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A STOCHASTIC MINIMUM DISTANCE TEST FOR
MULTIVARIATE PARAMETRIC MODELS'

BY R. BERAN AND P. W. MILLAR
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Stochastic procedures are randomized statistical procedures which are
functions of the observed sample and of one or more artificially constructed
auxiliary samples. As the size of the auxiliary samples increases, a stochastic
procedure becomes nearly nonrandomized. The stochastic test of this paper
arises as a numerically feasible approximation to a natural minimum distance
goodness-of-fit test for multivariate parametric models. The distance being
minimized here is the half-space metric for probabilities on a Euclidean space.
It is shown that the various approximations used in constructing the stochas-
tic test and its critical values do not detract from its first-order asymptotic
performance.

1. Introduction. The practical constraint of computational simplicity
strongly shaped early statistical methods, such as Pearson’s chi-squared test and
the analysis of variance. The chi-squared statistic and the F-statistic are alge-
braically straightforward. The usual asymptotic null distribution of each statis-
tic can be tabulated conveniently because it does not depend on unknown
nuisance parameters whose values must be estimated from the data. The present
availability of inexpensive high-speed computing has greatly widened the defini-
tion of a practical statistical procedure. In particular, bootstrap methods and
random search ideas have recently solved several statistical problems which are
difficult or intractable for purely analytical approaches.

Characteristic of the new results is their reliance on relatively abstract
triangular array asymptotics combined with intensive computing. Here are
several examples:

(i) Affinely invariant confidence sets for an unknown multivariate distribu-
tion [Beran and Millar (1986)]. The bootstrap aspect of this solution has been
extended recently by Gaenssler (1986), Romano (1988) and by Sheehy and
Wellner (1986). The random search aspect was foreshadowed in Pyke’s (1984)
discussion of tests for a simple multivariate hypothesis.

(ii) Bootstrap and random search implementations of minimum Kolmogorov
distance estimates and tests [Beran (1986) and Beran and Millar (1987)]. This
approach resolves the problem of calculating such minimum distance estimates
and the problem of obtaining asymptotically valid critical values for such tests
[see Durbin (1973) and Pollard (1980) for discussions of the difficulties in a purely
analytical approach].
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(iii) Iterated bootstrap methods for making second and higher order refine-
ments to critical values for tests and confidence sets [Hall (1986) and Beran
(1987)]. Semianalytical approximations to such procedures have been discussed
by Abramovitch and Singh (1985) and by Efron (1987).

Underlying these examples is the concept of stochastic procedure, defined by
Beran and Millar (1987). A stochastic procedure is a randomized estimate, test or
confidence set with two properties:

(a) It is a function of the original sample and of one or more artificially
constructed auxiliary samples.

(b) It becomes nearly nonrandomized when the auxiliary samples are in-
creased in size.

An early example is a test for a simple hypothesis whose critical value is
obtained by Monte Carlo approximation of the appropriate null distribution [cf.
Dwass (1957)]. The three examples cites above are more elaborate instances of
stochastic procedures. In general, stochastic procedures are randomized proce-
dures, in the sense of decision theory, which arise as useful approximations to
numerically intractable statistical procedures.

This paper studies minimum distance goodness-of-fit tests for multivariate
parametric models. Let ® be an open subset of R? and let {P,: 6 € ©®) be a
parametric family of probabilities on R9. Let x, = (x,,..., x,,) be a sample of
independent identically distributed R?%-valued random variables whose common
distribution P is unknown. The null hypothesis to be tested asserts that P is
some Fy , where 6, is unknown. Let P, = P (x,, -) denote the empirical measure
which assigns probability n~! to each of the observations in the sample. Define
the minimum distance statistic for the model {P,} to be

(1.1) T, = inf supn'/?|B,(A) - By(A)],
A

where the infimum is over ® and the supremum is over all half-spaces of RY.

When q = 1, the statistic 7, reduces to the minimum Kolmogorov distance
statistic on the real line. For general g, the statistic 7, has two attractive
properties: It is invariant under affine transformations of the data whenever the
family {P;: § € O} is so invariant; and it makes good sense as a test statistic
whether the distribution P of the data is discrete, absolutely continuous or
singular with respect to Lebesgue measure.

The asymptotic null distribution of T, can be characterized abstractly by
using asymptotic theory for the empirical process on a Vapnik—Cervonenkis class
and a standard analysis of minimum distance statistics (see Section 2.1). In
general, the cdf of this limit law is intractable and does not yield usable critical
values for testing purposes. Moreover, the test statistic 7, itself is difficult to
evaluate when the dimension of parameter space or sample space exceeds 1.

This paper introduces a stochastic goodness-of-fit which approximates the
minimum distance test just described in a natural way. The construction of the
new test in Section 2.2 involves stochastic approximations to both the supremum
and infimum in (1.1) and a suitable bootstrap algorithm for the critical value.
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The stochastic test is numerically feasible, yet has the same first-order asymp-
totics as the motivating minimum distance test under the null hypothesis and
under contiguous alternatives. The main results are described in Section 2.3. The
theoretical success of the stochastic test as an approximation to the minimum
distance test depends crucially upon the finite-dimensionality of both parameter
space and sample space.

2. The tests and their asymptotics. To provide necessary background for
the stochastic goodness-of-fit test, this section first reviews the asymptotic
theory, under the null hypothesis, of the test based on the minimum distance
statistic T,,. The definition and asymptotic theory of the stochastic test follows
in Sections 2.2 and 2.3.

2.1. Asymptotics of the minimum distance test. Let 1.1 and ( -, -) denote,
respectively, Euclidean norm and inner product in R?. Let S, = {s € R% |s| = 1}
be the unit sphere in R%. Any half-space A of R? can be parametrized as

(2.1) A(s,t) = {x € R%: (s, x) < t},

where (s, t) € S, X R. Let L, be the set of all bounded measurable functions on
S, X R, metrized by the supremum norm || - |. The o¢-algebra in L is that
generated by open balls. Any probability P on R? can be regarded as an element
of L, by identifying P with the function which maps (s,¢) € S, X R into
P[A(s, t)]. With this 1-1 identification, the minimum distance statistic T,
defined in (1.1) can be written as

(2.2) T, = infn'/?| B, - B|.

The measurability of expressions such as (2.2) follows from two facts: The
supremum defining the norm || -|| can be replaced by a supremum over a
countable number of half-spaces [cf. Section 2 of Beran and Millar (1986)] and P,
will be assumed || - ||-continuous as a function of 6.

The null hypothesis to be tested asserts that the actual distribution P of each
observation is some F;, where 6, is an unknown element of ©, which is an open
subset of R? The asymptotic null distribution of T, can be characterized as
follows: Let Wy = (W, (s, t):(s,t) € S, X R} be a Gaussian process with sample
paths in L_, mean 0 and covariance function

(23)  Cov[Wy(s,8), W, (s', )] = B (A N A) ~ R (A)P,(4),

where A, A’ stand for A(s,t), A(s’, t'), respectively. Suppose the parametric
model satisfies the following conditions, for every 4, € ©:

AsSUMPTION Al. Identifiability. For every positive c,

(2.4) inf{||P; — B, ||: 16 — 65| > ¢} > 0.
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AssuMPTION A2. Norm differentiability. There exists a bounded vector
function mg,, mapping S, X R into R?, such that

(2.5) 1By = By, = (mq,, 8 = 65}l = (16 = 6]).

AssuMPTION A3. Nonsingularity. There exists a positive constant C such
that

(2.6) lI{mg, udll 2 Clu|

for every vector u € R

AssUMPTION A4. Quarter-space continuity. For every pair of half-spaces A
and A’ of RY,

(2.7) Jim |B(A 0 A) - B(ANA) =0.
—%

PROPOSITION 2.1. Let {6, € ©} be any sequence such that {n'/*(6, — 6,)} is
bounded. Suppose Assumptions Al1-A4 hold. Then

(2'8) L(Tn'PO':) = H(oo):
where
(2.9) H(6,) = L{inf|[W,, ~ (mq,, w)l)).

ProOOF. Indeed, under Assumption A4,
(2.10) L[/ B, - B, )\Pr| = L(W,,)

as random elements of L_. This triangular array central limit theorem for the
empirical process on half-spaces follows from Le Cam (1983); see Section 4 of
Beran and Millar (1986) for further details. Consequently, by the analysis in
Pollard (1980) of minimum distance test statistics and by (2.10),

T ir;fn1/2||13n — Py + (my, 0 — 6,)]| + 0,(1)

n

(2.11) itgf||n1/2(13n — P, ) + n/Xmg,0 — 6,)]| + 0,(1)

= H(6,)
under {F;'}. O

In general, Proposition 2.1 does not directly yield usable critical values for a
goodness-of-fit test based on T),. Let §, = ,(x,) be a consistent estimate of 6.
The corresponding estimated asymptotic null distribution H(6,) is rarely
tractable, either analytically or numerically.

A more promising bootstrap approach to the critical values of 7, runs as
follows. Let
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The bootstrap estimate for the null distribution of 7}, is defined to be H,(§,).
The corresponding bootstrap test based on T, is

1, ifT,>c,a),
0, otherwise,

(2.13) by = {

where c,(a) is the largest (1 — a)th quantile of H, (é ). Let p be any metric
which metrizes weak convergence on the real line. Introduce the following
additional assumption on the estimates {4, }:

AssUMPTION Ab. Root-n consistency. If {f, € ©} is any sequence such that
{n'/%(8, — 6;)} is bounded, then {L{n'/%(f, — 6,)|P;"]} is tight.

PRrROPOSITION 2.2. Fix a. Suppose the assumptions of Proposition 2.1 hold
together with A5. Then

(2.14) p[H (6,), H(8, )] — 0 in Pj-probability.

Suppose, in addition, that the (1 — a)th quantiles of H(6,) are all continuity
points of its cdf. Then

(2.15) lim E(¢,|P) =

n—oo

Proor. Indeed, conclusion (2.14) is immediate from Proposition 2.1, in view
of (2.12) and A5. Let c;(a) and c;;(a) denote the smallest and largest (1 — a)th
quantiles of H(§,), defined formally as in Section 2 of Beran (1986). Let F denote
the right-continuous cdf of H(6,). By a variant of Theorem 2.1 in the paper just
cited,

1 - Flcy(a)] < liminf E(4,|P;)
2.16
(2.16) < limsupE(<1>n|P0:) <1-"Fleca)-].
When the choice of «a is restricted, as in the second part of Proposition 2.2, then
(2.15) ensues.

Formula (2.15) says that E(¢,|P;")—the probability that ¢, rejects when the
null hypothesis is true—converges to a uniformly over balls of the form {6

0:10 — 6,] < n~'/%). In general, we cannot expect uniform convergence over

fixed compact subsets of ® unless we are able to strengthen the assumptions on
the parametric model and on the estimates {6,}. O

In principle, the bootstrap critical value ¢, (a) in (2.13) can be approximated
by Monte Carlo methods. However, the supremum over all half-spaces in the
definition (1.1) of T, is hard to evaluate when the dimension g exceeds 1. In
addition, the infimum over all © in (1.1) is difficult to find when the dimension d
is not small. The next section introduces stochastic approximations to the
supremum and infimum which reduce the computational burden substantially.
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2.2. The stochastic test. The motivating idea is to use three stochastic
approximations in calculating T:

(i) Approximate the supremum in (1.1) by the supremum over a set of
randomly chosen half-spaces.
(ii) Approximate the infimum over 8 in (1.1) by the minimum over a finite
number of randomly chosen values of 6.
(iii) For each value of @ chosen in step (ii), approximate P, in (1.1) by the
empirical measure of a sample of independent observations from that distribu-
tion F,.

The third step serves to approximate Py(A) for an arbitrary half-space A of
R9. Of course, step (iii) can be omitted when {P;: § € O} is a multivariate
normal family of distributions, since an analytical calculation is then available
for Py(A).

Let s, = (sy,..., ;) be a sample of j, iid random unit vectors, each uni-
formly distributed over S,. For every function f in L, define the stochastic
norm || - ||,, of f to be
(2.17) Ifll, = max sup|f(s;,¢).

1</<)n ¢

Let @ be a local random search sample of size k, in O, constructed as
follows. Suppose 0 =46 ) (x,,) is a root-n consistent estlmate of 0 Condltlonally
on the original sample X,, draw k, independent bootstrap samples x,...,x},
each of size n from the ﬁtted model Py . Let 0%, = 6,(x}) be the value of the
estimate of 6 recalculated from the kth bootstrap sample x} and set
(2.18) 0, =(6,,0%,....0%, ).

ny “n,12*

The adjective local used above to describe @ refers to the following property:
Under Py, the expected number of elements in 6, which fall within a ball of
radius O(n~1/2) about 0, tends to infinity whenever lim,,_, . &, = oo, regardless
of the dimension d of @ This concentration of @) on balls of radius O(n~'/?)
about 6, is important for computational efficiency because the infimum over 6 in
(2.2) is typically achieved within such a shrinking ball. For further discussion, see
Section 1 of Beran and Millar (1987).

For each 0 € (:) let 130 n be the empirical distribution of i, conditionally
independent (given x, and 6 ,.) identically dlstrlbuted random variables drawn
from P,. By constructlon the variables (x,,, {Po .. 0 € 6,)) and the variables
s, are independent.

The proposed stochastic approximation to the minimum distance statistic T,
is
(2.19) T, = max{nV?|B, - B, |I,:0€6,}.

The evaluation of T is straightforward, though computer-intensive, and is
usually much simpler than the evaluation of 7). The null distribution of T is
determined by the joint distribution, under the null hypothesis, of the or1g1na1

sample x, and of the auxiliary random variables s,, 6, and {f’o, L0e€06,).
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Nevertheless, under conditions to be described in the next section, the asymp-
totic null distribution of 7', coincides with that of T},. This result is a pleasant
surprise which depends crucially upon the finite-dimensionality of both the
parameter space © and of the sample space.

The entire construction of T can be bootstrapped, using the fitted null
hypothesis model, to yield asymptotlcally valid critical values for a goodness-of-fit
test. This direct approach, discussed more fully in Section 3.1, requires extensive
computing. The following conditional bootstrap algorithm is considerably more
practical and still gives asymptotically valid critical values.

Given the original sample x,, draw m, new conditionally independent boot-
strap samples y*,...,y,, each of size n, from the fitted model Fj . By construc-
tion, the {y*} and s, are independent and the {y,¥} and ®,,{ Po L~ 0€ 6 ,}) are
conditionally 1ndependent given x,. Keeping the auxiliary variables in S, G)n
and {Po .. 0 € ©,) unchanged, compute

(2.20) T,* = min{n'/?|B(v,*) = B ,ll,: 0 € &,

for 1 < m < m,. The statistic T* is simply a recalculation of T in which the
empirical dlstnbutlon P > (k) of the mth bootstrap sample replaces the empiri-
cal distribution P of the original sample. Nothing else is bootstrapped

The empirical dlstrlbutlon H, of the values {(T,*:1<m<m } is the pro-
posed conditional bootstrap estimate of the null distribution of T The corre-
sponding stochastic goodness-of-fit test is

(2.21)

n

- {1, it 7 >é(a),
0, otherwise,

where ¢,(«) is the largest (1 — a)th quantile of H The next section studies the
asymptotic behavior of ¢n under the null hypothe31s

2.3. Asymptotics of the stochastic test. 'This theme will be developed under
assumptions which differ somewhat from those in Section 2.1. When x, has
distribution P,, let @, denote the joint distribution of x, and of the aux1hary
variables s, ©, and {P,, : 8 € 6,). Recall the definition (2.17) of the stochastic
norm || - ”n

AssuMPTION B1. Stochastic 1dent1ﬁab111ty For every positive ¢ and ¢, there
exists positive § such that

(2.22) lim inf @, [inf{ B, — Py ll,:16 — 6| > c} >8] 21—
AssuMPTION B2. Stochastic norm differentiability. There exists a bounded

continuous vector function m,, mapping S, X R into R, such that the follow-
ing assertion holds: For every p031t1ve g, there exists positive & such that

@23) lim Q[ swp (1P~ By = (may# = &)ll/10 = ) | = 1.

|0 —6,| <8
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AssUMPTION B3. Stochastic nonsingularity. There exists a sequence of posi-
tive random variables {C,} such that {L(C, !|@,)} is tight and

(224) “<m00’ u)”n = Cnlul

for every vector u € R%

AssumPTION B5. Regularity. If {§, € ©} is any sequence such that
(n'/%(6, — 6,)} is bounded then {L[n'/%(§, — 6,)|F3:1} converges weakly to a
distribution p, which does not depend on the sequence {f,}. Moreover,

pg(O) > 0 for every open set O in Re.

Note that Assumptions Bl and B2 are weaker than Al and A2 respectively,
apart from the continuity in B2, while B3 and B5 are stronger than A3 and A5
respectively. Other aspects of the assumptions are discussed in Section 3.3.
Propositions 2.3 and 2.4, which follow, are analogs for the stochastic test of the
earlier Propositions 2.1 and 2.2.

PROPOSITION 2.3. Let {6, € O} be any sequence such that {n'/*(8, — 6,)) is
bounded. Suppose Assumptions B1-B3 and A4 and B5 hold and

lim i,/[nlog(k,)] = «

(2.25) . .

lim j, = lim k&, = .
Then
(2'26) L(Tlen) = H(00)a

where H(8,) is defined by (2.9).

The proof of this result is deferred to Section 4. Note that the rate of
convergence condition (2.25) on i,, j, and k, does not depend on either the
dimension g of the sample space or on the dimension d of the parameter space.
In particular, the sizes of the auxiliary samples needed to construct T do not
explode as g or d increases. This property of T —of great practical importance
—is remarkable. It is ultimately a consequence of two facts: the careful design of
the random searches over S, and over ® and the finiteness of both ¢ and d.
Nonstochastic grid searches over S, and © require search sample sizes which
grow exponentially in ¢ and d to obtain a result like Proposition 2.3. When ¢
and d are both infinite, Proposition 2.3 can fail (work in progress by the
authors).

When x,, has distribution Fy’, let @;, denote the joint distribution of x,, of

9, and {R, . 0€6,) and of the bootstrap samples {(vil<m<m,).

PROPOSITION 2.4. Fix a. Suppose the assumptions of Proposition 2.3 hold
and

(2.27) lim m, = oo.

n— oo
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Then
(2.28) o[H,, H(6,)] = 0 in Q/-probability.

Suppose, in addition, that the (1 — a)th quantiles of H(6,) are all continuity
points of its cdf. Then

(2.29) lim E($,1Q;) =

n— oo

Thus, the probability that the stochastic minimum distance test q§n rejects
when the null hypothesis is true converges to a, uniformly over balls of the form
(6 € ©:10 — 6, < n~2c}. It is straightforward to extend Propositions 2.2 and
2.4 to contiguous local alternatives. Suppose that the sequence of distributions
for x,, does not belong to the parametric model { P;*: § € ©} but is contiguous to
{Fy.}. Then, the asymptotic powers of ¢, and g, under these alternatives
coincide. This conclusion follows readily from the proofs of Propositions 2.2 and
2.4, the latter to be found in Section 4.

3. Extensions. This section sketches several possible extensions of the sta-
tistical methods and theory presented in Section 2. Proofs are omitted since they
resemble those in Section 4 or are straightforward.

3.1. The unconditional bootstrap. The triangular array aspect of Proposition
2.3 justifies a more elaborate bootstrap algorithm for approximating the null
distribution of the stochastic test statistic 7). Unlike the conditional bootstrap
algorithm described in Section 2.2, the alternative algorithm bootstraps the
entire construction of T, as follows:

Given the original sample x,, draw m,, conditionally independent bootstrap
samples y*, ...,y , each of size n, from the fitted model P; . Treating the mth
bootstrap sample y,,’:‘ as the orlgxnal data set, recalculate the stochastic test
statistic, as described in Section 2.2, to obtain the value T,*,. For each m, this
process involves several operations: drawing a new search sample s, of size j,
from the uniform distribution on S, constructing a new search sample @ by
parametrically bootstrapping  (¥.¥) k, times and recalculating a new empmcal
approximation Pa . to P, for each 6 in ©,.

Let H, denote the joint empirical distribution of the (Tr:1<m<m,).
Let Q) , denote the distribution, when L(x,) = P, of x,, and of all the
aux111ary samples generated by the unconditional bootstrap algorithm just de-
scribed. It follows from Proposition 2.3, Assumption B5 on §, and Theorem 2.1 of
Beran and Millar (1987) that

(3.1) o[H, ., H(6,)] - 0 in Q) ,-probability.

Let <f>n, , denote the stochastic test which rejects the null hypothesis whenever f‘n
exceeds the largest (1 — a)th quantile of the unconditional bootstrap distribution
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ﬁn,l' Then
(3.2) nli_{lgo E(q;nllerzl) =a,

provided « is chosen as in Proposition 2.4.

The unconditional bootstrap test <f>n | Tequires considerably more computing
than does the conditional bootstrap test ¢, of Section 2.2. It is not known
whether ¢n . has any theoretical superiority over ¢n

3.2. Other goodness-of-fit tests. An alternative to the minimum distance
statistic T, defined in (2.2) is the simpler statistic

(3'3) Rn = n1/2||f’n - Pé,,”’

which compares the fitted parametric model F; with the empirical distribution
of the sample. Suppose Assumptions A2, A4 and B5 hold and the joint distribu-
tions {L{(W,, n'/*(6, — 6,))|P;:]} converge weakly to L{(W,, Y, )], where W, =
n'/%(P, — P, ) and (Y, ) = g, as in B5. Then

L(R,|B),) = L(IW,, = (mq,, %))

= K(00),

(3.4)

A more computable stochastic approximation to R, is the statistic
(35) Rn = nl/QHP - pé n”n’
where the stochastic norm || I, and the empirical measure P,; _, are defined as
in Section 2.1. Note that R is obtained formally from T by setting @
(6.} In this special case, @, reduces to the joint distribution of x ,, s, and Pgm "
when the distribution of x,, is Fy’. Suppose
lim i, /n = oo,

n—oo

(3.6) .
lim j, = oo.

Under assqmptions B2, A4, B5 and the joint weak convergence assumption on
(W, n'/%(8, — 6,))} stated in the previous paragraph,

(3.7) L(R,1Q,) = K(8,).

The method of Section 2.2, with @n = {0;}, yields asymptotically valid condi-
tional bootstrap critical values for I;’f

Intermediate between R ‘and T in computational complexity, are test
statistics of the same form as T in whlch the cardinality %, of the search sample
@ is held fixed as n increases. The statistic R corresponds to the special case
ko = 1. Under assumptions nearly identical to those of the preceding paragraph,

(3.8) L(71Q,) = L(4,),
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where
89 L&) = Limin(IW, ~ g, Yl min, W, = mo, o, + ¥, )|

and Y, , (Y .} are iid with distribution , of Assumption B5. The power of the
various tests described in this paper needs further study.

3.3. Comments on the assumptions. In what follows, P, = Py(s,t) is the
probability assigned to the half-space A(s, ¢). This function P, is viewed as an
element of L.

Sufficient conditions for A2. Suppose that for every (s, t) € S, X R and for
every parameter value 6 in a neighborhood of 6,, P, has gradient vector
mg = my(s, t) whose components are continuous in 8. Suppose, in addition, that
these components {m, ;:1 <j < d} are norm-continuous at 6, in the sense

(3.10) 011:1;0||m0,j —my, =0, 1<j<d,

and that the {m, } are elements of L_. Then A2 holds, by an argument resting
on the fundamental theorem of calculus.

Sufficient condition for A3. Suppose the components {my,, ,} are linearly
independent functions of (s, ¢). Then A3 holds. Indeed,

i : dl — . d _
(3.11) inf{|(mq,, u)/|ul: u € R?} = inf{|(mq,, u)|: u € RY, Ju| = 1)
=c>0,
because the infimum is attained on the compact unit ball in R?.

Alternatives to B1 and B2. For proving Proposition 2.3, the extrema over 6
in Assumptions Bl and B2 can be further restricted to values of § € @,. This
follows by inspection of the proof in Section 4. Alternatively, B1 can be replaced
by a rate condition on %,

(3.12) lim k,P;(1, - 6, > ¢) =0

for every positive ¢ whenever {n'/%(8, — ,)} is bounded. In typical examples,
the condition

(3.13) lim [log(%,)/n] =0

implies (3.12), by a large deviations argument.

Indeed, to establish (4.7) in the proof of Proposition 2.3, it suffices to verify
that, under (3.12), the probability of there being at least one 8 @n such that
|6 — 6] > c tends to zero as k,, increases. By the definition of 6,

Qn[max{|0 — 0 >c}:0€ @n]

(3.14) ] R
< Q,,[ max 0%, — 6, > c/2] + P16, - 6, > c/2].
1<k<k, "
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In view of B5, it is enough to show that the first term on the right side of (3.14)
tends to 0 as n increases. Evidently,

Q| max 1624~ 6, > o/21x,| = By max 1024~ 6, > c/20x,

n

(3.15) =1-[1-Bp(18x, - 6 > c/2x,)] ™

< (R PR[I6F, — 6,1 > c/2Ix,] ],

which tends to 0 in probability under B5 and (3.12). Hence the unconditional
probability also converges to 0.

The support of pg in B5. Under Hajek’s (1970) regularity conditions on the
model {F;: § € O}, the limit distribution p, in B5 can be written as the
convolution of a proper normal distribution with another, possibly degenerate,

distribution. In these circumstances, p4, has full support in RY, as required by
the last part of B5.

4. Proofs. This section proves Propositions 2.3 and 2.4. The argument
extends the methods of Wolfowitz (1957), Pollard (1980) and others. Complica-
tions arise because both the norm | - ||,, and the search set (:)n are random and
because ©, is not an open set.

PROOF OF PROPOSITION 2.3. By Alexander’s (1984) inequality for the empiri-
cal process on a Vapnik—Cervonenkis class, there exist positive constants C,, C,
such that

(4.1) Pplil21 By, , — Pill = A] < Cexp(—C,N)
for every 6 € ©. Consequently, for every positive A,
Q. [sup{n'/?|B; , — Py: 6 € 8,} > 7]
< (k, + 1)C, exp| — Cy(i,/n)N] > 0,
because of condition (2.25). Thus
4.3) inf(n'/%|B, - B, ;0 € 0,} = inf(n'/?|B, — By||,: 0 € 6,) + 0n(1).

(4.2)

Let V, = nV/%(B, — P, ). The distributions {L(||V,,||,|Q,)} are tight because of
Assumption B2, the conditions on {6,} and the weak convergence of
{(nV* B, — P, )} under @, to the Gaussian process Wj . See Proposition 1 in
Beran and Millar (1986) for the last point.

Let ©, .= {6 € ©,:|6 — 6| < c}, where c is positive and finite. Since

inf{||B, ~ Pjll,:0 € 6,- 6, )
(4.4) . R
= inf{|[B = Bylln: 0 € 8, = 6, o} = 72V,

it follows from Bl and the preceding paragraph that the left side of (4.4) is
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bounded away from 0 in @, -probability. On the other hand, since
(45)  lim Q,[inf{12, ~ Bll,: 6 €8, } <P~ Byll.| = 1,
it follows from B2 and B5 that
(4.6) inf{||B, - Byll,: 0 € 6, .} = 0g(1).
Thus, for every positive c,
(4.7) lim Q.[inf{IB, - Pyll,: 6 € 8,} = inf{|B, - BJ|,:0€ 6, }] =1.
For the positive random variables {C,} in Assumption B3, let
(48) N,= {00, — B, — (mg,0— 0], <27'Clo — 6]}
For every positive 6, let
(49) r(8) = sup{||Py — Py, — (mq,, 0 = 60)Il,./10 — b|: 16 — 6 < 8},
S(8) ={0€0©:10 -0, <8}.
Because of B2, for every positive ¢ there exists positive § such that
Q.[N, > 8(8) N 8,] = @,[r(8) =27C,]
(4.10) > Q,[r.(8) <ee<27'C,]
= @.[crt < (20) 7] + 0(1).
Hence, for every positive v, there exists positive § such that
(4.11) Q.[N,28(8)n®,]=1-v
for every n sufficiently large. It follows from (4.11) and (4.7) that
lim Q,[inf{|IB, — By,: 0 € 6,}
(4.12) n—e
= inf{||2, - Pll,: 0 € N,}] = 1.
Let A, = n'/?||P; — Py | and let
(4.13) d, = max{C; '(4||V,|l,, + 24,), n/*6, — 6/} .

In view of B2, B3 and B5 and the properties of V,, {L(d,|@Q,)} is tight. If
e N,
1B, = Pyll, = [Kmg,, 8 = o)l = 27'C,10 — 6| = 1By = Byl
(4.14)
> 27'C,0 = 6| — n” V2Vl

the second inequality following from B3. Thus, from (4.14) and the definition
(4.13),

(4.15) 1B, = Pyll, > 1B, = Py I
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whenever § € N, N S(n~'/%d,). Note that, by (4.11),

(4.16) lim Q,[N,> S(n"V%4,) N 6,] =1.

In view of (4.15) and (4.13),

inf{|| B, - Pll,: 6 € N,} = inf{||B, — P||,: 6 € N,n S(n""%d,,)}
> int{||B, — Pyl|,: 0 € S(n""%d,) N 6,}.

From this and (4.16) it follows that

lim Q,[inf{||B, — P||,: § € N,,}
(418)  no

(4.17)

= inf{||B, - P,: 0 € S(n"V%d,) n 6,}] = 1.
Combining (4.12) with (4.18) yields
inf(n'/2||B, — P||,: 6 € 0,)
(419) = inf{nY¥ B, - Pjll,: 0 € S(n"'/%d,) N 6,} + 0y(1)
= inf{||V, = n¥/%mq,, 0 — 6)||,: 0 € S(n"/%d,) N ©,} + 0g(1),

the second line using B2. A
Next, observe that if § € S(n"/%d,) N O, then in view of B3, B2 and (4.13),

IV, = n/%mg, 8 — Op)ll,,

> n'?|(mg, 8 = 6p)1l, = IVall

> C,n'%0 — 6| — |V,
(4200 > 3IVill, +24,

> |V, = n/*(Bs, = By,)lln

= [V, = n/Xmg,, 6, = 61, + 0g(1)

> inf{||Vn — n%my,0 — 6,):0 € S(n""%d,) N @n} + 0g(1).
Hence, from (4.3), (4.19) and (4.20)

T, = inf{||V, = n¥/%m,, 0 — 8,)]l,: 6 € ©,} + 0g(1)
(4.22) = inf{||W, - n1/2<m00,é — 01,0 €6,} +0y(1),
where W, = n'/%(P, — P,).
Let

(4.22) G,(u) =W, = (mg, u|l,

and let o, be the empirical measure of the recentered search sample
(n*?%(6 — 6,): 6 € ©,}). Evidently, from (4.21),

(4.23) T = essﬁinf G,(u) + 0g(1).

n
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Since 6, is the empirical measure of the {n'/*(6}, — b,) +n%6, - 6,):1 <
J <J,) and the value n'/%(8, — 0), it follows from B5 and Theorem 2.1 of Beran
and Millar (1987) that p($,, v) — 0 in @,-probability, where v is the distribution
Ig, * lo, Moreover, (W, } converges weakly under {Q} to Wy, as random elements
of L.

Let y be the uniform distribution on S, and let

G(u) = esssup sup| W, — (mg,, ).
A t

By Wichura (1970), there exist versions of {W,,#,} and of W, such that
W, — W, || - 0 as. and 6, > v as. For these versions, the corresponding
versions of {G,(u)} and {G(u)} converge uniformly on compact balls in R4
Moreover, the distribution » has full support in R? because of B5. Thus, by
Lemma 4.1 of Beran and Millar (1987), it follows that

(4.24) essinfG,(u) - infG(u) as.,

for the special versions.
Observe that

(4.25) L[ir;fG(u)] = L[ir;f”WoO— (mg, ],

because of (2.14) and (2.15) in Beran and Millar (1986) and the assumptions on
mg, in B2. Proposition 2.3 follows from (4.23), (4.24) and (4.25). O

PROOF OF PROPOSITION 2.4. Let {v,} be probabilities on R¢ which converge
weakly to a probability v, which has full support on R Let {w, € L, } converge
in norm to w € L. Let z,, = (2,,..., 2, ) be the first j, elements of a sequence
{z;€ 8,}.

Define
A (w,,0,,2,) = essinf sup sup|w,(z;,t)

U 1<j<j, t

(4.26)
_nl/z(PonJrn*V?u - Pon)(zj’ t).
The essential infimum is taken over u € R% Let
(4.27) gn(amvmzn) = L[An(m’vn’zn)lﬂ:]:
where W, is the empirical process n'/*( P, — P; ) defined in Section 2.
Slightly modified, the argument for Proposition 2.3 establishes

A, (w,,v,,s,) 2o essinf esssup sup|w — (mg, u)|
(4.28) v A ¢ :
= A(w, v), say,
where A is the uniform distribution on S,. By the discussion at the end of the
proof for Proposition 2.3, L[ A(W,, v)] coincides with H(6,). It follows from
(4.28) and the independence of {W,}, {s,}, by Lemma 2.2(ii) of Beran and Millar
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(1987), that
(4.29) o[£,.(6,,v,,8,), H(6,)] = 0 in @,-probability.

Let {9,}, v be as in the proof of Proposition 2.3. It follows from (4.29) and the
independence of {(4,,4%,)},{s,}, by Lemma 2.2(i) of Beran and Millar (1987),
that

(4.30) p[¢.(6,,6,,8,), H(8,)] = 0 in Q,-probability.

The conditional bootstrap distribution ﬁn is the empirical distribution of a
random sample of size m, drawn from the random measure £,(6,,%,,s,).
Equation (2.28) is immediate from (4.30) and Theorem 2.1 of Beran and Millar
(1987). Proposition 2.4 follows from Proposition 2.3 and (2.28). O
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