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ON KARLIN’S CONJECTURE FOR RANDOM REPLACEMENT
SAMPLING PLANS

By O. KRAFFT AND M. SCHAEFER

Technical University Aachen, West Germany

In 1974 Karlin introduced the concept of random replacement schemes
and conjectured that the componentwise monotonicity of the replacement
probabilities (condition A) is equivalent to a corresponding ordering of expec-
tations of all functions ¢ from a certain class % (condition B). In this paper
it is shown that A implies B for sample sizes n < 5 and—provided the sample
space is sufficiently large—also for n = 6. By a counterexample it is shown
that %k is not suitable for A being implied by B, i.e. one direction of Karlin’s
conjecture is disproved.

1. Introduction. Let & = {P,: § € 0} be a class of probability measures
on a measurable space, where 0 is an arbitrary parameter space, and let ¥ be a
class of real functions ¢, integrable w.r.t. & Then ¥ induces a partial ordering
on O, namely § <40’ iff E,¢ < E, ¢ for all ¢ € Z If, conversely, a partial
ordering <, on @ is given, it may be interesting to search for classes ¥ which
characterize this partial ordering in the sense above. If such a class exists, then
of course the set %, of all integrable ¢ such that E,;¢ < E, ¢ for all 6, 8’ € ©
with 0 <¢ 0’ is the largest of these classes.

In the context of sampling from finite populations, a beautiful result illustrat-
ing this correspondence is Theorem 12.A.1 in Marshall and Olkin (1979), cf. also
Snijders (1976). Here for a certain finite sample space Q an ordering for & by
dominance is characterized by the set of all Schur-convex functions on Q. Karlin
(1974) considered this problem for sampling plans with random replacement
which will be described here in the simplified—but for the present purposes
equivalent—form used by van Zwet (1983): Let n, N € N with 2 < n < N be
given andput 2= {1, ..., N}",0=[0,1]" .. For0 = (64, - - -, 0,,—1) € O let P, be
the following distribution: Consider an urn containing N balls numbered by
1, .-+, N. Take n drawings according to the following scheme:

(a) The first ball is drawn with equal probabilities. For 1 <i<n—1
(b1) replace with probability 6; the ith ball drawn and remove it with probability
1- 0,‘ and
(b2) draw the (i + 1)th ball with equal probabilities.

Then P; is the distribution of X = (X, ---, X,) where the random variable X;
represents the number x; of the ball resulting from the ith draw.
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Further, let %k denote the set of real functions ¢ on Q@ which are symmetric
in their arguments and satisfy

2¢(u’ v, Y3, ""yn) = ¢(u’ u, ys, ""yn) + ¢(U, v, Y3, ""yn)

(1)
forall (u,v,ys ---,y.) € Q.

Karlin conjectured that %% characterizes the componentwise real ordering on 0,
which will be denoted simply by 6 < 6’. As affirmation he proved a set of results
comparing an arbitrary 6 with the vectors 6, = (1, ---,1) and 6, = (0, - - -, 0), i.e.
with sampling with and without replacement, respectively. Van Zwet (1983)
showed, using conditional expectations and a discrete version of Jensen’s inequal-
ity, that for a certain class %7 different from %% one has

Ey<E,W Y0EO, VyE %.

In this paper we discuss for the random replacement scheme described above the
general case § < 0’ and show that provided 2 <n <5, N=n, and forn =6, N
sufficiently large, it holds that

2) 0,0’ €0, 0<0' implies Eyp <Ep¢ V¢ € %k.

Furthermore, we give an example showing that the set % of all ¢ on  which are
symmetric in their arguments is not large enough to separate the elements of ©;
in particular the converse of (2) does not hold.

For that purpose we will show first that the class

(3) %={d):Q—)IREIquSSEo'qSVO,B'69,050'}

characterizes the componentwise real ordering on © and derive sufficient condi-
tions for ¢ € %, if ¢ € %,. We then prove that these conditions are satisfied
for ¢ € %% under the assumptions on n and N specified above.

In the sequel we write A° for the complement of a set A, YA, denotes the
union of the pairwise disjoint sets A,,, A\B = A N B°and | A | is the cardinality
of A. The usual conventions for sums and products over empty index sets are
adopted. For v = (vy, -+, v,) E R?P and m = (m,, -- -, m,) € N? we will denote
by ([vy, mi], - - -, [Up, m,]) the vector whose first m; components are v;, the next
ms components are v, etc.

2. Tne class %, and partial results on Karlin’s conjecture. Let Q, P,,
0 € 0 correspond to the random replacement model as described in Section 1.
ForICIy={1,---,n—1}, 0 € O define

B(I)=f{x=(x1, -+, %) EQx; #x; Vj> 1, Vi€ I},
b(I) = | B(I)|, f1(6) = [lier (1 — 6:) Il er 0;.

With these notations one obtains

(5) Po(X = x) = Yy, f1(0) (b)) L py(x).

(5) can easily be proved by introducing independent zero-one variables Y;
indicating whether the ith ball is removed or replaced and calculating the

4



1530 0. KRAFFT AND M. SCHAEFER

probabilities Po(X = x; Y; =0,i € I; Y; = 1, j € I°) as conditional probabilities.
(Thus i € I iff the ith ball drawn is removed.) b(I) can be calculated in the

following way:
LetI={i, - -, }#3,1<iz<...<i.Then

J'|Q.|=N", if I=0,
(6) b(I) = 4 N(N — 1)*™7, i IT= (i,
1N YN = 2)"“[]s=2 (N + 1 — p)>"%-1 otherwise.

The following theorem shows that we can restrict attention to the extremal
points of the unit cube, i.e. 8 € @, = {0, 1}"*. Therefore, when discussing E,¢ as
a function of 6 € 0, we will write

(7 Eop = a,(I) = (b(I))™! Txenw) ¢(x),
using the 1-1-correspondence between 6 € 0, and I C I, given by
I=Io= {i610!0i=0}.
Note that for 6 € 0,
_ o _ J®UI))Y, if x € B(IL),
8) Py(X = x) = {O, " otherwise.
THEOREM 1. Let for I C Iy, ¢: @ - R, a,(I) as in (7), %, as in (3),
.% = {(b Q- RlEo(b = Eold) V(), 0’ € @0, 0 < 0,’

and
“={¢p: 2> R|a,(IU {i}) = a,(I) VIC I, Vi € I°}.

Then %, = % = %..

PrOOF. It is easy to see that %, C %, = %. In order to show that %, C %,
let iy € I, and J = Iy)\{io}. Then, using (5), we get for all § € %,

9

a6;

d
Ey¢p = Y1, ay(1) %0, f1(0)
ic iy
= Yics (ITier 1 = 6)) T1jent 0;)(as(I) — ay(I U {io})) = 0,

hence ¢ € %.0

EXAMPLE 1. As an example for a function ¢ which is in %, but not in %x
take forn=N=3

_ 1B Th x, if the x; are distinct,
S(xr, 22, 25) = {median (1, X2, x3), oOtherwise,

cf. Marshall and Olkin (1979, page 339). Here we have E;¢ = 2 for all § € 0,
hence ¢ € %; but

¢(1,1,3) + ¢(2,2,3) =3 < 2¢(1, 2, 3) = 4.
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THEOREM 2. Ey¢ < E, ¢ forall ¢ € % implies 0 < 0’.
PROOF. Let iy € I,. It is sufficient to demonstrate the existence of a ¢ € %,
with Eq¢ = 0,, for all 6 € 0. If
) ays(I) =1 —1,(ip) for all I,
then
Eop = X1 f1(0)ay(I) = Triger f1(0) = 0,

and ¢ € % by Theorem 1. Hence it is sufficient to demonstrate the existence of
a ¢ satisfying (9). Define

Iy = {i € Io: x; # x; for all j > i}.
Then Q = Y; {x:I, = I}, so that for § € 0,
ay(ls) = X; Lxein=ny $(X)Po(X = X).
Choose ¢(x) = ¢(I) on {x: I, = I}. Then
ay(lo) = X1 Y(I) Py(Ix = I).
The constants ¥ (I) are then uniquely determined by
(10) SivPy(Ix=1) =1 —1,(i) forall 0 € 0.

In fact, if the I are arranged in an order stronger than the inclusion order, from
Py(Ix D I,) =1 and Py(Ix = I;) > 0, 6 € O,, it follows that (10) defines a system
of linear equations in y(I) with a coefficient matrix in triangular form and
positive diagonal elements. [0

For discussing whether %% C %, it is appropriate to find first a representation
of a4 (I) tailored to the symmetry of ¢. To this end the following definitions are
useful: For 1 =p <nlet

Ky={k=(ky, -+, k) ENP:YP  ki=nky=--- 2k}, K=3I,K,,
K- {1, ...,n}
m{k—)p, if k€K,
and
G(p, N) = {y = (1, -+, ¥p) € {1, -++, N}P: y; # y, for i # j}.

Define «: Q@ — K as the symmetric function for which «([y1, Bil, - - -, [¥Vp, Bol) =
(ky, -+ -, kp) for all k € K,,, y € G(p, N). Let further, for k € K and I C I,, with

p = n(k),
®(k) = Xyecom o[y, kil, - -+, [¥ps ko)),
Ak, I ={xe«'(k}) N{l, ---,p}" x;#x; Vj>1i, Vi € I},
ak, I) = (p!)7'|A(k, D)].
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Note that the numbers a(k, I) do not depend on N and that
(11) alk, I) =0 for all k with (k) = |I].

LEMMA 1. For ¢ € %, one has
(a) b(DNeay(I) = Ykek alk, I)®(k),

(b) b(I) = Zkex (1r(k))!<7rf\l,{)>a(k, 1).

PROOF. Since ¢ is symmetric, one has with D(k, I) = B(I) N « ({k})
Yxenten 8(X) = a(k, ) Tyecwa.m S, kil -+, [p, kol
= a(k, I)®(k). ’
From (8) one therefore obtains for § € 0, and I = I, that
ay(I) = E4¢ = Tkex Txepa,n ¢(X)Po(X = X)
= (b(I))™" Tkek Txenan $(X)
= (b(I))™" Tkek alk, )@ (k).
This is (a), and implies (b) taking ¢ = 1.0
EXAMPLE 2. We show by a counterexample that the set %, is not large

enough to separate the elements of ©; in particular, one direction of Karlin’s
conjecture is disproved: Let for3 <n <N

6’ =(',0,---,0), 6”=(0,1,0, ---,0).
Obviously, the distributions of x(X) under P, and P,~ are both concentrated on
K, ,UK,= {k(n—l)’ k(n)}
where
(12) k™Y =(21],[1,n-2D), k™ =(1,n).
Straightforward calculations show that
Py (k(X) = k") =90"(n — 1)/N

and
Pp(k(X) = k") = (n - 2)/(N - 1).

With 8’ = N(n — 2)(N — 1) }(n — 1)7! both distributions are identical; hence
Eol(b = Eo"¢ for all ¢ E .%,

but 8’ and 8” are not comparable.

Under the assumption that a set of combinatorial inequalities—only depending
on n and N—holds, Lemma 1 enables us to give a sufficient condition for
¢ € %, to be in %, which depends on ¢ only through ®(k).
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THEOREM 3. Assume that
vk, I, i) = a(k, )b(I U {i}) — a(k, T U {i})b(I) = 0
forall ICI, i€Il) k€K, 1=p=n-2.
If ¢ € %, and—with k™9, k™ as in (12)—
min<p<,-2Minkek, (N — p)!®(k) = (N — n + 1)!$(k"?)
= (N — n)!®(k™),

(13)

(14)
then ¢ € %.

ProoF. It follows from
y(k™, I i) =b(I U {i}) — b(I) <0
and Lemma 1(b) that
0=>b(Ib U {i}) —b(IU {i})b(I)

=ZQZEmMCSﬂkLQ+MCDﬂwﬁLQ

< ¥5=i Tkek, p!(g)'y(k, I i).

With Lemma 1(a) and assumption (14) this yields
b(Ib(I U {iYas(I) — as(I U {i})]

= er;=1 ZkGKP ‘Y(ky Iy l)é(k)

—_ !
z@&WWZszmﬁa%%#men
£ ("™, T, )3 (k™)
—_ !
> B(k™) $ior Suer, NN e 1,0) = 0,
N =p)!

This shows that ¢ € %; so that, by Theorem 1, ¢ € %;,.0
The next two lemmas will be useful for asymptotic considerations.

LEMMA 2. LetICIlp,k€E€K,,1<p=n-—1,besuch that a(k, I) > 0. Then
alk,I)>a(k, TU {i}) foralli € I°.

ProoF. Since A(k, I U {i}) C A(Kk, I), one has to demonstrate the existence
ofan x € A(k, I) N (A(k, I U {i}))°. Let z € A(k, I) be arbitrary and assume
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z € Ak, IU {i}). Because of 7(k) =n —1andi € IU {i} we have
I={'"€l:3j>i withz; =2} # O

and i & I7. Let i; = max I;. Then i # i; and there is an i, > i; with z;, = z;,.
Putting x = ¢(z) where ¢ is the permutation on {1, - - ., n} with

o(i) =1, o(iy)) =i, o(j)=j forall otherj, if i,>1,
a(i+1)=1i, o)) =i+ 1, o(j)=j forall otherj, if i, =1,
a(@) =i, o(i+1)=1i5 o@)=1i o) =1i+1 o()=j

for all other j, if i, </,

by a cumbersome, but easy calculation one verifies that in all three cases
x€AKk,I)Nn(Ak, TU {}))-.0 .

LEMMA 3. Let n = 3. Then there exists Ny = Ny(n) = n such that y(Kk, I, i)
=0forallICIy,i€l,k € Yr=3K,, N= N,.

ProoF. It suffices to consider those k € ¥ 2% K, for which a(k, I) > 0. By
Lemma 2 we then have 1 > a(k, I U {i})/a(k, I). Now b(I U {i}) and b(I) are
polynomials in N of degree n, cf. (6), the coefficient of N” being one in both
cases. Therefore, there exists N; = N,(/, i, k) = n such that

ak, Db(I U {i})— a(k, T U {i})b(I) = y(k, I,i) =0 forall N= N,
For N, = max;,;xN1(Z, i, k) we then get the assertion. []

THEOREM 4.
(@) If2<=n=<5and N = n, then £xC %.
(b) To each n = 6 there exists Ny = No(n) such that $x C % for all N = N.

PrROOF. By Theorem 2.1 in Karlin (1974), cf. also Marshall and Olkin (1979),

Chapter 12. A, the function

—_— !
Esw ¢ = | Glr(k), N)| & (k) = ‘N—A;’,ﬂ‘l (k)

is Schur-convex on K for all ¢ € %%. For k", k™ as in (12) we have
k™" <k™V <k forallk € ¥r2? K,

where “<” is the majorization order. This shows that for ¢ € £ the inequalities

(14) in Theorem 3 are satisfied.
For 2 = n < 5 one can directly verify (13): Because of (11) nothing remains to

prove, if n =2 or n = 3.
For n = 4 = N we only have to show that



ON A CONJECTURE OF KARLIN 1535

and for n = 5 < N three types of inequalities have to be checked, namely
a((5 = p, p), D)b({i}) = a((5 — p, p), {i}) (D),
p=12 1=si<4,
a((4 = p, p, 1), D)b({i}) = a((4 — p, p, 1), {i})b(D),
p=12 1=i=</4,

a((4 = P Py 1)’ {ll})b({ll’ L2}) = a((4 = P P 1)’ {ily l2’)b({ll})r
p=12; 1=<i,#i,<4.

The calculation of a(k, I), b(I) and the verification of the inequalities can be left
to the reader.
Part (b) follows with the help of Lemma 3. 0

REMARK. For n = 6 some of the inequalities (13) do not hold. By more
refined arguments we could however show that the assertion of Theorem 4(a)
holds true also for n = 6 and n = 7. These arguments are too messy to be
reproduced here; nevertheless, they gave us the feeling that there exist pairs
(n, N) for which $x & %,.

Acknowledgement. We thank a referee for an extremely careful reading
of our original manuscript and substantial simplifications of our proofs. In
particular, the idea for the proof of Lemma 2 is entirely due to the referee.

REFERENCES

KARLIN, S. (1974). Inequalities for symmetric sampling plans I. Ann. Statist. 2 1065-1094.

MARSHALL, A. W. and OLKIN, I. (1979). Inequalities: Theory of Majorization and Its Applications.
Academic, New York.

SNIJDERS, T. (1976). An ordering of probability distributions on a partially ordered outcome space.
Report TW—171, Dept. of Mathematics, Univ. Groningen.

VAN ZWET, W. R. (1983). An inequality for random replacement sampling plans. In: Festschrift for
E. L. Lehmann 441-448. P. J. Bickel, K. A. Doksum and J. L. Hodges, Jr., editors.
Wardsworth, Belmont.

TECHNICAL UNIVERSITY AACHEN

INSTITUT FUR STATISTIK UND
WIRTSCHAFTSMATHEMATIK

WULLNERSTRASSE 3

5100 AACHEN

WEST GERMANY



