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ON NONNEGATIVE QUADRATIC UNBIASED ESTIMABILITY OF
VARIANCE COMPONENTS
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Under a quadratic subspace condition, Pukelsheim (1981a) has proved
that for estimating linear combinations of variance components, either stan-
dard methods provide a nonnegative quadratic unbiased estimate or such an
estimate does not exist. This result is proved, replacing the quadratic subspace
condition by a weaker condition. This answers in the negative a question
raised by Pukelsheim (1981b).

1. Introduction. Recently Hartung (1981) and Pukelsheim (1981a) have
made significant contributions to the theory of nonnegative estimation of vari-
ance components. While Hartung has proposed nonnegative quadratic estimates
by dropping unbiasedness, Pukelsheim is concerned with nonnegative quadratic
unbiased estimability. The present paper is devoted to nonnegative quadratic
unbiased estimability and is inspired by Pukelsheim’s work.

Under a quadratic subspace condition, Pukelsheim (1981a) has proved that
for a linear combination of variance components, either the standard unbiased
estimate (which is the MINQUE given I,) is nonnegative or a nonnegative
quadratic unbiased estimate does not exist. In a subsequent paper, Pukelsheim
(1981b) raises the question of whether the quadratic subspace condition is
necessary for such a property to hold. The present paper answers this question
in the negative and obtains a necessary and sufficient condition for such a
property to hold. The reader is referred to Seely (1970) for additional background
information.

2. Nonnegative quadratic unbiased estimation. We use the same no-
tations as in Pukelsheim (1981a). Let the random R"-vector Y have mean vector
X and dispersion matrix Y/, 7;V;, where 8 is a vector of unknown parameters,
7= (11, 79, - -+, 7,)’ is the unknown vector of variance components, X is a known
matrix and Vy, Vs, - .., V, are known real symmetric n X n matrices. The above
model is denoted as Y ~ (X8, ¥, 7;V;). We assume

T€G={t=(t,t -+, t) | tV;is nnd}.
Let
M=1-X(X'X)"X' and Sy = ((tr MV.MV)))G,j=1,2, -+, 2).
Then q't = q,71 + @272 + - - - + ¢,7, has a quadratic unbiased estimate iff g lies
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in the range of Sy. Thus if A = (Ay, Az, ---, X,)’ is such that Sy\ = g, then a
quadratic unbiased estimate of ¢’ is Y'(X\;MV;M)Y. This is the MINQUE
(given I,) of q’7 and is referred to as the standard unbiased estimate by
Pukelsheim (1981a).

We now introduce the following definition.

DEFINITION. Let % be a subspace of real symmetric n X n matrices. Let P
be the projector onto % orthogonal with respect to the trace inner product
(A, B) = tr A’B. We say that % preserves nonnegative definiteness if P(A) is
nnd whenever A is nnd.

Lemma 2 in Pukelsheim (1981a) states that a quadratic subspace preserves
nonnegative definiteness. The author has not been able to obtain a necessary
and sufficient condition (in a verifiable form) for a subspace to preserve non-
negative definiteness, other than the following Lemma 1. Lemma 2 proved below
gives a sufficient condition which is also necessary in some special cases.

LEMMA 1. For a real symmetric matrix B, let B, and B_ denote the positive
and negative parts of B respectively. Then a subspace % of real symmetric matrices
preserves nonnegative definiteness iff B, € % whenever B € .

PrOOF. Let B, € & whenever B € 4. Then from the proof of Lemma 2 of
Pukelsheim (1981a) it follows that % preserves nonnegative definiteness. Con-
versely let % preserve nonnegative definiteness and let B € %, Then B, — B_ =
B = P(B) = P(B:) — P(B_). Hence | B, |* + | B-||*> = | P(B,)||*> + || P(B)|* -
2 tr P(B,)P(B-) < | P(B,)||? + || P(B-) ||? (since P(B.) and P(B_) are nnd). The
above inequality implies B, = P(B.) or equivalently B, € 4.0

LEMMA 2. Let Abe a k-dimensional subspace of real symmetric n X n matrices
and let Uy, Us, - - -, U, be an orthonormal basis for % (with respect to the trace
inner product). Let Y%, U; ® Uj is nnd, then % preserves nonnegative definiteness.
The above condition is also necessary if 4 is a commutative subspace or if k = 2.

PROOF. Let A be nnd. We have P(A) = Y%, (tr AU;)U;. Thus % preserves
nonnegative definiteness iff %, (tr AU;)U; is nnd for every A nnd iff ¥, (¢’ Uja) U;
is nnd for every.real vector a iff ¥, (a’Uj;a)(b’U;b) = 0 for all real vectors a and b
iff
1) (@ ®b)ZU;®Uj)@a®b) =0

for all real vectors a and b, which is satisfied if ¥, U; ® U; is nnd. If Zis a
commutative subspace, then the U;’s could be reduced to diagonal matrices using
the same orthogonal matrix; it then follows that (1) holds for all real vectors a
and b iff 3} U; ® U; is nnd. If & preserves nonnegative definiteness, then from
Lemma 1 it follows that 4 has a basis consisting of nnd matrices. When & = 2,
let B, and B, form such a basis for % Then there exists a nonsingular matrix T
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such that T'B;T and T'B.,T are diagonal (see Theorem 6.2.3 in Rao and Mitra,
1971). Hence T''BT is diagonal for every B € 4. Thus when k = 2, (1) holds for
allaand biff ¥, U;® U;is nnd. O

REMARK. From the proof of Lemma 2, it is clear that if there exists a
nonsingular matrix T such that T''U;T is diagonal fori =1, 2, ..., k, then the
condition given in Lemma 2 is also necessary. That this is not true in general
can be seen from the following example. Let % be the vector space of all real 2
X 2 symmetric matrices. Then clearly % preserves nonnegative definiteness.
Consider the orthonormal basis

(1 o0 {0 o0 _ [0 1/v2
U“(o 0)’ U2‘<0 1) and U‘*“(l/«/i 0 )

Then (1) holds for all a and b, but ¥%-; U; ® Uj is not nnd.

For the model Y ~ (X8, ¥1;V;), let &y be the linear span of MV, M, ...,
MV,M and let Gy = {t = (t1, bz, - -+, t,)" | Y t; MV;M is nnd}. Let £ be the set
of all R “vectors g such that ¢’7 has a nonnegative quadratic unbiased estimator.
Pukelsheim (1981a) has observed that ¥ D Sy(Gy) and if %y is an /-
dimensional quadratic subspace, then = Sy (Gy), i.e. ¢’ has a nonnegative
quadratic unbiased estimate iff its standard unbiased estimate is nonnegative.
That this interesting observation is valid in a more general setup is the main
result of this paper, proved below.

THEOREM. . = Sy (Gu) iff By preserves nonnegative definiteness.

PROOF. Suppose %) preserves nonnegative definiteness. Let ¢ € < From
the proof of Theorem 1 in Pukelsheim (1981a), we get

g= (tr AMV\M, -.- ,tr AMV,M)’

for some nnd A. Then P(A) = ¥ tMV;M is nnd and tr AMVM =
Yititt MV.MV;M. Hence ¢ € Sy(Gy). Thus £ C Sy(Gu). Since the other
inclusion always holds, we get . = S)/(Gy). Conversely suppose .« = Sy (Gu).
Hence for any nnd A, there exists A € Gy satisfying (tr AMV.M, ...,
tr AMV,M)’" = Sy, which implies tr AMV,M = trV; ¥; \;MV;M. Writing
P(A) = Y t;MV;M, the above equality implies tr AMV.M = tr P(A)YMV.M =
tr V; 3; tMV,M = tr V; ¥ ; A\MV;M, which implies P(A) = ¥ t;MV,M =
Y; A;MV;M, which is nnd since A\ € Gy. Thus %y preserves nonnegative
definiteness. O

The proof of the “if” part of the theorem is also clear from the proof of
Theorem 2 in Pukelsheim (1981a) since the only condition used in his proof is
that %), preserves nonnegative definiteness. Unlike Pukelsheim (1981a), we have
not assumed that %), is /-dimensional.

In practice (for example when the dispersion matrix is ¢2V), there are sub-
spaces which preserve nonnegative definiteness, but may not be quadratic sub-
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spaces. Consider the model Y ~ (0, ¥/, ¢7V;), where V; = diag(0, 0, - - - , Vjo, 0,
-++,0), ie. V; has its jth diagonal block the nnd matrix V;, and zeros elsewhere.
Since V;V; is the null matrix (for i # j) the subspace % spanned by Vi, Vs, - -,
V. has an orthonormal basis consisting of nnd matrices. From Lemma 2 it follows
that % preserves nonnegative definiteness for any choice of the nnd matrices
Viej=1,2, ---, 7). However, Z need not be a quadratic subspace.
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