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ASYMPTOTIC PROPERTIES OF KERNEL ESTIMATORS
BASED ON LOCAL MEDIANS

By Young K. TrRUONG
University of North Carolina at Chapel Hill

The desire to make nonparametric regression robust leads to the problem
of conditional median function estimation. Under appropriate regularity
conditions, a sequence of local median estimators can be chosen to achieve
the optimal rate of convergence n~'/?*9) both pointwise and in the L4
(1 < g < 00) norm restricted to a compact. It can also be chosen to achieve
the optimal rate of convergence (rn~ ! log n)!/?*9) in the L* norm restricted
to a compact. These results also constitute an answer to an open question of
Stone.

1. Introduction. Let (X, Y) be a pair of random variables which are, respec-
tively, d and one dimensional, and let 8(-) denote the conditional median of the
response Y on the measurement variable X, so that med(Y|X) = (X). Consider
the problem of estimating the function 8(-) based on a training sample from the
distribution of (X, Y). Under appropriate regularity conditions, asymptotic prop-
erties (rates of convergence) of nonparametric estimators constructed by kernel
methods based on local medians are established and these results address two
issues: robustification in nonparametric regression estimation and an answer to a
question of Stone (1982).

Nearest neighbor, kernel and recursive partition methods of nonparametric
regression, as usually defined, are based on local averages. Recently, there has
been an interest in adopting local medians (or some other robust methods such
as M-estimates) as nonparametric regression estimates, especially when outliers
may be present. The latter approach indeed offers an interesting alternative for
modeling functional relationships between the responses and the measurement
variables. For instance, it would be appropriate to estimate the regression
function based on local means when the response variable has light-tailed and
symmetric (conditional) distribution. But if the distribution (such as the distri-
bution of housing values, annual incomes) is heavy-tailed or asymmetric, then
local medians should be considered since they are highly resistant against
outliers and the results based on them are easier to interpret. In a seminal work
on nonparametric regression, Stone (1977) obtained a consistency theorem for
nearest neighbor estimators based on local medians, and in the course of the
discussion, Brillinger addressed the importance of conditional M-estimates. The
usefulness of these procedures in exploratory data analysis was discussed by
Hardle and Gasser (1984) and Hardle and Tsybakov (1988). Numerical examples
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ASYMPTOTICS OF LOCAL MEDIANS 607

on robust nonparametric regression for recursive partitioning based on local
medians are given in Breiman, Friedman, Olshen and Stone (1984).

In addition to the above desirable robustness property, the current approach
can also be given theoretical justification in terms of rates of convergence. In
fact, it is shown in this paper that local medians and local averages have the
same optimal asymptotic properties in regression-type problems.

The asymptotic results presented here also constitute an answer to an open
question of Stone (1982). In the context of estimating the regression function
E(Y|X), Stone (1977) obtained a consistency theorem for a large class of non-
parametric regression estimators and used this to establish the consistency of
nearest neighbor estimators based on local averages. Since then, consistency has
been established for kernel estimators by Devroye and Wagner (1980a, b) and
Spiegelman and Sacks (1980), and for partition estimators by Gordon and Olshen
(1980) and Breiman, Friedman, Olshen and Stone (1984). If the pth derivative of
the regression function is bounded, then Stone (1980, 1982) showed that
{n~P/@P*d)} s the optimal rate of convergence in both pointwise and L7
(1 < g < ©) norms, while {(n~!log n)?/@P*9} is the optimal rate of conver-
gence in L* norm. Under some regularity conditions, a sequence of kernel
estimators based on local polynomials can be chosen to achieve the optimal rates
of convergence. The desire to robustify nonparametric regression leads to Ques-
tion 4 of Stone [(1982), page 1044]: Is {n~P/@P*®} still an achievable rate of
convergence in estimating the conditional median?

Rates of convergence of conditional M-estimators have been considered by
several authors. Under some regularity conditions and the boundedness assump-
tion of the first derivative (i.e., p = 1), Hardle and Luckhaus (1984) presented
the L™ rate of convergence for a class of robust nonparametric estimators
including an estimator of the conditional median. Hirdle (1984) and Hardle and
Tsybakov (1988) considered the pointwise results for a class of local M-estimates
that did not cover the local medians. The later paper also considered the
pointwise joint estimation of the regression and scale functions. However, the
problem of L9 (1 < q < ) rates of convergence was still unsolved.

Both the pointwise (local) and the L? (1 < ¢ < o0) (global) rates of conver-
gence for kernel estimators based on local medians will be described in Section 2.
For this class of nonparametric estimators, the results presented there settle an
open question of Stone (1982) when the first derivative of the conditional median
is bounded. Proofs of these results are given in Section 3 and include a different
and more intuitive proof [compared to Hirdle and Luckhaus (1984)] of the
uniform rate of convergence.

2. Statement of results. Results on the local and global rates of conver-
gence of nonparametric estimators of the conditional median, based on a random
sample from the distribution of (X, Y), will be treated in this section.

Let U be a nonempty bounded open neighborhood of the origin of R% Given
x = (x5,...,%5) € R set |x|| = (xZ + - -+ +x3)/2 The kernel estimator 4,(-)
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of 6(-) will now be described. Given n > 1, let (X}, Y}),...,(X,, Y,) denote a
random sample of size n from the distribution of (X,Y). Let §,, n> 1, be
positive numbers that tend to zero as n tends to infinity. For x € U, set
I(x)= (i 1<i<n and |X;- x| <38), N® =#,® and f,x =
med{Y;: i € I(x)} [use the average of the two middle order statistics if N(x) is
even).

The rates of convergence of the estimators treated here depend on the
following smoothness condition on 6(-).

ConpITION 1. There is a positive constant M, such that
|0(x) — 0(x')| < My|x — x| forx,x' € U.

(If U is convex, the above condition is implied by'an appropriate boundedness
condition on the restriction to U of the first derivative of 6.)

A condition on the distribution of the measurement variable is required to
guarantee the achievability of the desired rate of convergence.

ConpITION 2. The distribution of X = (X, ..., X;) is absolutely continuous
and its density f(-) is bounded away from zero and infinity on U, that is, there is
a positive constant M, such that M; ! < f(x) < M, for x € U.

A condition on the conditional distribution of Y given X is required to
guarantee the uniqueness of the conditional median (uniqueness will ensure
consistency) and also the achievability of the desired rate of convergence. If the
conditional density is not bounded away from zero around the median, the
desired rate of convergence will not be achievable. (The same condition is
required in order to obtain the usual asymptotic result about the sample median
in the univariate case.)

CoNDITION 3. The conditional distribution of Y given X = x is absolutely
continuous and its density A(y|x, 8) is bounded away from zero and infinity over
a neighborhood of the median, that is, there is a positive constant ¢, such that
M;' < h(y|x,0) < M, forx € U and y € (6(x) — ¢, (x) + &).

Given positive numbers a, and b,, n > 1, let a, ~ b, mean that a,/b, is
bounded away from zero and infinity. Given random variables V,, n > 1, let
V, = O,(b,) mean that the random variables b, V., n>1, are bounded in
probability or, equivalently, that

lim limsup P(|V,| > ¢b,) = 0.

c— 0 n

Set r=2+d) %

THEOREM 1. Suppose that Conditions 1-3 hold and that 8, ~ n™". Then
|0.(x) — 6(x)| = O,(n""), =xe€U.
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Let C be a fixed compact subset of U having nonempty interior and let g(-)
be a real-valued function on U. Set

1/q
lgll, = {fclg(x)l"dx} . l<g<w,

llgll, = sup |g(x)].
xeC

THEOREM 2. Suppose that Conditions 1-3 hold and that §, ~ (n"'log n)".
Then there exists a ¢ > 0 such that

lim P(}|6}, - 6]l,, = ¢(n"*logn)") = 0.

THEOREM 3. Suppose that Conditions 1-3 hold and that 8, ~ n~". Then
there exists a ¢ > 0 such that

imP([|f, - 6], > en") =0, 1<g< 0.
n

Proofs of these theorems are given in Section 3.

REMARK 1. Theorem 2 holds with a fixed constant ¢ instead of taking a
limit when ¢ — oo as in Theorem 1. This is because the L rate is slower than
the pointwise rate. See the inequality before (3.11) in the proof of Theorem 2.

REMARK 2. Theorem 3 also holds with a fixed constant ¢ because of the
following heuristic argument. Consider the weighted sum X7 .uw,(0,(x;) — 0(x;)|?
with w; ~ 8¢ and X7 w; = vol(C) (the volume of C). For simplicity, suppose
vol(C) =1 and (X,,...,X,) is nonrandom. Also, suppose {lén(xi) - 0(x;)|% isa
sequence of independent random variables and there is a positive constant c,
such that E(|6(x;) — 0(x,)|%) < 8¢ and Var(|f,(x,) — 0(x,)|?) < 029 for i =
1,2,..., m [see (3.20)]. Let c denote a positive constant so that c? > ¢,. Then by
Chebyshev’s inequality,

P(Zwilffn(x,-) ~0(x,)| > (c8n)q) PRl Var(/f,(x,) - 6(x,)|9)

(Cq - co)zarfq
Co Max; w;
(cq - 00)2

Note that 8, ~ n™" and |ié;; —0)2 = fc|§n(x) — 0(x)|? dx may be interpreted as
the weighted sum Tw,|d,(x,) — 6(x;)|%. We conclude that Theorem 3 holds with
a fixed constant c. This heuristic argument is justified in the proof of Theorem 3;
see especially (3.20)-(3.22).

=0(8¢) - 0.

'REMARK 3. With a simple modification of Condition 3, Theorems 1-3 are
easily extended to yield rates of convergence for nonparametric estimators of
other conditional quantiles.
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REMARK 4. The proof of Theorem 2 is simpler and more intuitive than the
corresponding proof given by Hiardle and Luckhaus (1984) (only the calculation
of binomial probabilities is required).

3. Proofs.

Proor oF THEOREM 1. By symmetry, it suffices to show that
(3.1) lim limsup P(d,(x) > 6(x) +cn™") =0, x€eU.
Cc— 00 n

Given x € U, set N, = N(x) and I, = I(x). The proof of (3.1) depends on
the following lemma, whose proof uses the Bernstein and Hoeffding inequalities.
Let ¢, denote a sequence of positive numbers tending to zero as n — 0.

LEMMA 1. Suppose that Conditions 1-3 hold and that ¢ is a positive
constant greater than M,. Then there are positive constants ¢, and c, such that

P(Nn_l Zl{Y,-zﬂ(x)+c8n} >3- €n8n)
In
< exp(—(c - M0)2c1n8,f’+?) + exp(—c,n8?), xeU.

PROOF. According to Condition 1, 6(X;) < 8(x) + M0, for i € I,. Thus
1 - P(Y;>0(x) +¢8,)X;) = P(0 < Y, — 0(X;) < (c— My)$,X;), i€,
Hence by Condition 3, there is a positive constant 7 such that if ¢ > M, and n is
sufficiently large, then

(8.2) 1-¢8,— P(Y,20(x)+c8,X;) > (c— My)ns,, i€l,.
Set Z; = 1iy 5 omy+cs,) — P(¥; 2 0(x) + c6,/X;). Then
E(Z)X,,...,X,)=0, i=1,...,n,
and, by (3.2),
N Y3 - 68, — P(Y, 2 0(x) + c8,1X,)] = (¢ = My)nd,, ¢ > M,.
In
Set P%(-) = P(-|X,,...,X,). Then

P(Nn_l El{y,-zo(x)ns,,} >3- snsn)
In
(33) <E [P"(Nn'l YZ;2 N Y4 e, — P(Y, 2 0(x) + cﬁnIXi)])]
In In

< E[PX(N,,_I YZ, > (c— Mo)nSn)].
Ill
By Hoeffding’s inequality [see Theorem 2 of Hoeffding (1963)]
(3.4) PX(N,;l Y7, > (c — My)nd ) < exp(—2N,[(c — M)n8,]%).
1,
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Set p, = p,(x) = P(|X; — x|| < §,). According to Bernstein’s inequality [see
Theorem 3 of Hoeffding (1963)]

n(3p,)’
2p, + pn

(3.5) P(N, < inp,) < exp

By (3.3)~(3.5),

P(Nn_l Zl(Yizﬁ(x)+¢:8,‘) > % - 8nan)
In

3.6

( ) < E[exp(_z[(c - Mo)n]2Nn8)f)1{Nn2(1/2)np,,)] + P(Nn < %npn)
< exp(— [(c- Mo)n]2npn8,f) + exp(— %np,).

By Condition 2, p, ~ §¢. The conclusion of Lemma 1 follows from (3.6). O

The proof of (3.1) will now be given. Note that the event {én(x) > 0(x) + cd,)
is contained in the event {N_ IZInl(yi >0 +c8,) = 3} 1t follows from Lemma 1
and 8, ~ n~" or, equivalently, n8¢*? ~ 1, that

P(én(x) 2 0(x) + csn) = P(Nn_l El(n;ﬁ(x)+c8n) 2 %)
I,

< exp(—(c - M0)2c1n8,§’+2) + exp(—c,n8?) = o(1)

as n, ¢ — oo0. This completes the proof of Theorem 1. O

Proor oF THEOREM 2. Without loss of generality it can be assumed that
C =[— %,1]% Choose s > 1 and let {L,} denote a sequence of positive integers
such that L, ~ n®. Let W, be the collection of (2L, + 1)¢ points in C each of
whose coordinates is of the form j/(2L,) for some integer j such that |j| < L,,.
Then C can be written as the union of (2L,)? subcubes, each having length
2\, = (2L,)" and all of its vertices in W,,. For each x € C there is a subcube
Q., with center w such that x € Q. Let C, denote the collection of the centers
of these subcubes. Then

P sup |6,(x) — 0(x)| = e(n”? 1°g">')

= P( max sup |6,(x) — 8(x)| > c(n"'log n)r)
w?Cn xeqQ,

It follows from A, ~ n=* = o((n ' log n)") and Condition 1 that (for n suffi-
ciently large)

|6(x) — 8(w)| < My|lx — w|| < M, forx e Q,,w € C,.
Therefore, to prove the theorem, it is sufficient to show that there is a positive
constant ¢ such that
(8.7) ]imP( max sup |6.(x) — 8(w)| > c(n"'log n)" | =o.

€C, XEQW
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To prove (3.7), let x € Q,, and N, = N;(w) == #{i: |X;, -~ w|| <8, — A yd}. It
follows from N, = N,(x) == #{i: |X; — x|| < §,} = N/ for x € Q, that

{én(x) - 0(W) = csn} c {Nn_l Zl(lfizo(w)+08n} = %}
L

- {Zl{y,.zo(w)ﬂs,,) 2 %Nn'}’
L*
where I* = I*(w) == {i: 1 <i < n and |X; — w|| < §, + A,Vd }. Thus

(3.8) U {én(x) —0(w) > csn} c {Zl(y,-zo(w)ﬂsn} = %an}'
Ly

w

Set N* = N*(w) = #I*(w). Then N* — N/ =#{i: 8, — \/d < X, — w| <
8, + A,/d} is a binomial random variable with parameters 7 and ,, where (by
Condition 2)

7o~ (8, + AVd) " = (8, — A W@)") ~ A,82°" for n sufficiently large.

By Condition 2 and Theorem 12.2 of Breiman, Friedman, Olshen and Stone
[(1984), page 320], there are positive constants ¢, and ¢, such that

(3.9) limP(¥,) =1,

where ¥, = {N*(w) — N/(w) < ¢ and N*X(w) > ¢,n8¢ for all w € C,).
According to (3.8), (3.9) and N*! < (¢,n8¢) ! on ¥,, there is a sequence of
positive constants ¢, (~ §,/log n) such that

P( max sup [6.(x) — 6(w)] > 08,,)
< P(U U {(6.x) - b(w) > ca,,})
C. Qu

an,})

<P U{Zl(y,.zo(w)ms,,) > 3N* - %ca} ny,
c, \1r

()

(3.10) <plU { Ll zomesy =
G I

+ P(¥;)

<P LJ{ZVn*_1 Zl(lfizo(w)+c8n} 2 % - ensn}) + P(‘Prf)'
G iy
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According to Condition 2, P(|X;, — w| < §, + A Vd) ~ 8¢ for w € C,. Thus by
Lemma 1, there are positive constants c; and c¢g such that

P(U{Nn*_l Z]‘{Yizﬂ(w)+c8n) = % - enan})
¥

C
= (2Ln) InCaXP(N* ' ZI{Y > O(w)+c8,) = 7~ €0 )

< (2L,)% exp(—c%;n83+?) + (2L,)" exp(—cend?).

Note that (2L,)¢ ~ n*¢ and §, is chosen so that §, ~ (n~'log n)" or, equiva-
lently n82*2 ~ log n. Consequently, for ¢ sufficiently large

(3.11) (%J{N* ! thwm y =3 —ed }) = o(1).
Hence, by (3.9)—(3.11) there is a positive constant ¢ such that

(3.12) hm P( max xs:p [0.(x) - 8(x)] = c(n"logn) )
Similarly,

(3.13) hm P( max sup [6.(x) - 6(x)] < —c(n"log n)r) =0.

anQ

It follows from (3.12) and (3.13) that (3.7) is valid. This completes the proof of
Theorem 2. O

ProoF oF THEOREM 3. By Condition 3 and the argument given in the proof
of Lemma 1, there are positive constants ¢, and cg such that

(U{N"t lZ‘,l(y>0(w)+c} 38})
C.
< (2L,) % exp(—c;[eo A cIndd) + (2L,)" exp(—cgnd?).

Since (2L,)% ~ n*® and §, is chosen so that n8? ~ &, % ~ n®, we conclude that
for ¢ > 0,

(3.14) (U{N*- 21{Y>,(w)+c) >1—¢8 }) = o(1).

c,

It follows from (3.8)—(3.10), (3.14) [with ¢§, replaced by c in (3.8) and (3.10)] and
the boundedness of 6(-) on C that there is a positive constant T > 1 such that

(3.15) limP(IT,) = 1,

where II, = {||4,]|, < T}.
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Fori=1,...,n,set
-T ifY,<-T,
Y={Y iY<T,
T ifY,>T.

Set 8 (x) = med{Y;: i € I(x)}. Note that 6,(x) = 6,(x) for x € C except on IT¢.
Thus by (3.15), in order to prove the theorem, it is sufficient to show

(3.16) lim P(||§, — 8ll, > en™") = 0.

To verify (3.16), we may assume that C is contained in the interior of the cube
Co=[-1,119c U and ||0(:)|l, < T on C. Set E*(-)=E(-|X,,...,X,). Then

EX(18, - 013) = [ E¥(0,x — B(x)|7) dx

and

0

EX(8,(x) - 6(x)|7) = f qt? 'PX(|8,(x) — 0(x)| > ¢) dt

= fo M "qtq_lPX(|§n(x) - 8(x) > t)dt

(=)

(8.17
: + f2 2;:)ant‘l—1P"(|£7,,(x) - 0(x) > t)dt

<@Mp)" + [0 at"PX(G,x) — 0(=)| > 1) dt

Recall that N,(x) = #I(x). By Condition 2 and Theorem 12.2 of Breiman,
Friedman, Olshen and Stone [(1984), page 320], there is a positive constant c,
such that

(3.18) lim P(Q,) = 1

where Q, == {N(x) > c,n8? for all x € C}. By Condition 3, there is a positive
constant ¢, such that

(3.19) f;t:s qt? 'PX(|6,(x) — ()| > ¢) dt
< cloT'I[ N,,(x)]‘q/z, —

[The proof of (3.19) will be given at the end of this section.] It follows from
(3.17)—(3.19) that there is a positive constant c,; such that

EX(8,(x) - 6(®)|%) < cu[N,(x)"* + 87],  xeC.
Note that 8, ~ n~". Thus there is a positive constant c,, such that
(3.20) EX(18, - 8112) < c;(n™")? on Q,.
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Set Var*(-) = Var(-|X,,...,X,) and Cov*(-, -) = Cov((+, -)|Xy,...,X,). Then
Var*(||4, - 6112)

= Varx(fclﬁn(x) — 0(:«()|q7 dx)
=/ fD Cov¥{|,(x) - 6(x)|",16,(x) — 6(x)|"} dx dx’

< [ [ (EX(0.) - 6@) BX(1,(x) - 6(x)")}"* dx ax,

where D = {x,x’ € C: |x — X/|| < 2§,}. It now follows from (3.20) that there is a
sequence of positive numbers k, tending to 0 such that

(3.21) VarX([1§, — 0]12) < k(n"")*? onQ,.

By (3.20), (3.21) and Chebyshev’s inequality, we conclude that for ¢ sufficiently
large,

Var *(1i6, - 612)
(c?- 012)2(n_r)2q

= O0(x,) onQ,.

] -r\9
R UST T Conol S S

It follows from (3.18) and (3.22) that there is a positive constant ¢ such that
(3.16) holds, as desired.

Proor oF (3.19). Given x € C, it follows from Condition 1 that (X,) <
0(x) + M6, for i € I,. Thus, by Condition 3 and T > 1 (for n sufficiently large),

i - P(Y,> 0(x) + £1X,) 2 P(0< Y, - 0(X,) < ¢t - Mb,|X,)

> Myt - Mgb,)

> M;7Y2T) Wt — Mp,), 2Mp,<t<ey,icl,
and

3= P(Y; > 6(x) + 61X;) = M{ (e — M5,)(2T) ' (t — M3,),
g <t<2T,iel,.

Thus there is a positive constant ¢,; such that
} - P(Y, > 0(x) + 61X,) 2 ¢, Tt — Mi3,),

(3.23)
oOMB, <t<2T,icl,
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Set Z; = 1y 5 g+ 4y — P(Y; > 0(x) + ¢|X;) and N, = N,(x). Then it follows from
{Y/ > 0(x) + t} C {Y, > 0(x) + t} and (3.23) that
l>

PX(G,(x) > 0(x) + t) < PX( N1 zl{y,>,,(,)+,) >
)

< 2|
PX(N Zz, > N, Z[— —- P(Y,> 0(x) + tIXi)])
(!

N

N Zl(y >0x)+t) =

N

IA

n

< P*N Z;> c,T7'(t — M()an));

2M$, < t < 2T.

By Hoeffding’s inequality (see the proof of Lemma 1), there is a positive constant
¢4 such that

(3.24) PX(§,(x) > 6(x) + t) < exp| —c, N, T2(¢ - M3,)"],
2Mp, <t <2T
and, similarly,
PX(6,(x) <0(x) —¢t) < exp[—cMNnT‘z(t - Mob‘n)2],
2Mg$, < t < 2T.
It follows from (3.24) and (3.25) that there is a positive constant c,; such that

(3.25)

L7 1 PX(a,(x) - 0(x)| > 1) dt
2M,8,

T
<2 t1Vexp|— ey N,T%(t — M, )] dt
2M8,

< 2/" (s + M,)* " exp(—c,,N,T %) ds
M5,

< 2"[008"‘1 exp(—c, N, T %?) ds
0

=¢,TIN;9%,  x€C,
as desired. O
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