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NECESSARY CONDITIONS FOR THE BOOTSTRAP
OF THE MEAN

By EvARIST GINE! AND JOEL ZINN?

CUNY, College of Staten Island and Texas A&M University,
and Texas A & M University
It is proved that EX? < oo is necessary for a very mild form of the

bootstrap of the mean to work a.s. and that X must be in the domain of
attraction of the normal law if a.s. is weakened to “in probability.”

1. Introduction. Let X be a real valued random variable and let X;, i € N,
be independent, identically, distributed copies of X, with #(X) = P. Let

n
Pn(w)=n—1 ZSX,-(Q)’ nGN,O)EQ,
i=1

be the empirical measures associated to the sequence {X;(w)}. For n € N and
w € Q, let {X,‘;’j}}‘_l be i.i.d. random variables with law P,(«) and let X,(w) be
the sample mean of {X;(w)}",, n € N.'Since P,(w) is close to P, we expect that
for many statistics H,, H(X,,..., X,; P) is close in distribution to the boot-
strap statistic ﬁn(w) = H,,(X,‘;’l, ey X',‘;’n; P(w)) w-almost surely or at least in
probability. This is, very roughly, the idea of the bootstrap. [See Efron (1979),
where this nice idea is made explicit and where it is substantiated with several
important examples.] The “bootstrap principle” does not always hold true and it
is important to determine its domain of validity. In this note we do precisely this
for the simplest of all statistics, H,(X,,..., X,; P) = L7_(X; — EX)/a,. Bickel
and Freedman (1981) and Singh (1981) showed that H, and ﬁn(w) are asymptot-
ically close a.s. with @, = n'/? and EX? < co. [See Giné and Zinn (1988) for an
analogous result for empirical processes.] Athreya (1986) proved that they are
asymptotically close in probability if X is in the domain of attraction of the
normal law and a, are the normalizing constants in the clt for X. [See Csorgd
and Mason (1988) for an empirical process analogue.] In this note we show that
even for the existence of a sequence a, — oo, random variables c¢,(w) and a
random measure p(w) such that

& i X,‘;’j/an —c(w)] =, n(w) as,
j=1

it is necessary that EX? < oo, and that if a.s. is relaxed to “in probability,” then
it is necessary that X be in the domain of attraction of the normal law. This
shows for instance that Athreya’s (1986) result for EX% = o0, X in the domain
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BOOTSTRAPPING THE MEAN 685

of a normal law, can not be improved to an almost sure statement. Similarly, it
can be shown that in the p-stable domain of attraction with p < 2, Athreya’s
(1987) result on weak convergence of the distribution function of the bootstrap,
cannot be improved to convergence in probability (see Remark 4). Our results are
also related to some of the comments in Hartigan (1986).

In what follows we will use the notation set up at the beginning of this
introduction. '

2. Results and proofs.
THEOREM 1. If there exist random variables c,(w), n € N, a strictly in-

creasing sequence a, — oo and a random probabtlzty measure p(w) nondegener-
ate with positive probabzlzty, such that

{3 82/n.- ko) wart o

then
a, = n? EX?2< w0

and

,?( Zn: (X',‘;’j— —n(w))/nlﬂ) -, N0,VarX)  w-a.s.

ProoF. We show first that

n
(1) f( > (Xe - Xn(w))/a,,) >, N(0,0%)  was.
j=1
for some nonrandom 62 > 0. The system {X’,‘;’j a,, J=1,...,n)7_, is infinites-

imal with probability 1 since for all ¢ > 0,
{X “/a, >ef = Z I(X;| > ea,)/n - 0 as.
=1

by the law of large numbers. Henoe, p(w) is a.s. an infinitely divisible measure.
Let 7(w) be the Lévy measure of p(w) and for each 6 > 0, § € Q, let A5 be a
bounded continuous function on R*, zero on [0, 8/2] and one on [§, o). Let
7s(dx, w) = hy(x)m(dx, w). By the converse central limit theorem in R [e.g.,
Araujo and Giné (1980), Chapter 2] we have

Z hs( Xi(w)/an)sxi(w)/a" -, m(w) w-a.s.

i=1
Let # be a countable measure determining set of bounded continuous functions,
eg., F={x - e, t € Q}. Then

f ho( Xi(w)/a,) {(Xi(w)/a,) - /f’”s(dx:‘*’) Vie#, Vi, vas.
i=1
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But since a, = o, [fmy(dx, w) is a tail random variable with respect to {X;}.
Hence [fmy(dx,w) = constant V f € #, V § € Q*, w-as. Since # is measure
determining there is a fixed nonrandom measure #; such that my(w) = =,
8 € Q%, w-a.s. This shows that there is a nonrandom Lévy measure 7 such that

m(w) =7 was.

Then, again by the converse clt, there is a countable set D ¢ R* such that

n
(2) Y I(|X;(w) > Aa,) > 7(A,©0) VAED,was.
i=1
a(A, 00) takes on only nonnegative integer values. Assume that, for some A € D,
7(A, 00) = r # 0. Then

3) Y I(X,(«)| > Aa,) =r eventually a.s.

i=1

by (2). Therefore

(4) nli-»nio P{ fj I(X;| > \a,) = r} =1

i=1

[since PU%_,NY_, (X2 I(X,| > Aa,) = r}} = 1]. On the other hand,

lim P{ Y I(X; > Aa,) = r}
nme V=1

® = lim (7)P(X| > Aa,) P(X| < Aa,)"”"

=rle’"/ri<1.

To see this recall that if the partial sums of a triangular array of row-wise
independent uniformly bounded random variables converge in law, then the
expected values of the partial sums converge to the expected value of the limit
[since, e.g., Hoffmann-Jergensen’s (1974) inequality provides uniform integrabil-
ity; see de Acosta and Giné (1979), Theorem 2.1 or 3.3]. Then, this remark
applied to (3) gives nP{|X| > Aa,} » r and it follows from this that
(1 - P{|X| > Aa,})" = e”". These two limits yield (5).

The limits (4) and (5) are in contradiction. Therefore w(A,0) =0V A € D,
that is, '

(6) 7 =0.
Also, (3) becomes

(3) Y I(X, > Aa,) =0 eventually, as.

i=1

for all A > 0, so that for all A > 0 and p € R,

(7) Y IXJPI(X;| > Aa,) =0 eventually, as.

i=1
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Suppose now that o(w) is the (nonzero with positive probability) standard
deviation of the normal component of pu(w). The truncated variances necessary
condition for the clt [e.g., Araujo and Giné (1980)] becomes, in view of (7), a
variance condition, namely

n n 2

(8 lim [ Y (X,(@))*/a2 - ( ) Xi(w)/a,,nw) ] —o%e) was.
n—oo | ;-1 i=1

In particular 6%(w) is a tail random variable and therefore

(9) o’ (w)=06#0 w-as,

for some o # 0. Then, (2), (6), (8) and (9) give, by the central limit theorem,

«-‘2”( i (Xffj —n” i X()I(X,(0)l < an))/an) -, N(0,0%)  was,

Jj=1 i=1

but by (7) the truncated P,(w)-expectation of X,’;’j can be replaced by its
P, (w)-expectation X, (w) and (1) is proved.
If EX? < 0, then (8) and the law of large numbers yield

(10) n/a’ - o%/Var X,

that is, a, = n'/2 So, we can assume EX? = co. In this case we can simplify (8)

by means of the following result about comparison of empirical moments.
LEMMA 2. If E|X|P =00 (p>0)and 0 <p’ <p, then

(S X /n)"

v axw s\

(ZrXiP/n)

a.s.

(11)

ProoF oF LEMMA 2. By Holder’s inequality,

n n
YIXF/n < a? + Y X PI(X) > a)/n

i=1 i=1

n pP/P| n
<a” + ( > |Xi|p/n) ( > I(X) > a)/n)
i=1

i=1

1-p'/p

Now the lemma follows from the law of large numbers (both for finite and
infinite moments) on dividing by (X2,|X;|?/n)?/? and taking limits first as
n — oo and then as @ —» c0. O

Now, by Lemma 2 with p = 2 and p’ = 1, (8) and (9) become
n
(12) lim Y X2/al=02+#0 as.
R g '

By (7) we can truncate in (12) and then take expectations [by boundedness of the
summands, as in (5)] to obtain

(13) na;?’EX*I(|X| < a,) > ¢ #0.
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We will obtain a contradiction to ¢ # 0 from (13) and (3'). By (3"), | X,l/a, <1
eventually a.s. and therefore the Borel-Cantelli lemma gives

[ee]
(14) 5 P(X| > a,) < .
n=1
Since na,* — 0 by (13) (recall that we are assuming EX? = o0) there is r, > oo,
r, < n, such that :
8, = na,?maxa? - 0.
k<r,

Hence, using (13) once more we obtain

2

n
¢ lim na;? Y a?P{a,_, < |X| < a,)

n— o k=1

IA

< lim §, + limsup na;z[max(a,%/k)] Y kP{a, , < |X| < a,)
n— oo n— oo k<n k=r
=0
since limsup, _, , na, *[max, _ (a%/k)] < oo by (13) and the hypothesis a, / o,
and X¥_, kP{a,_, < |X| < a,} = 0 by (14). We thus have a contradiction with
(9). Therefore, EX? < o and a, = n'/2
Finally, taking a, = n'/? in (8), the law of large numbers gives ¢% = Var X
and (1) becomes

™M=

nj

.‘z’f( (X“’ —)_(n(w))/nl/2) -, N(0,Var X) as. O
j=1

In connection with Theorem 1 it is worth mentioning that Csérgé and Mason
(1988) have recently remarked that a.s. weak convergence to N(@©,1) of
.?():7=1(X,‘;’j - X (w))/s(w)), where s, is the sample s.d., takes place only if
EX? < .

Consider now (2(R), w), the set of probability measures on R with the weak
topology. This is a Polish space. We say that p,(w) =, p(w) in probability if
d(p,, p) = 0 in probability for some distance metrizing weak convergence. This
definition does not depend on the distance used because d(p,, 1) — 0 in pr if
and only if every subsequence has a further subsequence for which convergence
takes place a.s. and if for  fixed d(p,(w), p(w)) = 0, then d(p (), p(w)) = 0
for any other distance d metrizing weak convergence.

Passing to a.s. convergence along subsequences will allow us to use the
methods of Theorem 1 to prove the next result. Before stating it we note that
the random measure p,(w) =25, X,/a, — c(w)), where ¢, is a random
variable, is a true random variable with values in (#(R), w): The preimage of
any weak neighborhood of any probability measure by p, is measurable [for this
it suffices to check that the random quantity Ep (o f():;;lX',‘;’j a,— c(w))is a
random variable for every f bounded and continuous, which is obviously true].

THEOREM 3. If there exist random variables c,(w), n € N, a strictly in-
creasing sequence a, — oo and a random measure u(w) nondegenerate with
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positive probability, such that
( Yy X i U — n(w)) -, w(w) in probability,

then

a,=n"?L(n) where L(n) is slowly varying
and there exists ¢ # 0 such that '
o £ (- Ex)/e,) = MO,

i=1
and
n
.?( Y (X,‘;’j— fn(w))/an) -, N(0,0?) " in probability.
j=1

ProOF. From the above observation and the proof of Theorem 1 we obtain
that for every subsequence n’ there is a subsequence n” such that

n
Y 1X,PI(X, > Aa,.) =0 eventuallyas. (forall A >0, p € R),

i=1

3

n 2
Z X?2/al, ( Y Xi/an,,n”lﬂ) ] =o? as,

=1 i=1

n—»oo

and

n
'?( )> (X:”j - fn”(“"))/an") -, N(0,0%) as,
j=1
for some o # 0, independent of the sequences {n"}. In particular, p(w) = N(O, 02)

w-a.s. Hence,
n

(15) Y |1 X,PI(|X,| > Aa,) >0 inpr,A>0, p€ER,
i=1 )
(16) i | £ 33703 £ 302 | <ot in
and
(17) .?( _,V'_l: (X',‘;’j— X-n(w))/an) -, N(0,6%) inpr.
j=1

If EX? < 0, then (16) and the law of large numbers give
na;? - o?/Var X,

n

that is, a, = n'/% If EX* = oo, then Lemma 2 and (16) yield

(18) ’ Y X?/a2 - ¢* inpr.
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But this implies by classical results that
(19) a, is regularly varying with exponent 1,/2.
Finally we show that

(20) &z f (X;— EX)/a,| - N(0,0?).

If EX? < oo, there is nothing to prove. Assume EX? = 0. Then, since as in (13)
in the proof of Theorem 1, na,?EX*I(|X| < a,) - o2, we have na;% — 0 and,
in particular [note that E|X| < co by (19) and (15) with p = 0; see (22)],

(21) na,*Var(XI(X| < a,)) - o2

Taking expectations in (15) with p = 0 (note that the summands are bounded)
we obtain that for A > 0,

(22) nP{|X| > Aa,} — 0.

It follows easily by regular variation that na,'E|X|I(|X| > a,) — 0, and this,
(21) and (22) imply (20) by the classical clt [e.g., Araujo and Giné (1980),
page 63]. O

REMARK 4. Suppose that X is in the domain of attraction of a p-stable law,
P € (0,2), and let a,(w) = a,(X(w),..., X (w)) = max;_,|X;(w)|. It is easy to
verify that if

2| ¥ Xe/a,(0) - c(w)| =, p(w) in probability,
i=1

then, as in Theorems 1 and 3, the integrals [fmy(dx, w) defined in the proof of
Theorem 1 are still tail random variables and therefore, the Lévy measure m(w)
of u(w) is not random (on a w-set of probability 1). Since the limiting measure
p(w) in Athreya’s (1987) result has a random Lévy measure, this shows that his
result cannot be improved to convergence in probability.

Acknowledgment. We thank K. Athreya for suggesting that a result of the
type of Lemma 2 would simplify our first proof of a, = n'/? in Theorem 1.
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