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ALL ADMISSIBLE LINEAR ESTIMATORS OF THE MEAN OF A
GAUSSIAN DISTRIBUTION ON A HILBERT SPACE?

BY Avi MANDELBAUM

Cornell University

We consider linear estimators for the mean 6 of a Gaussian distribution
N(@, C) on a Hilbert space, when the covariance operator C is known. It was
argued in a previous work that the natural class of linear estimators is the
class of measurable linear transformations. Using the simplest quadratic loss
we prove that the linear estimator L is admissible if and only if the operator
C~V2LC"? is Hilbert-Schmidt, self-adjoint, its eigenvalues are all between 0
and 1 and two are equal to 1 at the most. As an application of the general
theory, we investigate some linear estimators for the drift function of a
Brownian motion. .

1. Introduction.

1.1. Let X = (X, ---, Xx)’ be a Gaussian random vector with unknown
mean 6 = (0;, ---, 6,)’ and a known invertible covariance matrix C. Consider
the problem of estimating § under the loss

(1.1) L@, a) =0 —a)’C'(0 — a).
Let L be a k X k real matrix. It follows from the results of Cohen [4] that

1.1.A, The linear estimator LX is admissible if and only if the matrix
C™'2LC"? is symmetric, its eigenvalues are all between 0 and 1 with equality at
1 for at most two of them.

Now consider the problem of estimating the mean # of a Gaussian random
vector X with values in an infinite dimensional separable Hilbert space. For
example, X could be a Brownian motion with drift function 6 and the loss (1.1)
takes the form [ [6(¢) — a’(t)]?dt. (This special case actually inspired our study
and is treated in Section 6). In a previous paper [11] it was argued that the
natural class of linear estimators for 0 is the class of measurable linear transfor-
mations on the Hilbert space. Our main result (Theorem 1 in Subsection 2.3) is
the infinite dimensional analogue of 1.1.A. The necessity part is proved
along the lines of [4]. The sufficiency is proved by applying Blyth’s method
to an equivalent problem in which one estimates infinite number of means
(6, 05, - - -) from independent normal observations (X, X, - -).

1.2. The main difference between the finite dimensional problem and our
infinite dimensional model is that in the latter we consider a parameter space
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LINEAR ESTIMATORS OF THE MEAN 1449

which is much smaller than the sample space. Another difference is that admis-
sibility depends on the quadratic loss being used. For example, under the loss
function analogue to (1.1), the usual estimator §(X) = X is trivially inadmissible
since its risk function is identically infinite. Admissibility with respect to the

analogue loss of
(1.2) L@,a)=(0—a)’ (0 — a)

is harder to settle. We do not know, for example, if the estimators 6(X) =
aX, 0 < a < 1 are admissible in the infinite dimensional model (see Subsections

7.2, 7.3 for further discussion).

1.3. In Section 2 we state our problem in decision theoretic terms and we
formulate the main theorem. The necessity part of the main theorem is proved
in Section 3 and the sufficiency in Section 5. In Section 4 the general model is
reduced to an equivalent discrete model. The sufficiency proof of the main
theorem actually follows from a more general admissibility result in the discrete
set up (Theorem 3) which has little to do with the specific Gaussian setting. The
general results are applied in Section 6 to investigate some linear estimators for
the drift function of a Brownian motion. Fmally, we discuss some generalizations
and open problems in Section 7.

1.4. The structure of measurable linear transformations with respect to
Gaussian measure was given in [11], as well as the facts about Gaussian measures
on a Hilbert space which we use without proof. Additional helpful references are
[8] and [12]. In the Hilbert space set up, admissibility of Bayes estimators under
bounded subconvex loss function was considered in Le Cam [9]. The technique
of reducing the general model to the one with a countable infinite number of
observations has been widely used (see Grenander [7], for example). In a decision
theoretic framework, the technique was used in Berger and Wolpert [1] who
considered James-Stein estimators for the mean function of a Gaussian process
under a quadratic weighted loss.

2. The main results.

2.1. The standard elements of an estimation problem are: a sample space &,
an action space <7, a parameter space 0, a parametrized set of possible distribu-
tions {Py, § € ©} and a loss function L(6, a), 6 € 0, a € o/ Let H be a separable
Hilbert space with inner product (-, -) and norm | - |. Denote by N (6, C) the
Gaussian distribution on H with mean 6 and covariance operator C. The operator
C:H — H must be linear compact operator which is positive semi-definite, self
adjoint and trace class. We study the problem of estimating 6§ when C is known.
Put in decision theoretic terms, both 2" and &7 equal H. The parameter space
O consists of all 8 for which the probability measure P, = N (6, C) is equivalent
to P, = N(0, C) (i.e., P, and P, have the same null sets). It is well known that

0 = CV(H),

where C'/? is the positive square root of the operator C. Assume that C is injective.
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Then the subspace @ is itself a Hilbert space with the norm
(2.1) lell =1C21|, 6€e@.
The loss function we consider (in analogue to (1.1)) is

L(ay a) = "0 - a"27 0’ a€ @7
(2.2)
= 0 €O, a€ HN.

A non-randomized estimator 6:H — H is a mapping which is measurable with
respect to the Borel o-algebra of H. An estimator is evaluated by its risk function

R(, 6) = J; L(8, é6(x))Py(dx).

It is possible to express R (6, 6) in terms of P, by

R(8, 6) = L L0, 6(x + 0))Py(dx).
Estimators are identified if they are equal almost surely with respect to
Py(Py — a.s.). An estimator 6’ is as good as § if
(2.3) R, 6’) = R(, 6), 6 €0.

An estimator 6’ is better than 4 if it is as good as 6 and if (2.3) holds with strict
inequality for at least one # € ©. An estimator is inadmissible if there exists a
better estimator, and it is admissible otherwise.

2.2. A linear estimator L is a nonrandomized estimator which is linear on a
measurable subspace D, with Py(D.) = 1. Using the terminology of [11], a
linear estimator is a measurable linear transformation on H with respect to
Py(Py — mlt), and Dy, is the domain of L. It is proved in [11] that L is a Py-mlt if
and only if the operator

T=LC":H—>H

is a linear operator which is Hilbert-Schmidt. Moreover, the Hilbert-Schmidt
norm of T, | T || us, is given by

(24) IITII%s=LleI2Po(dx),

and the formal relations
(Lx, h) = (TC Y%, h) = (C™2x, T*h), hE€ H

do have a rigorous interpretation (which is used in (3.9)).
2.3. The class of admissible linear estimators is described in the following

THEOREM 1. A linear estimator L is admissible under the loss (2.2) if and only
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if the operator
(2.5) A=C'"2LCYV*H—-H

is Hilbert-Schmidt, self-adjoint and its eigenvalues are all between 0 and 1 with
two eigenvalues at the most equal to 1.

REMARKS. (i) A Hilbert-Schmidt operator which is not self-adjoint need not
have eigenvalues. Hence, in proving necessity, one needs to establish the self-
adjointness of A before referring to eigenvalues.

(ii) When starting with a linear estimator for which A is not self-adjoint, the
proof of necessity for Theorem 1 exhibits a better estimator for which A is self-
adjoint.

(iii) If L is admissible, the operator T' = LCY? is trace-class and not only
Hilbert-Schmidt. This follows from the facts that a product of two Hilbert-
Schmidt operators is a trace class operator and that C'/? is Hilbert-Schmidt.

(iv) We shall prove that L(0) € © when L is admissible. Let

L(.):@ — 0
denote the restriction of L to ® and consider @ as a Hilbert space with the norm

(2.1). Then, Theorem 1 can be reformulated as

THEOREM 1’. A linear estimator is admissible if and only if the linear operator
Le has the same properties as the linear operator A in Theorem 1.

We prove Theorem 1 in Sections 3 and 5.
3. Proof of necessity in Theorem 1.

3.1. Let L be an admissible linear estimator with domain D;. First we prove
that A = C™Y2LC"? is Hilbert-Schmidt. Then we show that A is self-adjoint.
This guarantees that A has a spectral representation in terms of its eigenvalues
from which we conclude that 0 < A < I. Finally, we use a James-Stein estimator
to improve upon L if three or more eigenvalues equal 1.

LEMMA 3.1. If 6:H — H is admissible under the loss (2.2) then
3.1) 6(x) €O Py, — as.

PrROOF. There exist estimators with finite risk (for example, 6 (x) = 0). Hence,
R(8, 6) < « for some 6 € O implying that (3.1) holds P;-a.s. Since P, and P, are

equivalent, Lemma 3.1 follows.
We now prove that A is Hilbert-Schmidt. Let {e;} be an orthonormal basis of

eigenvectors of C, then
(3.2) 0={x€H,Y, (x, CV%;)? < }.

Applying Lemma 3.1 to L, the P, measure of the measurable subspace
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D; N L7Y(0) equals 1. A measurable subspace with positive measure must contain
0 (see [12], page 142, for example), thus L(0©) C 0. Equivalently,

T(H) C o,
which shows that A = C~2T is defined on all H. Let
Z,' = (Lx, C_l/zei), i = 1, 2, cee,

It follows from Lemma 3.1 and (3.2) that }; Z? < « Py-a.s. Furthermore Lemma
1in [11] shows that the variables Z; are jointly normal with mean 0 and

EZ} = | T*C %)%

LEMMA 3.2. Let Z,, Z,, - - - be jointly normal with mean 0. If ¥; Z? < o then
Z,‘ EZ? < oo, *

PrROOF. The vector Z = (Z,, Z,, ---) is a centered Gaussian vector with
values in the Hilbert space of square summable sequences. The sum Y; EZ? is
the trace of the covariance of Z, hence it is finite.

We now have

Zi (T*C_l/ze,-, T*C—llzei) < oo,

That is, T*C~2: H — H is Hilbert-Schmidt and A = (T*C~V2)* must be as well.
3.2. To show that A is self-adjoint and 0 < A < I, we construct (in Subsection

3.3) estimators that have these properties and are as good as L. Then we use the
following lemma due to Farrell (see [3]).

LEMMA 3.3. Let 6 be an admissible estimator. If 6’ is as good as 6, then 6’ = 6
Py-a.s.

PROOF. As in Lemma 3.1, the risk of 6’ is not identically infinite and
0’(x) €0 Pyp-a.s. If a” = Y2(a + a’), a’ # a, then
I6—a”l*><%6—al®>+%[6—a’l>

Hence the estimator 6”(x) = Y2[6(x) + 6’(x)] is better than & unless 6’ =

6 Po-a.s.
Let L = AC™'/2 be the Py-mlt associated with the Hilbert-Schmidt operator A.

Then L = C™2L and

R@O,L) = L | L(x + 6) — C~V/20|2P,(dx)

= L | L(x) |*Po(dx) — 2 f (Lx, (A = I)C™/%9)Py(dx)

+ | (A -1)C?9)2
Applying (2.4) to L, we obtain an expression for the risk function of a linear
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estimator L:
(3.3) RO, L)=[Alks + 1(A-1)C%0|% 6€@.

3.3. The absolute value of a bounded linear operator S:H — H is defined as
the self-adjoint operator

S| = (5*9)",

(there should be no confusion with | & |, h € H, since the absolute value is defined

for operators only).
The following lemma is proved in Subsection 3.5:

LEMMA 3.4. Let A be Hilbert-Schmidt. Then the operator
eA)=I1-|I-A]
is Hilbert-Schmidt, self-adjoint, $(A) < I and
(3.4) [P(A) s < | A s,
(3.5) |(P(A) —Dh|*=|(A-Dh|?>, hEH.
Define a Py-mlt L’ by |
L' = C"*(A)C™VA

Using the expression (3.3), we get from Lemma 3.4 that L’ is as good as L. By
Lemma 3.3, A = ¢#(A), proving that A is self-adjoint and A < I. We prove the
following in Subsection 3.6:

LEMMA 3.5. Let A be self-adjoint and Hilbert-Schmidt. Then

Vv(A) =|A|
is Hilbert-Schmidt, y(A) = 0
(3.6) I¥(A) Ifs = | A llfs,
3.7 |W(@A) —Dh|><|(A-Dh|%, h€EH

Define a Py-mlt L” by
' L” = Cl/2¢(A )C—-l/2.
By Lemma 3.5, L” is as good as L, hence A = (A ) which shows that A = 0.

3.4. We have proved that the operator A is Hilbert-Schmidt, self-adjoint and
0 < A < I. A Hilbert-Schmidt operator is compact. By the spectral theorem for
compact self-adjoint operators (see Gohberg and Goldberg [6], page 113, for
example), there exists an orthonormal system {a;} of eigenvectors of A and
corresponding real eigenvalues [«;} such that

(3.8) Ah = Y a;i(h, a;)a;, h € H.
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The eigenvalues {«;} are square summable (}; o? = ~IIA l4s) and 0 < o; < 1,
i=1,2, ---.Applying Lemma 1 of [11] to the Py-mlt L = AC~'2, we obtain that
Py-a.s.

(3.9 Lx = Y (Lx, a))a; = 3; (C™V%x, A*a;) = 3 ai(C™V2x, ai)a;
where
(3.10) {(C~V2x, h), h € H}

is the white noise over H constructed in Subsection 2.6 of [11]. The random
variables

Zi=C"x, ) i=12, ---
are iid N(0, 1) under the measure P,. The P,-mlt L = C"/2[ has the representation
Lx =Y a,Z,CVa;,
and
RO, L)=3:a?+ 3 (1 — a)%(C7, a;).

Now suppose that three or more of the eigenvalues equal 1. Without loss of
generality, let a; = az = a3 = 1. Define -

di(x) = (1 — (1/XR-1 2302, i=1,2,38,
0i(x) = aiZ;, i=4,5,....
The James-Stein estimator
(3.11) d(x) = 3 8;(x)C"2q;
is better than L (see Stein [15], for example), contradicting the admissibility of
L. This establishes the necessity part of Theorem 1.

REMARK. A representation of the form (3.11) is described in detail in Theo-
rem 2, Subsection 4.3 (see also Remark (i) following it). Explicit calculations of
the risk function in terms of this representation are given in the proof of Lemma
4.1 (see also [1]).

3.5. PROOF OF LEMMA 3.4. The equality (3.5) is a consequence of the relation

(®@A) -D*e@A)-nH=A-D"A-1).

To prove that ¢(A) is Hilbert-Schmidt, we note that the operator I + | — A |
has a bounded inverse (using the self-adjointness of | I — A |) and

PA)=[A*+A—-A*A] - [T+ |I-A|]™~

Since A* + A — A*A is Hilbert-Schmidt, ¥ (A) is as well.
We now prove (3.4). It suffices to show that

(T—-Ae,e)=(|I—-Ale;, e)

for some orthonormal basis {e;} in H. By modifying the proof of Theorem 1.4 in
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[8], one can write I — A as UT where U is an isometry on the range of T, T is of
the form

Th = Zi ti(h, ei)eiy h € H’

e; is an orthonormal basis in H and ¢; = 0. Since T is self-adjoint and positive
semi-definite, T' = (T*U*UT) "2 Now (3.12) reduces to

(UTe;, e;) < (Te;, ;)

which follows from the relations Te; = tie;, t; = 0, (Ue;, €;) < 1.

REMARK. Cohen’s proof does not extend directly to the infinite dimensional
situation because the right-hand side of the inequality (2.7) in [4] is infinite.
However, it is possible to show that the mapping ¥{(-) is continuous in the
Hilbert-Schmidt norm and to get (3.4) from [4] by a limiting argument.

3.6. PROOF OF LEMMA 3.5. If A is given by (3.8) then

V(A)h = 3 | a;| (h, a))a;, h € H.
The Hilbert-Schmidt norm of A is given by’
IAlEs = 3 of = [¥(A) |1,
which proves (3.6). Now
(Ah, h) = ¥ ai(h, a;)* < 3 | ai| (h, @) = (y(A)h, h), h € H,

which proves (3.7).

4. The discrete model.

4.1. Let X;, X;, --- be independent normal random variables where X; has
mean §; and variance 1. Assume that
(4.1) Y 07 < oo,

Consider the problem of estimating ¢ = (6,, 6., ---) using the observation
X?= (X1, X5, -+ ). The loss Ly(6% a°) in taking an action a® = (ay, a, - --) is
given by

Ly(6% a%) = 32, (6; — a))?, a’ € /2

= o0, otherwise,

where #2 is the space of the sequences which satisfy (4.1). An estimator 8¢ is
described by a sequence

84x%) = (8:(x9), 82(x%), +-+), x%= (%1, Xz, ---) E R®

where §;(-) are real-valued measurable functions with respect to the Kolmogorov
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o-algebra in R”. The risk of an estimator in the discrete problem will be denoted
by Rq(6% 69). An estimator §¢ that is admissible is called D-admissible.

4.2. One can regard the discrete model as a special case of the model de-
scribed in Subsection 2.1. Indeed, H can be taken as the space of sequences
= (hy, hg, - --) such that
|h|? =3 hhi < o,
where {\; > 0} is a fixed sequence of weights with }; \; < «. On H consider the
covariance operator
= (Mh1, Aehg, - ).

Then @ = CY*(H) = /% and ||0* = X%, 0%. For 6 € /2, let P, stand for the
Gaussian distribution on H with mean # and covariance C. Then P, is the
distribution of the sequence X;, X,, --- described at the beginning of Sub-
section 4.1, viewed as an H-valued Gauss1an vector. The loss (1. 1) is now
i (0: — ﬂt;)2 (while (1.2) is ¥; A:(0; — a:)?).

4.3. We now show that the discrete model is statistically isomorphic to the
model described in Subsection 2.1. Define a measurable mapping 2:H — R” by
(4.2) Dx = ((C™x, 1), (C™x, €3), - -+)
where {e;} is some orthonormal basis in H, and {(C~"/x, ;)} are as in (3.10).

THEOREM 2. An estimator 6¢ is D-admissible if and only if the estimator
6:H — H given by
(4.3) 8(x) = 3 8;(Dx)CV?%;
is admissible in the model described in Subsection 2.1.

REMARKS. (i) The basis {e;} is arbitrary. Hence, there are many discrete
models that are isomorphic to our original model. A special basis was used in

constructing the James-Stein estimator (3.11). This is further discussed in
Subsection 4.5.

(ii) We only prove that if 6¢ is D-admissible then & is admissible. We never
use the converse, the proof of which is very similar.

4.4. 'The proof of Theorem 2 is based on the following two lemmas.

LEMMA 4.1. If 6% and 6 are related by (4.3) and é° € /% a.s., then
(4.4) R(6, 6) = Ry(D9, 6%
where D:0 — 22 is the isometry onto /2 given by
Do = ((C™V%, e,), (C™V2, e5), ---).
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ProOF. The Hilbert space structure on #2 is the usual one. We have
I61%=1C"%0|* = X; (C7/%, )%,

hence D is an isometry, which is clearly onto. To prove (4.4), note that é(x) € ©
Py-a.s. and

L, 6(x)) = |6(x) — 0]*> = T; [(C™?5(x), &) — (C/%, e;)]?
= Ly(D6, 6% 2x))
which yields
R(9, 6) = JI; La(D8, 6*( Dx))Ps(dx)
(4.5)

.

= f Ly(De, 6%(x%)dPy c 971,
-
We now show that
(4.6) Pyo 971 = Hi N(;, 1)

where ¢ = (0, 0,, - - -) = Df. Then (4.4) will follow from (4.5) immediately.
Let (A1, A, - - -) be a sequence with finitely many \; nonzero, then

f _exp(Z; \ix;) dPy ° 971 = JI; exp(Z; \i(C™2x, e;))Py(dx)

= [I; exp(\i6; + (2)AP),

where the first equality follows from a change of variables and the last equality
holds since under P;, the random variables (C~2x, ¢;) are independent normal
with mean 6; and variance 1. The relation (4.7) identifies P,c 2! as the product
measure in (4.6), and Lemma 4.1 is established.

4.7

LEMMA 4.2. Let 6:H — H be an estimator such that 6 € ® P, — a.s. Then
there exists an estimator ¢ which is related to § by (4.3).

PRrROOF. Since C~Y/%5 is well defined Py-a.s. we have

C™%(x) = 3 (C725(x), e:)e:.
Hence
8(x) = 3 ei(x)C %,
where e;(x) = (C™V%5(x), e;):H — R! are measurable functions. The Borel
g-algebra in H is equal to the o-algebra generated by the mapping & defined in
(4.2). This guarantees the existence of measurable functions §;: R* — R! such
that e;(x) = 6;( Dx), thus (4.3) holds.

PROOF OF THEOREM 2. Assume that §¢ is admissible. As in the proof of
Lemma 3.1, there exists 6¢ such that R,(8¢, 6%) < « and §¢ € #? a.s. By Lemma
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4.1, R(9, 8) < where 0¢ = Dé. If 6 is inadmissible, there exists a 6 which is
better and also 6 € © Po-a.s. Let 6% be the estimator associated with ¢ via Lemma
4.2. By Lemma 4.1, §¢ is better than 69, contradicting the admissibility of §°.

4.5. We now describe the simplest discrete analogue of an admissible linear
estimator L. The operator A = C~/2LC"/2 has the spectral decomposition (3.8).
Without loss of generality we assume that {a;} is an orthonormal basis of H and
this basis will be used to construct the discrete estimator L¢. As in (3.9) and as
in the proof of Lemma 4.2:

ei(x) = (C™V%, A*a;) = oai(C™%x, ay),
which identifies 6¢ as
(48) 6d(xd) = (alxl, OlaXa, ** :).

From Theorems 1 and 2 we obtain

COROLLARY 4.3. If 6¢ is D-admissible, then
2,-a,2<00,05a,-5 ,i=1,2, ...

and two o; at the most are equal to 1.

The next section is devoted to establishing the converse to Corollary 4.3.

5. Proof of sufficiency in Theorem 1.

5.1. Let A:H — H be a linear operator which has the properties described in
Theorem 1. We prove that the Pp-mlt L = C?2AC™"2 is an admissible linear
estimator. By Theorem 2 and the discussion in Subsection 4.4 it is sufficient to

prove that

5.1.A. The estimator

(5.1) 8%(x) = (X1, -+ 5 Xy Aps1¥ne1, Chr2Xprz, *° )
is admissible if 6 = 0,1, 2,0 <o, <1fori=k+ 1, --- and T2p1 af < .
Consider, for example, the case k =0,0< ;< 1,i=1, 2, - - - . In analogy to the

finite dimensional situation, one may try to argue that ¢ is admissible, since it
is the unique Bayes estimator with respect to the prior G = [[Z, G;, where

(5.2) Gi= N, ai/(1 — o).

However, our parameter space is #2 and G is a probability measure on #” if and
only if ¥ a; < o (see Subsection 7.2 for further discussion). Thus, the argument
fails when ¥; a; = o and ¥; a? < o, but 8¢ is still admissible. We resolve this
difficulty with the aid of Blyth’s method and we actually obtain a more general
admissibility result for the discrete model (Theorem 3 in Subsection 5.4).

5.2. In the current and the following sections we describe some known results
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for the k-variate estimation problem discussed at the beginning of subsection 1.1
(see, for example, Brown [2] and [3]). Assume that
C=1

Denote by x* = (x;, - - -, x) vectors in R*. Let F(d8*) be a finite measure on R*
such that

(5.3) flxk) = f L exp(Tis (0:0; — ¥%07))F(d®) < 0, x* € R™
R
We call the function f(x*) the marginal density associated with F. The unique

Bayes estimator with respect to F, 67(x*), has the form
(5.4) or(x*) = V log f(x*).

5.3. Denote by R(6*, §) the risk function of the estimator
8(x%) = (01(xh), -+, Bu(xh)
and put

R(F, 6) = fh R(0}°, 8)F(d6*).

Let &(x*) be an estimator with finite risk at the point 0 (R(0, ) < ); then & is
admissible if and only if there exists a sequence of finite measures F"(d6*),
n=1,2, ... such that

5.2.A. The Bayes risk R(F", dpn) <oo,n=1,2, --..
5.2.B. The measure of the point set {0}, F*({0}) = 1,n=1,2, ... .

5.2.C. The sequence
(5.5) An = R(F", 8) — R(F", 6p») = f |8 — dpnll?f"dPy
mh

converges to 0, as n — . In (5.5), || - |? is the sum of squares, f*(x*) is the
marginal density associated with F and P,(dx*) is the k-variate normal distri-
bution with mean 0 and covariance I. The second equality in (5.5) is essentially
(1.3.2) of [2].

Generally, the method of proving admissibility by constructing a sequence of
measures that satisfy 5.2.A-C is referred to as Blyth’s method.

5.4. We now return to the infinte dimensional problem. All the results of
Section 5.3 extend to this situation (see [3]). Till the end of the current section,
only the discrete model is considered. To simplify notations, the sub(super)-
script “d” will be omitted. Consistent with the notation in (5.5), denote by P, (dx)
the product measure on R” under which the coordinates are iid standard normal.
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THEOREM 3. Let 6*(x*) = (8,(x%), ---, 6,(x*)) be admissible in the k-variate
model from Subsection 5.2. Let 6; be Bayes with respect to G; in the univariate
model,i=k+ 1,k + 2, - -. . The estimator 6 of the form

o(x) = (5k(xk)y Ok+1(Xk+1)y Opro(Xrs), -+ +)
is D-admissible if R(0, §) < « and
(5.6) s 8:i(xi) > 0 Py-as.,
where g; is the marginal density associated with G;.
PROOF. Blyth’s method is sufficient for admissibility. We construct a se-

quence of finite measures G on /2 such that 5.2.A-C hold. Let F" be measures
on R that satisfy 5.2.A-C applied to the k-variate admissible estimator 8*(x*).

Put
H™(d6*) = F™(d6%)/VA,
where A, is defined in 5.2.C. The prior G" on /2 is defined as
(57) G"(dﬂ) = 1,0,(d0) + H"(d0’°) H,’-’;"k_,,l G,(d0,) H;‘im,,+1 l,o,(d0,-)

where m, is a divergent sequence to be specified later and Iig(-) denotes a
measure on the appropriate probability space which assigns unit mass to 0. The
Bayes estimate with respect to G", d¢», can be calculated using (5.4). It is equal

to
5G"(x) = (1 - l/gn)(ait(xk)’ ] 5Z(xk)’ 5k+l(xk+l)’ M) 6m,,(xm,,)y O’ O, . ')

where
g"(x) = 1+ h™(x") [I7n., &),
h™ is the marginal density associated with H" and
(63(x"), -+, 07(x") = V log h"(z").
As in (5.5), we have
R(G", 8) — R(G™, é¢») = A, + B, + C,,

2
A, = fﬁ 2f=1 [5i(xk) - (1 - g—ln)a?(xk)] g" dP,,

2
B.= fw Zihn [5i(xi) - <1 - ;1,,)5.'(36.')] g" dP,,

where

Cn = Jl;‘” Z?=m,,+l [6i(xi) - 0]2gn dPO-

We proceed to show that for n — o, A, and B, converge to 0 as long as m, — ®
and that C, converges to 0 if m, diverges fast enough. The key fact is that as



LINEAR ESTIMATORS OF THE MEAN 1461

n — o and as m,, — o,
(5.8) g™(x) > o Py,— as.
Indeed, (5.8) follows from (5.6) and the relations
h"(x") = f1&")/VAn 2 F({0)/Vn 2 1/VBy =, n — .
Using the inequality (a + b)? < 2a® + 2b® and that g"” = 1, we have

A, = f Tk {(1_—>[5 (x% - 6"(xk)]+5;xk)]fg dP,

2
<2 f b <1 - l,,) [6:(x%) — 87 (x")]%g" dPo
R 8
+ 2 fgln 2{';1 6,~(xk)2 dPo = 2Dn + 2En
where

D, = Jl;m Tk [6:(x*) — 87 (x)]%8" dPo,

En=f [Z 15(xk)2+2 k+15(x;)]dP0

The measure [T%; 8;(x*)2 + Y5 r+1 8:(x:)%] dP, has total mass R(0, §) < . Since
1/g" < 1, from (5.8) and the dominated convergence theorem we conclude that
lim E, = 0. By the independence, under P,, of x* and {x;, i = k + 1}, by the
equality [g= J]7%+1 8:(x:) dP, = 1 and the inequality f*(x*) = 1, as n — ® we
have

D, —f TE [6:(x%) — 82(xM]2(1 + h") dPy < A, + YA, — 0.
Hence lim A, = 0 as long as n — o, m, — . Now
B, = f é S 8i(x)2 dPy < E, — 0, n— .
-

Finally,

C _f [21 =mp+1 6i(xi)2]gn(xm") dPO
(5.9)

= [1 + Hn(mk)] ° I:E?;m,,+1 f 6i(xi)2 dP0:|o
re
The infinite sum in (5.9) is a tail of a convergent series since R(0, §) < . It is

possible, therefore, to choose m,, ./ o fast enough so that lim C, = 0. Theorem 3
is now established.



1462 " A. MANDELBAUM

5.5. We now complete the sufficiency part of Theorem 1 by proving 5.1.A.
The estimator 6“(x*) = (x;, ---, x) is admissible if & = 1, 2 (Stein [14]).
The univariate estimator a;x, 0 < o; < 1 is Bayes with respect to the prior
N(0, a;/(1 — «;)). Hence 6 is of the form considered in Theorem 3. Since the risk
of 6 is equal to

R(0’ 6) = k + El?°=h+l [at2 + (1 - ai)zatZ], 0 € /2’
and it is finite, we may conclude the admissibility of & if we check (5.6). In our

case
gi(x;) = exp(*2 a;x? + Yo log (1 — o))

and (5.6) holds if ¥iZ.+; a? < ». Indeed, the random series 32441 ai(x? — 1)
converges Py-a.s. and the series Y .+; [a; + log(l — o;)] converges by the
inequalities

0=a+log(l —a)=—(a/(1 —a))? O0=<a<l,
and the fact that ¥, («;/(1 — o;))% <  if and only if 3; a? < . This concludes
the proof of sufficiently in Theorem 1.

6. Linear estimators for the mean of the Wiener measure.
6.1. Let H be the space of functions on [0, 1] which are square integrable

with respect to the Lebesgue measure. The Wiener measure P, on H is the
Gaussian measure with mean § € H and covariance C given by

1
Cx(s) =f (sAt)x(t)dt, 0<s=<1 x€EH.
0
The parameter space ® = C*%(H) consists of absolutely continuous functions 8

with 6(0) = 0 and derivative 8’(-) which is square integrable. The inner product
(-, +) in O induced by (2.1) is

1
0, 1) = J; 0’(¢)n’(t) dt, 0,7 €O,

and the loss (2.2) is

1
L@, a) = f [0°(t) —a’(t)])*dt, 6,a €O
(6.1) 0

= o0 €0, aec H\O.

The loss (6.1) is natural for engineering applications where the signal of interest
is 0’(t) (see also comment 3 at the end of [1]). In Section 4 of [11] it was shown
that the Py-mlt are the Wiener integrals

(6.2) Lx(s) = J(: Z(s, t) dx(t), x € H,

where 7 (-, -) is square integrable on [0, 1] X [0, 1]. The restriction of L to ©,
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Le, iS

(6.3) Leb(s) = J; Z(s, t)0’(t) dt, 6 € 0.

6.2. The admissible linear estimators are now described using Theorem 1’:

PROPOSITION 6.1. The linear estimator (6.2) is admissible under the loss (6.1)
if and only if the range of Lein (6.3) is contained in © and with respect to the inner
product (- , -), Le¢ is self-adjoint, Hilbert-Schmidt, 0 < Le¢ < I, and the eigenspace
corresponding to the eigenvalue 1 is of dimension two at the most.

Estimators of special importance are nonanticipative estimators. An estimator
0(x) is nonanticipative if 6(x)(t) depends only on {x(s), s < t}. The linear
estimator L in (6.2) is nonanticipative if and only if the kernel Z(s, t) is 0 for
t > s. In that case Lg cannot be self-adjoint unless # is 0. We have

COROLLARY 6.2. There are no admissible linear estimators which are nonan-
ticipative, except for the estimator 0.

REMARKS. (i) Both Corollary 6.2 and the following Corollary 6.3 illustrate
results which are basis free and which follow easily from the general theory.

.(ii) Corollary (6.2) is, of course, not surprising, since nonanticipative esti-
mators ignore so much information. It is of interest to investigate the problem
of admissibility for nonanticipative estimators within the class of nonanticipative

estimators.

6.3. The simplest class of linear estimators are linear interpolators. If the
path x is observed, the linear interpolator L with knots
0=t <th<.--<t, =1
interpolates linearly the points
0, 0), (t1, x(t1)), -+, (ta, x(2a)), (1, 2(tn))-
One can check that

(Lob, n) = Y [0(t:) — 0(ti-)ln(t:) — n(ti_l)];

ti— tim

hence Ly is self-adjoint and (Lg6, 6) = 0. From the inequality

t 2 &
[ h'(t) dt] < (t - t;-1) f h'(t)? dt

ti1

it follows that (Lef, 0) < (0, 6). We get 0 = Lo < I. The eigenspace correspond-
ing to eigenvalue 1 consists of all piecewise linear functions with knots at {0, ¢;,
.-+, t,} and it is of dimension n. From Proposition 6.1 we obtain the following



1464 A. MANDELBAUM

analogue of Stein’s phenomenon:

COROLLARY 6.3. A linear interpolator is admissible under the loss (6.1) if the
number of knots, n, is 1 or 2. It is inadmissible if n = 3.

7. Extensions and open problems.

7.1. We have investigated homogeneous linear estimators. A nonhomogeneous
linear estimator 6 is a measurable affine transformation with respect to P,, i.e., &
is of the form

(7.1) 6(x)=Lx+ h

where h € H and L is Py,-mlt (see Subsection 2.9 in {11]). In the univariate model,
the estimator ax + h is admissible if and only if 0 <= e <lora=1, h=0.1It
follows that

THEOREM 4. The nonhomogeneous linear estimator (7.1) is admissible under
the loss (2.2) if and only if L is admissible, h € © and C™'/?h is orthogonal to the
eigenspace corresponding to the eigenvalue 1 of the operator A in (2.5).

Only minor modifications in the proof of Theorem 1 are needed in order to
establish Theorem 4.

7.2. Cohen [4] proved that admissible linear estimators are generalized Bayes.
This is not so in the infinite dimensional model because of the restricted
parameter space. As discussed in Subsection 5.1, the estimator

(7.2)  6(x) = (uXy, aeXa, -++)y, 0<a; <1, o=, Y al<ow

is admissible. However, there exists no countably additive measure on @ = /%
with respect to which é is generalized Bayes. We believe that an admissible linear
estimator is still generalized Bayes but with respect to a cylinder measure on 0,
i.e., a finitely additive measure ® which is o-additive on finite dimensional
subspaces (see, for example, Kuo [8], page 92). In the finite dimensional case, a
measure F'is a generalized prior if (5.3) holds, and the generalized Bayes estimator
with respect to F, 8y, is defined as in (5.4). Something similar should hold in the
infinite dimensional case for a Gaussian cylinder measure F (and maybe non-
Gaussian as well).

7.3. In the finite dimensional case, an estimator which is admissible under
one quadratic loss function is admissible under all. This is not true in infinite
dimensions where an estimator may be admissible under some loss function and
have infinite risk under another. We illustrate this point in the discrete setup.
Consider the estimator §¢ in (4.8) and assume a weighted loss function

L@, a) = 3 M(0; — ai)? X 07 < oo,
where \;>0,i=1,2, --- . In the model of Section 5, \;,=1,i=1,2, --- and the
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estimator
x)=ax, xER"(0<a<l),
is trivially inadmissible having infinite risk. It has finite risk when Y; \; < oo, If
N=q, 0<g<l,

then ax is admissible when g is small enough, or equivalently, A\; converges to 0
fast enough. We do not know, for example, what holds when

N=1/%i=1,2 ...

More generally, we do not know if the estimator 6(x) = ax, x EH,0<a <1, is
admissible when the loss (2.2) is replaced by

L(ey a) = lo_alzy

where | - | is the norm in H.

7.4. In the finite dimensional case, a remarkable relation between estimators
with a bounded risk function and diffusion processes was established by Brown
[2]. This relation still holds for many estimators with unbounded risk (Srinivasan
[13]), in particular for linear estimators. The diffusions corresponding to admis-
sible linear estimators are the Ornstein-Uhlenbeck processes. Following formally
the steps in [2] makes us believe that the processes corresponding to the linear
estimators in infinite dimensions are the Ornstein-Uhlenbeck processes intro-
duced by Malliavin [10] (see also Gaveau [5]), but we have no rigorous justifica-

tion.

Acknowledgments. I am very grateful to L. Brown, E. Dynkin, R. Farrell,
L. Gross, J. Hwang and I. Johnstone for their help and encouragement. Comments
by the referee and the Associate Editor helped to improve the original version.

REFERENCES

[1] BERGER, J. and WOLPERT, R. (1982). Estimating the mean function of a Gaussian process and
the Stein effect. Proc. 3rd Purdue Symposium Statistical Decision Theory and Related
Topics 111, Vol. 2. Edited by S. Gupta and J. Berger.

[2] BrowN, L. D. (1971). Admissible estimators, recurrent diffusions and insoluble boundary value
problenis. Ann. Math. Statist. 42 855-903.

[3] BROWN, L. D. (1976). Lecture notes on statistical decision theory. Unpublished. Cornell
University, Ithaca, New York.

[4] COHEN, A. (1966). All admissible linear estimates of the mean vector. Ann. Math. Statist. 37
458-463.

[56] GAVEAU, B. (1981). Comptes rendus. Acad. Sc. Paris, t.293, serie I, 469-472.

[6] GOHBERG, I. and GOLDBERG, S. (1981). Basic Operator Theory. Birkhausen, Boston.

[7] GRENANDER, U. (1981). Abstract Inference. Wiley, New York.

[8] Kuo, H. (1975). Gaussian measures in Banach spaces. Lecture Notes in Mathematics 403.
Springer-Verlag, Berlin.

[9] LE CaM, L. (1983). Unpublished lecture notes. Berkeley University.

[10] MALLIAVIN, P. (1976). Stochastic calculus of variations and hypoelliptic operators. Proc. Symp.

Kyoto in Stochastic Differential Equations 195-265. Kinokuniya and Wiley, New York.



1466 A. MANDELBAUM

[11] MANDELBAUM, A. (1983). Linear estimators and measurable linear transformations on a Hilbert
space. Z. Wahrsch. verw. Gebiete 65 385-397.

[12] RozANovV, J. A. (1971). Infinite-dimensional Gaussian distribution. Trans. Proc. Steklov Instit.
Math. 108. American Mathematical Society.

[13] SRINIVASAN, C. (1978). Admissible generalized Bayes estimates and exterior boundary value
problems. Purdue University, Dept. of Statistics. Mimeograph series no. 78-2.

[14] STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 197-206.

[15] STEIN, C. (1981). Estimation of the parameters of a multivariate normal distribution—I.
Estimation of the means. Ann. Math. Statist. 9 1135-1151.

GRADUATE SCHOOL OF BUSINESS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

.



