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UNIVERSAL DOMINATION AND STOCHASTIC DOMINATION:
U-ADMISSIBILITY AND U-INADMISSIBILITY OF THE LEAST
SQUARES ESTIMATOR!

By LAWRENCE D. BROWN AND JIUNN T. HWANG

Cornell University

Assume the standard linear model
X =4 0 + ¢,

nx1 nXp pX1 nx1

where ¢ has an n-variate normal distribution with zero mean vector and
identity covariance matrix. The least squares estimator for the coefficient 6 is
6= (A’A)"'A’X. It is well known that 6 is dominated by James—Stein type
estimators under the sum of squared error loss |§ — 9|2 when p > 3.

In this article we discuss the possibility of improving upon 8, simultane-
ously under the “universal” class of losses:

{L(16 - 81): L(-) any nondecreasing function } .

An estimator that can be so improved is called universally inadmissible
(U-inadmissible). Otherwise it is called U-admissible.

We prove that 8 is U-admissible for any p when A’A = I. Furthermore, if
A’A # I, then 8 is U-inadmissible if p is “large enough.” In a special case,
p > 4 is large enough. The results are surprising. Implications are discussed.

1. Introduction. In decision theory, a single loss function is typically used.
See Wald (1950). However, in practice, a loss is difficult to specify exactly and
therefore it is meaningful to consider a class of loss functions. Even though there
is a huge literature in single loss decision theory, there are only a few results
dealing with a class of losses. See the Introduction of Hwang (1985) for a review.

The same article as well as this article study the universal class of loss
functions based on the Q-generalized Euclidean error |8 — 0|,

(1.1) {L(|8 — 6lg): L(-) any nondecreasing function}.

Here, the parameter 6 and its estimate 8 are both p-dimensional quantities, @ is
a fixed positive definite matrix and

(1.2) 15— 0l = [(5 - 6)'Q(s - 8)] .

The situation in which @ is fixed and known arises in two applications described
at the end of the Introduction.

We will study for a fixed @ the theoretical question about the existence of an
estimator & that universally dominates the least squares estimator §, i.e., § is as
good as §, for every loss in the universal class and & is better than §, for at least
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one of the losses. In the situation that such a 8 exists, 8° is called U-inadmissible
with respect to Q. Otherwise, if there is no estimator universally dominating §°,
89 is called U-admissible with respect to Q. In the discussion below, we may omit
“with respect to @,” if this causes no ambiguity. Unfortunately the arguments in
this article are not constructive; thus the problem of actually constructing
universally better estimators remains open.

For background, we summarize some results from Hwang (1985). Only higher-
dimensional cases are discussed, since for lower-dimensional cases, 8° is typically
U-admissible.

The first example of universal domination concerns the situation in which
X — 0 has a p-dimensional ¢ distribution with known degree of freedom N. It is
shown in Hwang (1985), that for every fixed N and p > 3, X is U-inadmissible
with respect to Euclidean error (i.e., @-generalized Euclidean error with @ = I).

For the important normal case (X ~ N(0, I), I the identity matrix), Hwang
(1985) compared X to the positive part James—Stein estimator (1960),

(1.3) 8%(X) = (1 - I—%E)+X = max(O,l - I—J%IE)X

It was shown that, for every a, 8% does not universally dominate X with respect
to Euclidean error.

This leaves open the question (for the normal case) as to whether there exists
an estimator universally dominating X for p > 3. In Section 2, we show that, for
Euclidean error, there exists no such estimator; hence, for every p, X is
U-admissible.

We also consider a more general problem with respect to Q-generalized
Euclidean error. Let g, > g, > -+ > g, > 0 be the eigenvalues of Q. Under the
normal model, it is shown in Section 3 that if g, > g,, then X is U-inadmissible
when the dimension p is big enough. For the special case

q1>q2= oo =qp,

X is U-inadmissible if and only if p > 4. We conjecture that X is also U-inad-
missible whenever p > 4 and ¢, > 9p-2-

Our studies here strengthen Stein’s phenomenon (1956) for the situation
Q # I. In Stein’s context, only a single loss (sum of squared error loss) is
considered and X can be improved when p > 3. Here for p > 4 and most @,
Q # I, we show that improvement is possible even for the universal class of
losses. However, there are two notable differences between Stein’s phenomenon
and our results. First, it is surprising that U-admissibility depends critically on
Q. To the best of our knowledge such dependence on @ has not previously been
observed in the admissibility paradigm. In fact, theorems are available which
show that admissibility under the loss |6 — 8|Z, is equivalent to admissibility
under the loss |6 — 8|2Q,, so long as @ and @’ are both nonsingular. [See
Bhattacharya (1966), Berger (1979), Shinozaki (1975) and Lemma 3.1 in Rao
(1976).] Our results show that these theorems cannot be extended to the U-
admissibility criterion.
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Another difference is the cutoff dimension. The minimum dimension for
inadmissibility in the normal case (or, in general, in the location case) is 3.
However, if € is nonsingular, the minimum dimension for U-inadmissibility is at
least 4. When g, = g¢; = -+ = q,,, it is exactly 4.

We have assumed that @ is fixed and known. Below we discuss two situations
in which the assumption is automatically satisfied. Consider the standard linear
model
(14) X =A4 0 + ¢,

nx1 nXp pX1 nXx1

where A is the design matrix of full rank p, 6 is the unknown regression
parameter and ¢ has a N(0, 02I) distribution. The first justification relates to
evaluation of the least squares estimator § = (A’A)7'A’X with respect to any
nondecreasing loss based on Euclidean distance. (This distance is natural when
components of § are of equal importance.) Using transformations, one can show
that 6 is U-admissible if and only if Y = (A’A)/2) is U-admissible for estimat-
ing n = EY with respect to @ = (A’A)"!, which is a fixed and known positive
definite matrix.

The second justification arises in the prediction context. Assume (1.4) and
suppose that we are interested in predicting a future observation X* = A*§ + ¢*,
where &* is normally distributed with mean 0. A natural predictor based on the
least squares estimator, 8, is A*6. Suppose we compare this predictor to other
predictors of the form 8*(Y) = A*8(8), using the class of loss functions

(1.5) {L(|8 — X*|), L(-) nondecreasing}.
The risk function of A*§(6) is
E,L(|A*8(8) — X*|) = E,L*(1A*8(8) — A*4)),
where
(1.6) L*(1A*3(6) — A*6]) = E{L(|A*8(8) — A*0 — &*|)|8}.

The above expression is an increasing function of |A*8(6) — A*0| due to
the normality of *. Finally, one can write (1.6) as L*(]8(8) — 0]o+), with @* =
A*A*; this, in tum, can be written as L*(|6*(Y) — n|g) with @ =
(A’A)~1/2Q*(A’A)~ /2, Hence the conclusion is that if there exists an estimator
universally dominating Y with respect to this @, then a suitably modified
estimator simultaneously dominates the intuitive estimator A*§ for all losses
in (1.5).

2. U-admissibility of the least squares estimator. For @ = I, we shall
prove

THEOREM 1. Assume that X has a p-dimensional N(6, I) distribution. For
any p, the least squares estimator §°(X) = X is U-admissible with respect to
Euclidean error.
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We will first give an intuitive argument to explain why Theorem 1 stands. The
rigorous proof mimics the following argument, except the losses are slightly
modified. Suppose that §(X) is an alternative estimator, which for now is
assumed to be nonrandomized and continuous. Assume that 8(x) and x are not
identical. Let x, be such that §(x,) # x,. Also take 6 so that x, is on the line
segment joining 8(x,) and 6. (See Figure 1.) By continuity, we can find two
separated open spheres S, and S, centered at x, and §(x,), respectively, so that
4 maps S, into a subset of S,. Let 6 be on the ray from 8(x,) through x,. Let
¢ = c(0) be a positive number so that the sphere centered at 6 of radius ¢ will
separate S, and S,. Now considered a step loss function x (e, 010 — 8)).
[Throughout the paper, x¢(-) denotes the indicator function of S.] Then

R(8,8) = B0 - 8(X)| > c) > P(8(X) €S,) = P(X € 8,).
Hence
R(6,8)  P(XeS8)
R(6,8°) “P(X -0 >c)

0, a.s.c— 0,

since X has a normal distribution with an exponential tail [Birnbaum (1955)].
Hence 8 does not simultaneously dominate 8° for every loss in the class of step
loss functions, and consequently & does not universally dominate 8°.

Now we turn to the formal proof of Theorem 1. In the proof, instead of the
step loss functions in the above argument, we consider the class of loss L (|8 — 6]),
where

L(t)y=(t-¢)", 0<c<oo.
Theorem 1 will easily follow from Theorem 2, which is stated and proved below.
(The convexity of L, is used in the proof of Theorem 1, which follows the proof
of Theorem 2.)
THEOREM 2. Suppose 8( X) is a nonrandomized estimator such that for all 6

(2.1) E,L(16(X) —0)) <E,L(8,(X)—-6]) VO<c<oo.

Fic. 1.
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Then 8(X) = 8% X) a.e.

ProOF. Let 8 satisfy (2.1) and assume
(2.2) Ey(18(X) — (X)) > 0,

which contradicts the conclusion of the theorem.

We can assume without loss of generality that §( X)) is continuous due to the
following argument. If 8(X) is not continuous, we can replace §(X) by the
continuous estimator 8(X) = E(8(X — Z) + Z|X), where Z ~ N(0, I) is inde-
pendent of X. By Jensen’s inequality and Fubini’s theorem,

R(8,8) = E,L(|8(X) — 6]) < E,E(L(18(X - Z) + Z - 4)))|X
= ER(6 - Z,8) < ER(6 — Z,8°) = R(8,8°).

By completeness, §(X) = 8°(X) (a.e.) holds if and only if §(X) = §%X) ae.
Hence 8 satisfies (2.2).

Because of (2.2) there exists a point x, such that d(x;) # x,. Choose 8 so that
x, is between 8(x,) and @ as in Figure 1. Obviously, |6(x,) — 8| > |x, — 6|. Due
to continuity of 8(X), there exists a positive number ¢, 0 < & < |8(x,) — x| /2,
such that |x — x,| < € implies

(2.3) 18(x) — 0] > |xo — 0] + .
(& can be chosen independent of 6.) Hence
(2.4) E,L(5(X) = 6]) = EgXix <. L(18(X) — 6]).
Taking ¢ = |x, — 6| and recalling that |x — x| < ¢ implies (2.3), we note that
(2.4) then implies
E)L(16(X) — 8]) = ePy(|X — xo| < ¢).

(The choice of c is smaller than what was suggested by Figure 1.) Write, by using
an orthogonal transformation,

P
P(IX — x| <¢) = P((Z1 —e)+ Y 22< 82),

i=2
where the Z;’s are i.i.d. N(0,1). The probability is bounded below by
P(|Zy = c| + 12| + -+ +|Z,,| <e)

€ €
>Ple—s<Z <ct oy |Zi<——,i=2,...
(C 2 < <c ,l | 2(p_1),t ) ’p)

]f[P(|Z|< 5 1)) ( —§<Z1<c+§)

€
- - +
(c <Z <c 2)
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where K, depends on ¢ but not on 8. For ¢ > ¢/2,
P( "<z - P( "<z -
c— — < <c+ —| > c— =< <c——
2 2 ) 2 ! 4)

> e(4y27) le~(eme/ v /2,
In summary,

K¢ )
2.5 E,L(8(X) - 0) > ——e /%2 a5¢ - .
¢ 42
Vo
Furthermore,

EL(X-6) =Q,[ (r—c)r? e "2 dr,

where @ is a positive constant resulting from the spherical transformation. The
last expression is bounded above by
(2.6) K,cP*le=*/2 asc — oo,
where K, is a positive constant independent of c. This and (2.5) imply that
E,L(3(X) —0) = Kjee o/

EL(X-0) °~ #ZnKcr e/
This contradicts (2.1), completing the proof of Theorem 2. O

—> 00 asc — oo.

(2.7)

ProOOF OF THEOREM 1. Suppose § is a (randomized) estimator which is as
good as 8° under all losses of the form L_: 0 < ¢ < oco. Write 8 = 8(-|X). Let
8'(x) = [ad(da|x). Jensen’s inequality then yields R(6, 8") < R(0, 8°). Further-
more, E |8’ (X) — 0] < E,8%X) — 6] unless

8({a:3a=a(X)202a=0+0a(8'(X)-0)})X)=1 ae.

This condition holds for all 6 if and only if & is nonrandomized (a.e.). Hence, if 8
is not equivalent to 8° then there is a nonrandomized estimator (8’) which
satisfies (2.1) with strict inequality for some 6 and some ¢ > 0. This strict
inequality means that &’ satisfies (2.2), thus contradicting the conclusion of
Theorem 2. This contradiction establishes that § = §° (a.e.) and so completes the
proof of Theorem 1. O

When @ is not necessarily I, we can also show that X is U-admissible in the
lower dimensional case.

THEOREM 3. Assume that Q is nonnegative definite. Then X is U-admissible
if p <3.

Proor. The only case that requires a proof is the situation where p = 3 and
Q is positive definite. (All the other cases reduce to the two-dimensional or the
one-dimensional case, in which X is admissible with respect to the quadratic loss
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FiaG. 2.

and hence is U-admissible. The detailed arguments are similar to the last
paragraph of this proof.) Now we can assume without loss of generality that @ is
a diagonal matrix with diagonal elements q,, g,,..., qp where ¢, > g, > -+ >
g, > 0. Suppose 8(X) universally dominates X. Then the first component,
8,(X), of 8(X) is identically X,. The proof of this assertion is similar to the
proofs of Theorem 2 and Theorem 1 and is omitted. It is based on the same type
of heuristic argument, though using Figure 2 instead of Figure 1.

Note that Figure 2 is the same as Figure 1, except that the sphere that
separates S, and S, in Figure 1 is now an ellipsoid defined by {x: |x — 0], = c}
for some appropriate constant so that S, and S, are separated. Furthermore the
line joining # and the center of S, is parallel to the X, axis.

Now consider the sum of squared error loss. Since §,(X) = X,, the problem is
then reduced to the two-dimensional one. By fixing 6,, one arrives at the
conclusion that (8,(X), 8,(X)) is as good as (X,, X;). Admissibility of (X,, X;)
[as established in James and Stein (1960)] and strict convexity of the squared
error loss imply that 8,(X) = X, and 8,(X) = X,. This contradicts the fact that
0(X) universally dominates X, establishing the theorem. O

3. U-inadmissibility of the least squares estimator: @ # I. In this sec-
tion we assume model (1.4). By an orthogonal transformation, @ can be assumed
to be diagonal without loss of generality. Write @ = diag(q,, q,,..., q,) and
arrange so that the g,’s are decreasing in i. We assume that the largest q,, i.e.,
qy, is different from all the other g¢;’s. We can also rescale so that g, = 1.
Consequently

¢.>1=¢,2¢93> -+ 2q,>0.
We shall prove a general theorem (Theorem 6). When specialized to the case that

q;, i > 2, are identical, Theorem 6 implies that 8% X) = X is U-inadmissible if
and only if p > 4 (Corollary 7).
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Before we plunge into a rigorous proof of Corollary 7 (and more generally
Theorem 6), it may help to indicate a calculation that led us to their discovery.

Assume, for now, that ¢, > g, = -+ = g, = 1. Partition as
X'= (X, Xb), whereXb =(X,,...,X,),
(3.1)

8t =(6,,85), where 6% = (6,,...,6,).

>op

For a fixed @, universal domination is equivalent to stochastic domination, i.e.,
simultaneous domination with respect to the step loss function x, (18 — 8|g)
for all ¢ > 0 [Theorem 2.3 in Hwang (1985)]. Therefore a (slightly stronger)
condition for universally dominating X is

(3.2) P(18(X) - 8lg>c) <P(X—8|g>c), VOandVc> 0.

Theorem 4.1 of Hwang (1985) indicates that, for any finite number c¢,, there
exists a James—Stein estimator that satisfies (3.2) simultaneously for all c,
0 < ¢ < ¢,. More specifically, this is true for the estimator

(3-3) SI(X) = (X1,8§(X(2))),

where 8, is a (p — 1) dimensional James—Stein type estimator based only on
X5 Thus the difficulty in proving U-inadmissibility occurs as ¢ — co. It is
exactly this case that stops X from being U-inadmissible for the symmetric loss
in Section 2.

It seems natural to look at the conditional distribution of X, given
|X — 8lg=c As ¢ > oo, X will then stay very close to the boundary of the
e111ps01d |X — 8|q = c according to Birnbaum’s argument (1955). Therefore, we
study below the conditional distribution of X, given |X — 8|o = c. After a
lengthy but standard calculation one can show that the asymptotic distribution
of X ,), given the ellipsoid, is a probability distribution! In fact, it hasa (p — 1)-
dimensional N(4, q,/(q, — 1)I) distribution.

Now, since X, has a limiting conditional distribution as ¢ — oo, it is possible
to construct a Stein type estimator (3.3) to improve upon X for large c. As we
indicated earlier, by Hwang (1985) one can improve on X for small ¢’s by using
(3.3). A continuity argument therefore leads to the conjecture that for some
(X)) in (3.3), (3.2) holds for all ¢ > 0; and hence X is U-inadmissible.

To prove the conjecture, we will need the following lemma which is a direct
generalization of Theorem 3.3.2 in Brown (1966) to the situation involving a class
of loss functions W(8(X) — 6), ¢ € ¥. Throughout the paper, O and o are big
“0O” and little “0” as @ —» oo uniformly in ¢, § and positive & bounded away
from 0 (a and b are introduced below). The major difference between this lemma
and Brown’s theorem is that the assumptions made and the conclusion (3.7)
drawn there are uniformly in ¢ € %, whereas Brown considered only one loss
function. We omit the proof since it is similar to Brown’s proof. [For details, see
the Appendix in Brown and Hwang (1986).] The notation Sup, denotes the
supremum over ¢ € %. Lemma 4 applies to the situation where X has a location
probability density function f(x — ), which is assumed to be twice continuously
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differentiable. Let

, a fl a fp
f (x) = (5;—1,..., axp
and let f”(x) be a matrix whose (i, j)th element f;/(x) is (32/0x; dx;)f(x). We
use E, to denote the expectation with respect to f(x — ), with § = 0. Moreover,

from now on and throughout the paper, E, and P, will be abbreviated as E and
P, respectively.

LEMMA 4. Assume that the observation X has_a p-dimensional p.d.f.
f(x — 8) with respect to Lebesgue measure. Let W(-) = W/(-) — E,W/(X).
Assume that
(3.4) sup [|W,(X)|IXI1f"(X)|dX <0,  i=0,1,2,3,4,
and there exists a v > 0 such that for all |G(x)| < v,

(85)  sup [IW(X)NIXIfi(X + G(X)) dX < o,

i=0,1,...,6, VJ, k.
Also suppose that
(3.6) [H(x)W(X)dx =0,
Let 8(X) = (I + B/(a + |X|*))X, where B = b"'B, and B, is a constant ma-
trix which does not depend on the positive scalars a and b. If M_B, is

nonnegative definite, where

M, = [W(X)Xf(X)dX,

then
A= E[W(X - 8) - W(5(X) - 6)]
(3.7) 1 —20'M_ B8 Kp 1
= b(a + |6)%) 162 FUMB, = o) tol o 1612 )’

where K is a positive finite number independent of a, b, ¢ and 8.

REMARK. Typically M, is negative definite, in which case B is negative
definite and 8(x) is a James—Stein type shrinkage estimator.

Now we connect Lemma 4 to our problem. Here X’ = (X,,..., X,) ~ N, 1I)
and hence f is taken to be the p.d.f. of N(0, I). We consider an estimator 8(X)
as in (3.3). Since the first components of X and 8(X) are the same, it is only the
choice of §, that matters. By using Lemma 4, we will prove that there exists 8,
for 0, that has everywhere smaller risk than X, for every indicator or integral
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loss function LY8, — 65)), where
X(c,w)(|S|Q2)7 0<ecx<1,

3.8 Lg S)= s c - 2
38) (s) [F9 1 - e2ye?) et rdr, > 1
0

Here @, = diagonal(q,,...,q,), | * |o,, as before, is the @,-generalized Euclidean
distance and a A b denotes min(a, b) for real numbers a and b. The choice of
L! for ¢ > 1 is inspired by the earlier heuristic argument. The integral relates to
the conditional expectation of the indicator loss. The following lemma show that
this implies U-inadmissibility.

LEMMA 5. If 8)(X ) has everywhere smaller risk than X ,, under L, ¢ > 0,
then (3.2) holds and 86(X) in (3.3) universally dominates X with respect to Q.

Proor. To establish (3.2) for every c, note that the left-hand side of (3.2) can
be written as

P(g,X, — 6,]° + |85( X)) — b1, > c?).
Writing Z, = X, — 6, ~ N(0,1) and conditioning on Z;, we can equate the last
expression to

(3.9) P(‘I1|X1 - 6,)*> 02) + LP(|82(X(2)) - 0(2)%2 > t2)fR(t) dt,

where fg(+) is the p.d.f. of R = [(c? — q,|X; — 6,]>)*]*/? on the region R > 0.
Hence

F(t) @ 61 - 2/c?) e (20 g <t<e.

Similarly, the right-hand side of (3.2) equals (3.9) except that 8,(X,)) is replaced
by X, . Note in (3.2), that the first term remains the same for X and §(X).
Hence in comparing X and 6( X), this term can be dropped. Now we focus on the
second term, which is proportional to

(3.10) j:P(|82(X(2)) — 0(2)| > t)t(l — t2/02)—1/2e12/2q1 dt.

When ¢ < 1, the probability inside the integral is the risk function of 8,( X))
with respect to L[. Since by assumption the risk function of 8,( X () is smaller
than that of X, (3.10) is smaller than the similar quantity with &( X))
replaced by X, establishing (3.2) for ¢ < 1.

When ¢ > 1, we apply Fubini’s theorem to conclude that (3.10) equals

ELg(sc( X(2)) - 0(2))’

where L! is the integral loss in (3.8). Arguments similar to the last paragraph
imply (3.2) for ¢ > 1. O
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Using this lemma as a bridge, we now proceed to argue the existence of
8,(X5)) dominating X g for every L. This is equivalent to domination with
respect to the loss W(8, — )

(3.11) W) = L")/t D,
where tr D, is the trace of the matrix

(3.12) D, = E,LI(X)XX!,
and

(3.13) L) = L) - B, LY X).

It can be checked that D, is diagonal and positive definite which implies the
positivity of tr D,.

It is to this class {W(-)} that we will apply Lemma 4. In Appendix A, we
show that all the assumptions of Lemma 4 are satisfied for W,(-). Now we can
state and prove the main theorem.

THEOREM 6. Assume that
Q = diagonal(qu q2y AR qp)

and q, > q, > --- >q,>0and

(3.14) p > 2max

c

mini(Dc)(ii)

{maxi(Dc)(ii)} +1

where (D.)iiy 1s the (i, i)th element of the diagonal matrix (3.12). Then X is
U-inadmissible with respect to Q-generalized Euclidean error.

ProOF. We now search for 8, satisfying the conditions of Lemma 5. Then we
apply Lemma 4, in which we identify X as X 3)- Consequently, let

82(X(2)) = (I+ a+ |X(2)|2)X(2)’

where

B=-b"1.
(That is, B, = —1I in Lemma 4.) Lemma 4 therefore gives (3.7). Here

(3.15) W) = W) ~ EW/(X) = LI() /tx D,

and

(3.16) M.B, = fWC(X)Xf'(X)dX(—I) =/WC(X)XX'f(X)dX.
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By (3.12) and (3.15) this equals D,/(tr D,). Hence tr M B, = 1. Now (3.7) gives
A= EO(Wc(X(z) =) — Wc(s(X@)) - 0(2)))

. 1 —265 D2, o K(p-1)
~ b(a+ 0%) | 16 trD, 2b

1 )
o
a+ |6’(2)|2
1 ( -2 ) max,(D,)y, i 1 K(p-1)
> max| —————|+1 - —7—
b(a + |0(2)|2) p—1/ ¢ | min/(D,); 2b

1
+o| ———|,
a+ |6?(2)|2

which by (3.14‘) can be made positive for large a and b. Hence for sufficiently
large @ and b, 8,(Xy) has everywhere smaller risk than X, with respect to
{(W.}. This and Lemma 5 establish the theorem. O

As a remark, the lower bound on the right-hand side of (3.14) is at least 3. It
can be shown with the aid of results from the Appendix that this bound is finite.
See Brown and Hwang (1986).

For the special case when

QZ = qQI ’
we have the following corollary.

COROLLARY 7. Assume that @ = diagonal(q,, q,,...,q,), where q, > q; =
g3 = -+ =q,> 0. The estimator X is U-inadmissible with respect to Q-gener-
alized Euclidean error if and only if p > 4.

PrOOF. Apply Theorem 6. In this case D, is a multiple of the identity

matrix. Hence condition (3.14) is equivalent to p > 4. Therefore, 8° is U-inad-
missible for p > 4. For p < 3, Theorem 3 implies that X is U-admissible. O

APPENDIX A
Proof that W,(+) defined in (3.8) and (3.11) satisfies all assumptions in
Lemma 4. We first establish a key inequality (A.2). Consider ¢ > 1. Let
u = |s|g, A ¢. From (3.8),

Li(s) < e/ [*4(1 - ¢2/c*) " ar
0

- eu2/2qlu2(1 + (1 _ u2/02)*1/2)*1

< uZe¥ /24,
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Since ¢, < 1 forall i > 2, u < [s]g, < |s],

(A1) Li(s) < |s|)%!*"*/29 for ¢ > 1.

Now for 0 < c <1, LXs) is bounded by 1 by the definition in (3.8). This,
together with (A.1) and ¢, > 1, implies that

(A.2) sup Eo| X|*L1(1X]) < o0

0<c

for every & > 0. This inequality is crucial in the following proofs.
_ Using the notation W, of Lemma 4, we have here W,(-) = W(:) — E,W(X) =
LY(-)/(tr D,), where L! is defined in (3.13).

CasE 1 (¢ > 1). Condition (3.6) is equivalent to
[H(X)EAx) =o.
Since f(X) is a normal p.d.f., the left-hand side equals
(A.3) = E(LUX) - E,LX))X = —E,L(X)X =0

by symmetry. This establishes (3.6).
To check conditions (3.4) and (3.5), we first show that
(A4) inf tr D, > 0,
c>1
where D,, as defined in (3.12), equals E,XX (LY X) — E,LY( X)). By symmetry,
D, is a diagonal matrix. In fact, the infimum over ¢ of each diagonal element of
D, is positive. To see this, note that as an example the first element is

(A.5) E X} (LYX) = E,L{X)) = EXL{X) - EoL{(X).

Using inequality (A.1) and the dominated convergence theorem one can prove
the continuity of the last expression in ¢, 1 < ¢ < 0. Furthermore, for each
¢ > 1, (A.5), being the covariance of two functions X2 and L!(X) both increas-
ing in |X|, is positive. As ¢ = oo, (A.5) approaches (by the dominated conver-
gence theorem)

EOXlch{o - lEoLc{o(X),

where
Li(s) = fISItae,z/qu dt = g,(ePle/2a — 1).
0

The limit is also positive. As ¢ — 1, a similar argument can be used to establish
that (A.5) approaches a positive limit. Hence a continuity argument shows that
the infimum of (A.5) over ¢ > 1 is positive which implies (A.4). Therefore to
prove conditions (3.4) and (3.5), it suffices to prove that they hold if W’c is
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replaced by L. Now

JIECX)NX19#( X)) dX = B LY X)| 1X)!
(A.6) 4
< ELUX)| X! + (Eol X[ ) EJ LY X))

This and (A.2) establish condition (3.4).
Condition (3.5) can be established if one can show

sup [|LL(X)| |X|¥* %X+ GO/ dX < oo
for every |G(X)| < v. The left-hand side is less than or equal to
sup f(|L£(X)| + E,LI(X))|X|i*%~ \XP /24X gx,|

which is finite by arguments similar to (A.6) and a strengthened (A.2) with e!X!
in the expectation. All three conditions are now established.

CASE 2 (0 < ¢ <1). Condition (3.6) holds similarly to (A.3). Conditions (3.4)
and (3.5) also hold for any fixed ¢ > 0 by arguments similar to those for Case 1.
However, to establish (3.4) and (3.5), we still have to show as ¢ — 0, that the
relevant integrals approach a positive number. This together with the fact that
these integrals are continuous in ¢ > 0 imply (3.4) and (3.5).

To deal with the case ¢ — 0, in the proof, we will now use O or o to denote an
expression’s order as ¢ — 0. Furthermore, O, (c*) will denote a quantity such
that as ¢ — 0,

0. (c*)/c* - a positive finite number.
Now, from (3.8) and (3.13), we get

Li(s) = =Xgo,(sle,) + EoXpo, a8l )-
Therefore, by (3.12),

D, = _EO[Xto,c](|X|Q2)XXt] + Eo[ X0, (1X1g,)] I,
which is a diagonal matrix with the ith element on the main diagonal being
(D.);; = _EOX[o,c](IXIQz)Xiz + EoX[o,c](|X|Q2)
=—-0(c”P™) + 0, (c?P ) =0,(cP).

In deriving (A.7) as well as other formulas in the proof, one should keep in mind
that X denotes X, which is (p — 1)-dimensional. Thus from (A.7),

~Xio, C](Ileq) N O(cP™)
D, 0.(cP 1)’

(A7)

W(s) =
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We now deal with condition (3.4). Note that

X0, c](|X|(‘?2)|X|i+1
0,(c?™)

JIWLXONXIIf (X)X = E|WX)IIX|"" < E +0(1)
= 0(1).

Hence

limsup [|W,(X)|1X/f"(X ) dX < oo,
c—0
establishing (3.4) as ¢ — 0 and hence for 0 <c < 1.
For (3.5), note that

JIWLXONX1#(X + G(X))|dX
< [IWX)IXIIX + G(X)Pf(X + G(X)) dX

<2 [IWX)IXI(XP? + v*) f(X + G(X)) dX.

The upper bound approaches a finite number if for every £ > 0 so does the
expression

JIWLXONIXH(X + G(X)) dX.

The last expression is bounded above by

BTCEQSEJXmQOXD)+Oﬂ)mgﬁ<rﬂX|ﬂXﬁkGLX»dX=(XD

as ¢ — 0. Hence,

limsup [W,(X)|X|f#/(X + G(X)|dX < oo,

c—0

establishing (3.5) as ¢ — 0 and hence for 0 < ¢ < 1. The proof is now complete.
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