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We thank the discussants for their interesting comments and contributions,
and the editors and referees for considerable efforts that led to many improve-
ments in this work. We must also thank the intrepid reader, if he or she is still
with us, for weathering his or her way through this long article. The many
questions given at the end of the paper and the ideas and issues raised by the
discussants, indicate (happily) that this is an active area of research.

The discussants address a wide variety of issues in considerable detail. We try
to address their comments and questions below. Before addressing each discus-
sant in turn, we would like to present our views on several topics raised
collectively by some.

1. The Bayesian paradigm. It seems that our silence about the Bayesian
side of smoothing was so loud that it called for equally loud corrective measures
from several discussants. Cox, Kohn and Ansley, Chen, Gu and Wahba and
Eubank and Speckman remind us how useful the Bayesian paradigm can be for
developing inferential procedures and algorithms. However, in the absence of a
repeated sampling or subjective probability justification for the prior, the
Bayesian framework is just a heuristic. In such cases, inferences derived from the
Bayesian model must be justified through their sampling properties.

There are of course examples where the assumption of a random function has
ample justification and where the prior represents a useful frequentist modeling
assumption. This is usually called the stochastic process interpretation of the
underlying function. For example, the Yates (1939) random effects model for
incomplete block designs (we thank Dr. Peter Green for bringing our attention to
this area) can be cast as a semiparametric regression model [Green (1985) and
Green, Jennison and Seheult (1985)]. Here the “smoother” for fitting the random
incomplete block effects is generated by a natural (noninformative) prior. More
informative priors allow for spatial trends of various complexity. Wilkinson,
Eckhert, Hancock and Mayo (1983) and the many discussants give a useful
overview of this important area. If the assumption of an underlying random
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process is sensible, Bayesian inferential methods have a frequentist meaning and
they encompass the additional variability introduced by the randomness of the
estimated function. In all other cases, we subscribe to the pragmatic
Berger-Wahba philosophy [Wahba (1983), who refers to Berger; Eubank and
Speckman agree]: “Derive confidence intervals based on some prior distribution,
then forget the prior and see how well the intervals can be expected to perform
on cases of interest.” Given a useful and “natural” prior, the Bayesian formula-
tion certainly has appeal: Posterior based estimation and inference are conceptu-
ally simple and automatic. How should we then interpret the role of the prior if
it does not have a frequentist meaning? We comment on estimation and infer-
ence separately.

1.1. Priors and estimation. We will not fault the prior for its influence on
the posterior mean, since it gives us exactly the same estimate as penalized least
squares. At most, we will say that we do not need the prior in order to
understand and to justify how a smoother behaves. The penalization terms
Aff”(x)? dx and £{(S™— I)f do not require a Bayesian interpretation to tell us in
what directions shrinking will occur. An eigenanalysis of S will do just fine.
Another matter is the creative use of the prior for algorithmic and analytic
purposes. An example is of course the translation of the Bayesian framework into
a state space representation as was done by Kimeldorf and Wahba (1971) and
Wecker and Ansley (1983). The latter exploited this translation for the design of
O(n) algorithms for splines. A second and simpler example is the application of
prlors to additive models: If f; has prior covariance o’K j»then f =3 f hasthe
prior covariance o%K , = 022K o assuming the priors are uncorrelated w1th each
other. Since K ; = S; (I S; )' and S,= K (I + K,) !, we immediately obtain
Proposition 3. This is mentioned by Cox, and it also follows from Gu, Bates,
Chen and Wahba’s (1988) rules for reproducing kernels of additive models. We
learn from this that the prior covariance or reproducing kernel transform
K = S(I — S)7! of a strictly shrinking smoother S is more natural than the
smoother itself as far as combining components in additive models is concerned.
This fact is also at the heart of the algorithms mentioned by Chen, Gu and
Wahba, who use additivity of K-transforms to make computation independent
of the number p of additive components. Another example for the role of the
K-transform is mentioned below in the context of interaction smooths.

1.2. Priors and inference. In contrast to the posterior mean, the prior has a
strong effect on the postenor covariance, and hence the inference derived from it.
The posterior covariance is 25, whereas the covariance for f based on a fixed
function is 02SS* (as in Section 2.7). We notice S > SS", ¢, which implies that the
fixed function variance var, f= 02(SS‘)u is smaller than the posterior variance
var, ,f = 6%(S);;. The difference is accounted for as follows. The mean square
error matrix for f is

E(f - 1) - )’ = ¢SSt + bb,



LINEAR SMOOTHERS AND ADDITIVE MODELS 545

where the bias vector is b = Ef — f. This bias term depends on the un-

known f, but if we average it with respect to its prior, we get E, ,bb’=

(I — S)K(I — S)! = ¢*%(S — SS*). From a frequentist point of view, the Bayesian

covariance represents an average mean squared error with regard to the prior.
Now as long as

1. the true functions are random,
2. the prior represents their variability well and
3. we choose to average over, rather than condition on, this variability

the Bayesian pointwise confidence regions are appropriate.

More often, however, the true functions are considered fixed. There are at
least two routes that one can take in this instance. On the one hand, following
the Berger—-Wahba philosophy one may justify posterior inference, for example,
with desirable fixed function frequentist properties. Wahba (1983) gives asymp-
totic evidence that posterior confidence intervals are just wide enough to account
on the average for variance and bias simultaneously (if a suitable bandwidth is
chosen). On the other hand, ene may separate assessment into

1. diagnostics to detect bias problems and
9. inference based on standard errors which account for variance due to observa-

tional errors.

In this spirit, we showed in our paper standard error intervals based on the
diagonal of the fixed effect covariance ¢2SS’ which are narrower than the
posterior intervals based on ¢2S. Diagnostics for bias are probably not yet
developed to the necessary extent, but in comparison to traditional linear models
smoothing technology faces a lesser bias problem in the first place. If automated
bandwidth choice is used, the variance and bias aspects get traded off against
each other in a (hopefully) near optimal fashion.

2. Smoothing parameters. - A smoother that uses a data-driven choice for
the smoothing parameter is nonlinear, and hence strictly speaking is beyond the
scope of our paper. From a practical point of view, the selection of smoothing
parameters remains an important question and has generated a large literature.
We have studied linear smoothers not necessarily out of preference but out of
convenience: It seems very difficult to prove convergence results for nonlinear
smoothers. The hope, of course, is that the results for the linear setting will shed
light on the nonlinear case. Therefore, we largely agree with those discussants
(especially Titterington) who argue in favor of data-driven bandwidth choice.

2.1. Fixed smoothing parameters. Although our goal was not so much to
develop an alternative fixed-bandwidth smoothing methodology, we see nothing
wrong with fixing a number of degrees of freedom for each variable in an additive
fit (Breiman and Titterington disagree). This is a way of allocating degrees of
freedom to each variable, and allowing the smoother to use those degrees of
freedom in a flexible way. It is a simple extension of linear model fitting. You
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have to learn to walk (fixed smoothing parameters) before you can run (smooth-
ing parameter selection). We admit that the translation of smoothing parameters
into degrees of freedom is nontrivial for most smoothers. However, for Hastie’s
(1988) simplified splines, this translation is straightforward and computationally
cheap.

2.2. Automatic smoothing parameter selection. Often we really do want to
find out automatically how much smoothing should be done. In additive models
where there are potentially more than one smoothing parameter, the problem
encompasses model selection as well. The direct approach would be to minimize
a global (generalized) cross-validation criterion over all of the smoothing parame-
ters. This seems computatlonally formidable (see Breiman’s challenge). There
are several compromise approaches:

1. Chen, Gu and Wahba fix the ratios 0 of the smoothing parameters for
smoothing splines, and estimate a common multiplier A by generalized cross-
validation. Gu and Wahba (1988) use a Newton—-Raphson search to find the
(p — 1)-dimensional 8. Their procedure still requires O(n?) computations, al-
though it is claimed to converge fairly rapidly.

It seems intuitive that the GCV surface would vary most rapidly in the A
direction (overall amount of smoothing), in which case this parametrization is
natural. We wonder if in fact it speeds up convergence. It also seems plausible
that the relative factors 8 might be poorly identifiable, especially in the presence
of concurvity. There is a strong analogy to the estimation of variance compo-
nents in random effects models (as noted by P. Green, personal communication),
where similar identifiability problems exist. We offer a suggestion to alleviate
this problem. Constrain the 0’s in some sensible way, for example to be close to
1, and thus the relative amount of smoothing to be the same. This could be
achieved by augmenting the GCV criterion with a ridge penalty of the form
v|[log(0)||%, but would result in an additional similarity parameter y. Other
priors might also be considered, that give special weight to excluding variables
entirely, or making the fit linear in particular variables (we have no suggestions
on how to parametrize this).

2. Hastie (1988) describes a method for approximating the important eigen-
vectors of a smoothing spline (typically 8 or 10), and hence the smoother itself, in
O(n) operations. Given such an approximation for each term in the model, the
entire additive model fit is simply a generalized ridge regression (as in Section 2
of Eubank and Speckman). Now we are in the same arena as Chen, Gu and
Wahba above, except the cost per Newton-Raphson step is now only O(n).

3. Breiman describes a backward selection procedure using fixed knot regres-
sion splines, an approach also taken by Friedman and Silverman (1989). The
parameters are the number and positions of the “knots.” Although we find this

_approach innovative, we have some reservations [see Hastie (1989)]. The proce-
dure is akin to model selection in regression and shares one of its drawbacks
when there are a large number of predictors: It is difficult to assess what you end
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up with. Breiman emphasizes this point and proposes interesting ways to
tackle it.

4. We have recently been using a backward stepwise procedure that is some-
what of a compromise between fixed smoothing parameters and global selection.
Each variable can be either in the model with some fixed smoothing parameter
(say span = 0.5 for a running-line smoother), fit linearly or absent from the
model. Standard F-tests drive the selection procedure. We have found this to be
quite useful, but have not yet studied its operating characteristics.

5. The previous stepwise approach for arbitrary smoothers can be quite slow.
At each step an additive model is iterated till convergence. This suggests a
further compromise. Start with the full model, with a nominal degrees of
freedom for each term, and compute the GCV statistic using the approximation
tr(R) = L2_;tr(S;). Attempt to “update” each term in the model by applying the
appropriate smoother to the corresponding partial residuals, but selecting the
smoothing parameter to minimize the (global) GCV criterion. In this step, one
uses the usual univariate GCV criterion applied to the partial residuals, slightly
modified to include the degrees of freedom for the other terms in the model.
Having tried each of the p terms, incorporate the update corresponding to the
minimum GCV. Continue until the criterion converges. A further modification to
the smoothers allows the null fit (mean) or the linear fit to be candidates. This
means that a valid step could be to remove a variable from a model, or make it
linear. See Hastie (1989) for further details.

3. Interactions. In spite of the importance of the notion of interaction
(pointed out by Gasser and Kneip), it is not a priori clear how it applies to
smoother-based fitting methodology. We focus on two possible approaches to
estimation: one by Breiman, and one by Barry (1983, 1986) and the Madison
spline school [e.g., Wahba (1986)]. Cox also mentions the problem of inference for
the presence of interactions.

As Breiman states, one could always estimate first-order interactions by a
bivariate smooth of the residuals from an additive fit. We ourselves have tried
this approach and found a perspective or contour plot of a bivariate kernel fit to
be useful. Breiman proposes a more parsimonious estimate of interaction of the
form f(X,)-g(X;), or LI, f(X,) - g/(X,) if needed. We note a similarity
between this idea for J =1 and the thesis of Henry (1983). We find this
approach attractive, especially in the case of data which require only one
product term—the most interpretable situation. If two or more product terms
are necessary, we wonder whether a contour plot of a bivariate fit is not more
informative.

For greater parsimony, we may consider a Tukey 1-degree-of-freedom term of
the form y - hy(X)) - hy(X,) fitted to the residuals Y — p — A (X)) — hy(X,)
from the additive fit of A,(X,) and A,(X,). For higher-order interactions, general
suifaces are difficult to interpret and display, and we do not know whether the
generalization of Breiman’s ideas to higher orders would be useful. A radical
alternative would be to apply tree-based regression to the residuals [Breiman,
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Friedman, Olshen and Stone (1984)]. This can reveal subgroups of observations
which depart from additivity. Friedman’s (1988) recent work on multivariate
regression splines has a similar flavor.

A very coherent framework for interactions was initiated by Barry (1986) and
continued by the Madison spline school [e.g., Wahba (1986)]. This framework
offers the flexibility of ANOVA modeling in a semiparametric setup. In Barry’s
work it becomes obvious how powerful a heuristic the Bayesian approach can be:
He assigns independent “natural” priors to the four components of an ANOVA
decomposition f(X;, X,) = p + a(X,) + B(X,) + v(X,, X,), and derives corre-
sponding spline-type estimates for each component. Wahba (1986) develops this
theory free of Bayesian connotations based on penalization and reproducing
kernels alone. We can give a flavor of the techniques in terms of linear algebra as
follows. One starts with a decomposition of a smoether into a projection and a
strictly shrinking part. For example, a cubic spline decomposes into the pro-
jection onto 1 and x, and a shrinker described, for example, by |y — £ +
Af‘K~f = min,. The problem then consists of defining interaction terms of
three types:

1. projection X projection,
2. projection X shrinker and
3. shrinker X shrinker.

Type 1 is standard: The usual interaction of two projection terms x, and x, is
another projection term x, ox,, the coordinatewise (Schur) product of x, and x,.
A type 2 interaction between, say, a projection onto x, and a shrinker given by
K, is another shrinker defined by |ly — x, of,||* + Af;K; 'f, = min, . It is not
hard to see that this amounts to |ly — g||*> + Ag’K~'g = min_, where K is given
by the Schur product K = (x;x!) K, (if all x,; # 0). Last, it remains to define
an interaction between two shrinkers given by K, and K, (type 3). To this end
we reduce the shrinkers to a ridge regression by letting K; = W;W/, such that
ly — £,|% + £K; ', = min,;, becomes [ly — Wb,||* + ||b,||*> = min,, . It should be
intuitive to pick the matrix W = {w,, ow,;} whose columns are all possible
Schur products of columns w,, of W, with columns wy,; of W,. The K matrix for
interaction becomes K = WW?* which is easily seen to be K = K, ° K,. This
shows also that the result is independent of the factoring K; = W;W/. The rules
presented here for forming interactions are in agreement with the Gu, Bates,
Chen and Wahba (1988) rules for reproducing kernel tensor products. Together
with the rule for additive fits (sum up the K ’s), this new rule for interactions
(form their Schur products) shows again that the K-matrices are more natural
objects than the smoothers themselves for strictly shrinking smoothers.

When putting several interaction terms into a model, one can of course supply
each shrinking term with its separate smoothing parameter. A search over all
these parameters simultaneously may not be feasible, but for up to 4 or so, Gu

.and Wahba (1988) tell us there is promise. Once again, we might consider a finite
search over several discrete values of the smoothing parameters, corresponding
to O (absent), 1, 2, 3 and 4 degrees of freedom for each term, which could be
achieved by the usual all subsets search techniques.
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4. Replies to individual discussants. Some of the discussants (and many
writers) argue for their favorite kind of smoother. We venture to say that in our
experience with relatively noisy data, in most cases the choice is not too
important in that differences between smoothers are small relative to the
difference between a smooth and a parametric (say linear) fit. On the other hand,
there may be important differences in some problems, and we need more studies
like those of Breiman and Peters (1988) to help assess the relative merits of the
various smoothing techniques.

We now focus on some of the 1nd1v1dual points raised. Breiman’s discussion
was covered in Sections 2 and 3 of this rejoinder, as was Cox’s in Section 1—we
are sorry that space does not permit us to discuss their contributions further.
One small point regarding Cox’s test for lack of fit: We note that Cleveland and
Devlin (1988) have also derived approximate (frequentist) F-tests for this
problem.

Chen, Gu and Wahba develop the theory of penalized least squares for
function estimation with associated reproducing kernel (rk) theory. They apply
it to additive models, and show how the additivity rule for rk’s results in an
algorithm which is independent of the number of components fitted. Gu and
Wahba (1988) then indicate how simultaneous minimization of a GCV criterion
over several smoothing parameters may be feasible via Newton and Raphson if
one takes advantage of several speedups in matrix decompositions. As Gu, Bates,
Chen and Wahba (1988) state, this approach does not use the special structure,
for example, of univariate splines, but it provides a general computational
framework for interaction splines. If special structure is present, one might try a
modification of backfitting where each step is interleaved with one step of
smoothing parameter optimization for the currently active variable. We have not
implemented such an algorithm and therefore do not know whether it has viable
performance.

A noteworthy point is that the computation of splines presented by Chen, Gu
and Wahba leads to a natural separation of projections and shrinkage compo-
nents. In other words, the linear regression on #(S,) + #(S,) + - -+ +4(S,) is
pulled out and treated as a separate block S,. This is similar to our modified
backfitting algorithm. There seems to be a deeper necessity in this separation of
projection and shrinkage.

Chen, Gu and Wahba also make some intriguing philosophical points regard-
ing what is so:special about splines. With reference to Stein’s (1987, 1988) work,
they argue that asymptotically only the equivalence class of a covariance kernel
matters, and that splines are wonderful because their kernels are the most
parsimonious members of their respective classes. We are pleased with these
results, but because

1. they are asymptotic and
2. they rely on the stochastic process interpretation of the underlying function,

we‘still feel a desire for other—preferably cruder—evidence. A picture of a
successful fit does as much to convince us that smoothing splines are indeed
wonderful. An asymptotically equivalent but less parsimonious smoother will
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either perform as well on finite samples—in which case it is as wonderful as a
spline—or else it will be discarded for reasons of finite sample performance
rather than its lack of parsimony.

Eubank and Speckman lay some groundwork with their remarks on the
relation between concurvity and estimability. As they notice, the fit f, = Xf; is
indeed fully estimable as in ordinary least squares regression. This makes it a
considerably more manageable object in comparison to the full vector of compo-
nents £° = (f},1;,...,£}). We agree that the real issue is not exact but approxi-
mate concurvity, and we regret that there was not more space to make this point
more vigorously. Theorem 5 on the structure of exact concurvity by itself could
be misleading and lull the user of additive models in unwarranted safety. We
have to point out over and over again that smoother-based models do not only
increase the flexibility of fits but the problems with near dependence among
predictors as well.

Some of us [Buja, Donnell and Stuetzle (1986)] are pursuing a route for
concurvity analysis which is analogous to the use of smallest principal compo-
nents in collinearity for linear regression. This would amount to a diagnostic
tool, but it also lends itself to a more symmetric analysis of variables where none
is singled out as a response. .

Eubank and Speckman propose some ideas based on partial regression in
order to deal with the concurvity problem. There are several obvious questions
one might raise: Stepwise forward partial regression with smoothers does not
seem to optimize an obvious single criterion, it depends on the ordering of the
predictors, and it does not seem to lend itself for easy interpretation as the
resulting fit is no longer formulated in terms of the original predictors. On
the other hand, we would have to see a real-life application, mainly to judge the
interpretability of smoother-adjusted variables. We would expect the importance
of successive terms S,y, S;.1¥.1, S3.21Y.12, - - - to decrease rapidly as the smoothers
are based on increasingly noisy predictors.

We wait to see the Speckman (1988) paper on the alternative estimator
(attributed to us by Denby) of the semiparametric regression model (39) in the
text. The different bias properties of this and the penalized least-squares estima-
tors are interesting; do the mean squared errors also differ in order? We note
that for symmetric S, this is equivalent to using the “twicing” smoother in the
usual semiparametric fit.

Eubank: and Speckman propose leverage diagnostics based on posterior vari-
ances (diagonal of S), while Hastie (1988) does the same with fixed-function
variances (diagonal of SS’). As they and we agree in our attitudes toward
Bayesian methods, we can leave a comparison of relative merits of the proposals
to future investigations. As to the question of affordable computation of such
diagnostics, the best answer we have is that the smoothers themselves have to be
made affordable. This is one of the major reasons for developing fast spline

- approximations in Hastie (1988) to permit O(n) computations.

The polynomial-trigonometric regression approach of Eubank and Speckman
surely recommends itself for its simple implementation. We are looking forward
to seeing some plots of PTR fits in a few situations of interest. Especially, we
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would be curious to know how well PTR can handle local behavior without
creating artifacts outside the area of interest. For example, can PTR avoid the
problems of polynomial regression with strong but local curvature?

Gander and Golub explain the framework of iterative methods for linear
systems as used in the numerical literature. We have not followed this formula-
tion for didactic reasons, but the reader will easily recognize that T = M !N for
the Gauss—Seidel procedure. We are happy to learn that Golub and de Pillis
(1988) have obtained optimal over-relaxation parameters in a situation which
corresponds to the two-smoother case. Although they require what amounts to
strictly shrinking smoothers, we are hopeful that their results throw light on the
shrinking cases as well. Gander and Golub then proceed with an outline of
e-acceleration for iterations with slow convergence. This method is appealing
since it is based on the same modularity as the Gauss—Seidel iterations: Only the
basic modules for smoothing on each variable in turn are needed, and no matrix
representation or other nonobvious form is required. e-acceleration may give
hope in many situations where componentwise solving or minimization performs
unsatisfactorily. We wonder whether this method has been tried on mildly
nonlinear problems as well, and if so with what results. We have just one
question mark regarding the treatment of the null space of P: It is true that the
theoretical nullspace is characterized by a linear dependency between the
eigenspace for eigenvalue +1 of the smoothers and as such it is not hard to find.
However, we have a problem with algorithms which force us to adjust for the
presence of potential degeneracies as they may force us into giving up the
modularity of Gauss and Seidel. It was the point of our convergence proof that
for the Gauss—Seidel procedure no such adjustment is necessary. Of course, any
such convergence result is somewhat dubious: Along directions of degeneracy,
the Gauss—Seidel procedure does not move, and in directions of near degeneracy,
it will move only slowly. Acceleration methods can do only so much: There is
always the possibility of near degeneracy so close to exact, that for all practical
purposes it is exact, yet unforeseen. Therefore, the statement that “ the nullspace
can be determined without difficulty” by Gander and Golub cannot be taken at
face value. The example we give at the end of Section 3.7 should convince the
reader that the possibility of near degeneracy is very real in actual data: The
fact that flexible smoothers can approximate step functions quite well may turn
them into cluster detectors in regression, but also produce “concurvity” due to
multivariate clusters in predictor space. Problems of this sort are mentioned in
the context of ACE and continuous correspondence analysis by Buja (1989). A
forthcoming paper by Donnell, Buja and Stuetzle (1989) will deal with these
issues in greater detail.

Gasser and Kneip mention an asymptotic connection between kernel, spline
and k-nearest-neighbor smoothers in terms of a parametrization of design
adaptation. This means that a smoother implicitly widens its bandwidth where
the design is sparse, to a degree which depends on a parameter a. It is interesting
to hear that 2-NN smoothers often fare worse than either kernel or spline
smoothers in Gasser and Kneip’s empirical comparisons except in situations
where design and response are favorably matched. We recall that the fixed-
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bandwidth version of supersmoother [Friedman and Stuetzle (1982)] is a 2-NN
method.

Gasser and Kneip also hint at an ingenious O(n) algorithm for kernel
smoothers with polynomial kernels. As it stands, most important types of
smoothers seem to have produced O(n) implementations in the univariate case.
The comparisons now are concerned with the proportionality constants. Some
empirical results in this direction can be found in a recent report by Gasser,
Koehler and Kneip (1988), where spline and kernel methods with automated
bandwidth choice are compared.

Kohn and Ansley make a strong pitch for the stochastic process model in
function estimation. We reiterate and clarify our previous objections: In adopt-
ing the assumption of random functions, one either takes a subjective Bayesian
view of the function distribution as a prior—which we find unjustifiable in this
situation—or else one commits a modeling error equivalent to a confusion of
fixed and random effects in many practical situations. We do not deny that the
time-series applications in economics considered for instance by Ansley and
Wecker (1983), Section 3, call for a stochastic process assumption, but we fail to
understand how this makes sense in physics and engineering data where the only
variability of interest stems from measurement error. Even when the stochastic
process assumption is adequate, one may still not want to account for the
random effect variance but condition on the function and thus revert to the fixed
effect model for the purposes of inference. In summary, we are unable to follow
Kohn and Ansley if they maintain the notion that the random effects model will
do in every situation. However, we see it as one of the positive outcomes of this
discussion that it provided an opportunity to work out the conceptual problems
in the choice of model assumptions.

It is apparent from this discussion that there have been some cross-connec-
tions in the literature; Kohn and Ansley point out some references to their work
(and Wecker’s) missed by us and other authors. We will note some additional
references also missed by us and Kohn and Ansley. We address their points in
the order encountered.

None of the smoothers we mentioned require evenly spaced data (and all can
deal with tied x’s). The idea of using state space representations for fast
computations is fruitful, but there do exist other efficient O(n) algorithms for
computing smoothing splines, including the diagonal of S [see O’Sullivan (1985)
and Woltring (1986)]. Which algorithms have numerical advantages would have
to be investigated in a comparative study. The equivalence between smoothing
by backfitting and penalized least squares can hardly be more immediate than
the simple derivation in Section 3.3.2: Solving a linear algebra problem with the
aid of stochastic processes is not necessarily the preferred method of proof. Kohn
and Ansley claim as an advantage that the extrapolation to unobserved x-values
is immediate, but this is the case under fixed function assumptions as well if the
_penalized LS problem is formulated in terms of function approximation in a
suitable Sobolev space, an inherently finite-dimensional approach.

Friedman and Stuetzle (1981) introduced us to the backfitting algorithm for
fitting the additive model, their so-called “projection selection” procedure.
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Backfitting has appeared in the time-series literature where it is used in decom-
position algorithms [X-11, Shiskin (1985) and Shiskin, Young and Musgrave
(1967)], including the semiparametric model. Ansley and Wecker (1983) indeed
refer to the semiparametric model, although we could not find equation (36) in
that reference. We once again refer to the vast literature on the analysis of
trends in field trials [Wilkinson, Eckhert, Hancock and Mayo (1983)], where
semiparametric procedures were used as far back as 1937 (Papadakis)! We note,
as was one by Green and Yandell (1985), that the expressions in equation (36)
can be computed in O(n) computations as long as the operation S,z can be
computed in O(n); this is the case for most smoothers.

Wecker and Ansley (1982) devised the backfitting algorithm under the name
of “alternating projection method.” For convergence properties they refer to von
Neumann’s and Halperin’s results, but no indication' is given as to how they
apply. Indeed, they do not, at least not in an immediate sense. The usual
application of von Neumann-Halperin convergence results is to residuals. If
the linear map S; is a projection, one inner backfitting step of the form
f; < Si(y — X, 1) entails a residual update of the form r « (I — S)r. One
pass over all variables amounts to r « (I — S,) - - - (I — S;)r. Hence Halperin’s
theorems give us convergence on the residuals, but this is only the case
if all smoothers are orthogonal projections. A less obvious but more powerful
application is to the full vector of components £* = (f{,f;,...,f}), in which case
one ends up with nonorthogonal idempotents denoted ’i‘j in our paper. These
maps are ‘“pseudo-orthogonal” projections with regard to the pseudoscalar
product mentioned in the proof of Proposition 12. One could simply exclude the
possibility of concurvity, in which case the pseudoscalar product becomes a true
scalar product and Halperin’s theorems give us convergence of backfitting.
However, the point of our Theorem 8 is to avoid this assumption. Kohn and
Ansley will have to come up with an equivalent technical fix, unless they are
content with the weaker result. The virtue of allowing for concurvity is to show
that intentionally or accidentally overparametrized models still lead to conver-
gent backfitting.

Titterington discusses the choice of definition for degrees of freedom and the
need for data-driven selection. We note that his method (of moments) for
selecting A rests on a Bayesian justification (and thus averages bias over the
prior), whereas cross-validation does not. See Green (1985) for related method of
moments techniques.

He is right about the nonconstancy of variance in the ozone concentration
data. When the AVAS procedure [Tibshirani (1988)] is applied to these data, a
cube root transformation of the response is suggested. We thank Titterington for
the reference to Peters and Walker (1978a, b).
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