and cy,cy,..., cy is discussed at the end of this
section. We will show under (27) and (28) that
(29) E|9%(t,, ;) — v*(t,, )| = 0.

This will imply that $2(¢,, ¢,) converges to y*(,, t,) in probability.
Since E?#, is not in general equal to »,, it is more convenient to first work
with

1 nB—h—l
(30) Vp = np—h Y (U= Usp(ty, 1)) (Ui n — Uap(ty, t5))
i=0
and
M
(31) U, b)) =5y + 2 Y cpip.
h=1
Since E7;, = v,, if we define
M
(32) 'er,,(tv ty) = vy + 2 )y Ch¥hs
h=1
we have
(33) E7%(t, t,) = st(tl’ ty)-

From now on we drop the arguments ¢, and ¢, whenever convenient. The
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triangle inequality gives
(34) E[f? =y < E|9* - ¥+ EI¥> — vo | + Iva, — Yl
Thus, our objective is to show that each of the three terms on the right side of
(34) converges to 0 as ng — o0. It is easy to see that under (27) and (28),
[Yn, = ¥*| = O as ng > .

We now consider E|7* — v?2 | Let ¢, = 3. We have

M
2 Z (P — vy)
h=0

<2 g E(v 212 _ > 5 11/2
= { (%n = a) } =2 ). {Var#,}'/%
h=0 h=0

M
< 2 Z Eli;h - Vhl
h=0

E\§* -yl |=E

(35)

We now examine the variance terms. It is well known (and easy to see) that if
{Y;} is a stationary sequence, then

(36) Var(% )3 lc) iy (1 - %)Cov(Yl,Ym).

i=1 lll<n
Equation (30) shows that 7, is of the form 7, = (1/n)L_,Y,, where Y, =
U; — U)U,,, — U), with {Y,} stationary. We can thus obtain the exact vari-
ance of 7,

(37) Variy= —— % (1—,,3"_' h)o,,(z),

ng—h lll<ng—h

where
(38) Uh(l) = COV((Ui = Uyp) (Ui — UAB)» (Ui+1 - UAB)(Ui+h+1 - UAB))'

To obtain a useful bound on Var 7, we will show that

(39) loa(D)l < [w((121 - R),)]C,

where a,= max{a,0} and C is a constant not depending on % or Il. The key
ingredient in the proof of (39) is the use of a lemma of Ibragimov (1962) that
gives an explicit bound for the covariance of two random variables £ and 7
satisfying § € 0(...,U_,,U,) and n € o(U,, U, ,...), in terms of u(k) and
certain moments of £ and 1.

For any [/ such that |/| > h, Lemma 1.3 of Ibragimov (1962) implies that

(40) 0,(2) < [w(lt = )] {4 + 6E|(U; = Upg)(Uisn — Unp) 777},
The Cauchy-Schwarz inequality implies that

. 21+1/(1—7)) 4Q+7/(1-7))
(41) " E|(U; = Uyp)(Upyp — Uyp)| w < E|(U; - Uyp)| 1+ .

By A3 the right side of (41) is a finite constant not depending on A or I. This
proves (39) for |I| > h. For |l| < h the proof is even simpler and is omitted. We
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now combine (37) and (39) to obtain

Varsy s —— T la0l —( 1o+ T o0

ng—h [ll<ng—h ng—h <k [U|>h

(2h+1)C + gllu(f)]’C).

(42)

<

(2

ng—h
Next, we use (23) and (27) to see that there exists an integer </, not depending on
h or [, such that
(43) Var#, < nz*? forallng>J.
We now return to E|7% — v2 | [see (35)]. Combining (27) and (43) we arrive at
(44) [~ y2) >0 asng > .

To complete the proof of (29) we need only show that E|$2— §% — 0 as
ng — . We have

M

(45) E* -7} = E
. h=0

M
2 Z Ch(ﬁh - '7h)
h=0 4

We will presently show that

’

(46) Elﬁh - i;hl <,
npg

where C’ is a constant not depending on 4.
Referring to (26) and (30), it is easy to see that

pp =9+ (T® — Uyp)(Uyp — U)

(47) J® 7 U 2
+(U® - Up)(Uyp— U) + (U - Uyp),
where
77 nB_Z}:H 7@ S
oo = U, U®= U,
ng— i=0 ng—h Eh

Thus, E|p), — 7 < E\U® — Uyp)Usp — U)| + E(U® — Uyp)Usp - U)| +
E(U - U, )% Consider first E(U — U, )*. From (36) we have

— 1 12] ) c”
E(U-Uyp)'=— 1-—|n<—,
A L
where C” = v, + 253 1|7, < oo. Similarly,
Cll CII

7 _ 2
— and E(U® - Uyp) S

E(ﬁ(l) - UAB)2 <

The Cauchy-Schwarz inequality now yields (46), which together with (27)
implies that E|§, — ¥4/ = 0 as ng = 0. This completes the proof of (i). D
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We next prove (iii), since the proof of (ii) proceeds in a very similar way.

Proor oF (iii). For £, £, &, € R, let X; = §U; + £§,Nu(B;, B;yy) +
£4(B;,, — B;). The sequence {X;}?> __ is stationary and if #(-) denotes its
mixing coefficient, it is clear that (23) holds for #(-) as well. This gives a central
limit theorem for {X;}. It is simple to argue that EN,(B,, B;) = A,/Ap and

that E(B; — By) = 1/Az. By the Cramér—Wold device we now have that

iy na M T 1V
(48) \/n_J; - _UAB,I—‘L—__’—_}\_
B

npg B Ap np

is asymptotically normal with mean 0 and covariance matrix, say ¥. To identify
¥ and describe consistent estimates of it, it is convenient to introduce additional
notation. Let

V9 =1, V® = Ny(By,1, B;), V® =B, - B,

(49) ‘

fori=...,-2,-1,0,1,2,....
Let
(50) PP = COV(VZ,("), Vifq))

for p,¢q=1,2,3, h=...,-2,-1,0,1,2,....
Note that ¢{!V = »,. It is clear that the asymptotic covariance matrix of (48) is
equal to the matrix whose pgth entry is ¥(?9 = Y2 4P9 (note that ¢{? is
not necessarily equal to Y92, unless p = g). Next, for p, ¢ = 1,2, 3, define

1 ng—h—1
L (v - 7o) (vigh - 70)

A forh=0,1,2,..., M,
(51) 2 B ~
— .Zh (Vi(p) — V(p))(Vi(f}. - V(q))
i
forh=-1,-2,-3,...,— M,

where

17402) 1l (p)
(52) Vo= XV,

i=0
Let
A M A

(53) \I,(pq) = E c|h|¢$zpq) fOl'p, q = 1a2,3,

where M and {c,} satisfy (27) and (28), respectively. Also, let
(54)° ¥ = matrix whose pgth entry is ¥P9.

The same argument that was used in the proof of (i) now applies and we see that
¥ converges to ¥ componentwise in probability as nz — oo.
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Consider now the function g(x, y, z) = (x, y/2,1/2z), which maps
&2 U/npg, na/Np T/npg) into (Z72,U,/ng, A4, A ). The derivative of g evalu-
ated at (x, y, 2) is

1 0 0
-

(55) Dg(x, y,z) = z  2°
~1
0 0 —

22

An application of the delta-method (with the function g) to the vector (48) gives
the asymptotic normality result asserted in part (iii) of the theorem, with

Z(tu ty) = Z = Dg(Uyp, AA/AB,]-/AB)\I/[Dg(UAB’ Aa/Aps I/AB)],‘
Defining £ = £(¢,, ¢,) by

(56) ﬁ = Dg(ﬁAB’ XA/XBi 1/7\3)‘1’ [Dg(UAB’ XA/XB’ 1/5\3)],,

it is clear that under (27) and (28) 5. converges to ¥ componentwise in probability
as ng — o.0

PROOF OF (ii). As was mentioned above, the proof of (ii) is very similar to

that of (iii). We now consider the variance estimates. Let (*% and $(P0) denote
the pgth entries of ¥ and ¥, respectively, and let

. [$e $e
T lse» sen )

with a similar definition for A. Obviously, this is the same A that appears in the
statement of part (ii) of Theorem 1. It is clear that under (27) and (28), as
ng— oo, A - A componentwise in probability. This completes the proof of
Theorem 1. O

(57)

THEOREM 2. Let K(t,,t,) and K(t, t,) be defined by (3) and (5), respec-
tively, and assume A1-A5. Then, as ng — oo,

\/n_B‘(Ie(tl’ t2) - K(tl’ t2) 4 ‘/V(O’ 02(t1’ t2))

Furthermore, any estimate 6%(t,, t,) of the form (58) [refer to (49) and (51)-(54)],
satisfying (27) and (28), is a consistent estimate of o%(t,, t,).

Proor. We apply the delta-method to the vector (48) with the function
f(x, y, 2) = xz/y. The derivative of f at the point (x, y, z) is Df(x ¥, z)
(2/y, —x2/y% x/y). Evaluated at (U, p, A/AB1 1/7\3) and (UAB, )\A/)\B, 1/7\3),
this is (1/A 4, K(Ag/A4), KAp) and (1/A,, K(Ag/A,), KX ), respectively. The
asymptotic normality asserted in the theorem follows from the asymptotic
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normality of the vector (48), with
2 =|—,K— —,K—

0?(t, t,) (7\,4 SV K)\B)\If( VRSV KAB)

and it is clear that under (27) and (28), if 6%(¢,, ¢,) is defined by
1 g Lo \of1 Ap

—, K=, RAg|¥| —, B2, RA,
Aa' Ay Ao Ay
then as ny — o0, 6%(t,, ¢,) converges to 0%(¢,, t,) in probability. This completes
the proof of Theorem 2. O

4

(58) 62( t, tz) =

Results giving the asymptotic normality of estimates of A, and A (under
varying sets of assumptions) already exist in the literature; see, e.g., Daley and
Vere-Jones (1972), Theorem 8.6. It was necessary to establish joint asymptotic
normality of X, and U,x(t,, t,) in order to obtain asymptotic normality of
K ( tl, t2)

We now discuss the choice of the constants M and ¢, c,, ..., ¢, which enter
into the estimates $2 and ¥ given by (25) and (53), respectively. For the sake of
simplicity, our discussion is in terms of §2 only. It is appropriate to discuss the
choice of these constants within the framework of spectral density estimation.
Defining

1 1 =
f(w) = s - Y. v, cos wh,

2 h=1
we see that y? = 27f(0). To estimate f(w) we must effectively estimate.», for
each h. For fixed np, v, may be estimated for A = 0,1,..., ngy — 1. However,

because of the fact that for fixed ny the variance of #, increases with 4, it is
standard to consider estimates of the form

" 1
f(w)= 5;1’70 + ;hglchﬁhcos wh,

where M is much smaller than ng, and < decreases as & increases. For a given
value of M the constants c,, are usually given by ¢, = w(h/m) for some function
w (called the “lag window”) defined on [0, 1], satisfying w(0) = 1, w(1) = 0 and
w decreases smoothly. Two commonly used choices are the Blackman—Tukey
and the Parzen windows; see Anderson (1971), pages 514-516 for a definition of
these. Also, see Anderson (1971), Chapter 9 for a general discussion of estimation
of the spectral density. It is clear that as M increases, the bias of f(w) decreases
while its variance increases. For both the Blackman-Tukey and the Parzen
windows as well as for most of the commonly used windows, a value of M of the
order n{® is usually used, since (under certain conditions on the stationary
series) this minimizes the asymptotic mean squared error. See Anderson (1971),
Section 9.3.4. Thus, condition (27) is not at all restrictive.

It should be noted that the part of the proof of Theorem 1 that gives the
consistency of f(0) applies equally well to the estimates f(w) for any w, and
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similarly for the spectral density estimates of the series {N,(B,,,, B;)} and
{B i+1 B }

It was necessary to give a proof of the consistency of f(0) because the
currently available consistency results for spectral density estimates are valid
under conditions on {U;} that are not implied by Assumptions 1-5 [e.g., exis-
tence of all moments in Brillinger (1975), {U;} is a linear process as in Anderson
(1971) and in Hannan (1970)].

3. Discussion. The methods described in this paper enable the construction
of asymptotic confidence intervals for K(¢,, t,), for fixed values of ¢, and ¢,. The
function K(-,-) will usually be of interest over a continuum of values, say
—L <t <t, <L, where L is some number much smaller than 7. One can plot
K(-L,t) for —L < t < L or, what is sometimes more useful, plot K(t — d/2,
t+d/2)for —L +d/2 <t< L — d/2. Here, d is some small number represent-
ing the experimenter’s guess at the duration or likely duration of the effect of a
B point on the A process. The function K(t — d/2, t + d/2) is identically equal
to d if N, and Ny are independent.

We may form the bands

K(-L,t) +22(-L,t)/ny, —-L<t<L,
and
N d d d d d
K(t——2—,t+§)+z(“/2)o(t—-—t+ )/\/@, —L+§stsL—§,

where 6(¢),t,) is an estimate of o(¢,%,) and z(*? is the upper a/2 - 100
percentile point of a standard normal variable. These bands of course are not
simultaneous confidence bands. To form simultaneous confidence bands one
would need to carry out two distinct steps:

1. Establish weak convergence of the processes

VnB(t) = @(K(_L’ t) - K(—L1t))

and

W0 = (K1 50 5] K[t 50 )

to Gaussian processes V(¢) and W(t), respectively.
2. Obtain v and w®, the upper a - 100 percentile points of sup_; _,_|V(¢)|
and Sup 1, g5 <¢< a2l W(?)|, respectively.

The bands
K(-L,t) +v®//ng, -L<t<L,
and
d d d d
K(t—g t+ - )—i_—w(‘"/‘[@, L+ <t<L-<

are then asymptotic simultaneous confidence bands.



ESTIMATION OF DEPENDENCE BETWEEN TWO POINT PROCESSES 763

A proof of weak convergence appears extremely difficult. Although desirable
from a theoretical point of view, weak convergence is not useful statistically
unless the distribution of the supremum of the absolute value of the limiting
process can be obtained. Unfortunately, this is in general a very difficult problem
even if the Gaussian process is stationary [see Cressie and Davis (1981)].

Acknowledgments. I am very grateful to all the reviewers for their con-
structive criticism, and in particular to a referee for pointing out useful refer-
ences.
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