The Annals of Statistics
1984, Vol. 12, No. 4, 1425-1433
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AUTOREGRESSIVE MODELS
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In Hannan (1980), some limiting properties of the order selection criteria,
AIC, BIC, and ¢(p, q) for modeling stationary time series were derived. In
this paper, we generalize these properties to the case in which the underlying
process follows a nonstationary autoregressive model. We show that BIC and
¢(p, 0) are weakly consistent. For the AIC, we prove that the asymptotic
distribution given by Shibata (1976) for the stationary autoregressive models
continues to hold.

1. Introduction. Consider a nonstationary or‘stationary autoregressive
model of order p,

(1.1) ®(B)X, = a
with ®(B) = U(B)¢(B) where ®(B)=1—-®B— ... —®,B?, U(B) =1 — U,B
- ... =U;B% and ¢(B) =1— ¢,B— ... — &,_4BP~ are polynomials in B, B is

the backshift operator such that BX; = X,_, and {a.} is a process of independent
and identically distributed continuous random variables with mean zero, variance
o2 and finite fourth moment. We shall require that all the zeros of U(B) are on
and those of ¢(B) are outside the unit circle. In mode (1.1), if U(B) = 1, the
process X, is stationary; otherwise, it is nonstationary. For the nonstationary
case, we further assume that the process X, starts at a finite time point ¢, with
fixed initial values. Note that when U(B) = (1 — B)?, model (1.1) reduces to the
well-known autoregressive integrated moving average, ARIMA(p — d, d, 0),
model of Box and Jenkins (1976).

In the literature, two main approaches have been proposed to estimate the
true order p of model (1.1). The first one is the so-called Box-Jenkins approach
which employs the sample autocorrelation and partial autocorrelation functions
as its identification statistics. Example references of this approach are Box and
Jenkins (1976), Gray, Kelley and Mclntire (1978), and Beguin, Gourieroux and
Monfort (1980). Following this school, Tsay and Tiao (1984) recently proposed
an extended sample autocorrelation function method to handle the nonstationary
models. The second approach is the information criterion approach. Akaike
(1969) is the first to advocate this information criterion procedure. Now there
are several order selection criteria available. In particular, those in Akaike (1974,
1977), Rissanen (1978), Schwarz (1978), Hannan and Quinn (1979), Hannan
(1980), and Hannan and Rissanen (1982) are of special interest. This approach
has advantages of being objective and automatic. However, all the criteria
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mentioned above were derived mainly for the stationary processes and their
performance in modeling nonstationary series is relatively unknown. Ozaki (1975)
perhaps is the first one to apply empirically Akaike’s information criterion (AIC)
to select possible orders for nonstationary series. The purpose of this paper,
therefore, is to study the limiting properties of some order selection criteria when
the underlying process follows a nonstationary autoregressive model.

The criteria considered are:

AIC(k) = log 6% + 2k/n, BIC(k) = log 6% + k log n/n
¢ (k, 0) = log 63 + ck loglog n/n, ¢ > 2,

where n is the number of observations and 4% is an estimate of ¢2 under the
assumption that X, is an AR(k) process. These are the three criteria considered
in Hannan (1980). The AIC is the well-known Akaike’s information criterion,
and ¢(k, 0) is proposed by Hannan and Quinn (1979). The BIC, on the other
hand, is introduced independently by Schwarz (1978), Akaike (1977), and Ris-
sanen (1978) using different derivations.

In this paper, we make use of some stochastic order properties of nonstationary
AR models shown in Tiao and Tsay (1983). These properties are useful in
handling nonstationary time series and will be discussed first. Then, we prove
that the asymptotic distribution of AIC given in Shibata (1976) for the station-
ary AR models continues to hold in the nonstationary situation. For BIC and
¢(k, 0) we show that they are weakly consistent in selecting the true order p of
model (1.1). For simplicity, we assume that p < P with P being a known positive
integer.

2. The main result. In this paper, 67, an estimate of the variance ¢? in
(1.1), is computed in the following manner. For k = 0, ¢ is the sample variance
of X,, i.e.,

78 =2 (X — X)*/(n - 1)

where X = n™' Y7 X, is the sample mean of X;. For a given positive integer
k (1 < k < P), 6% is the least squares residual variance of the usual AR(k)
regression, i.e.,

(2.1) 5% = Yre (X — Xy — -+ — ‘i’k(k)Xt—k}z/(n -k-1)

where @i(k)’s are the estimates of &, ’s obtained by minimizing the sum of
squares of e, in the autoregression

(2.2) Xi= X1+ -+ + B Xir t e, t=k+1,---,n

The existence of the above least squares estimates in the nonstationary case has
been shown in Lemma 2.3 of Tiao and Tsay (1983) provided that n is sufficiently
large.

For such estimates of o2, Shibata (1976) has derived the asymptotic distribu-
tion of AIC(k) under the assumptions that.a; is Gaussian and X, is stationary.
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The limiting probability is

(2.3) lim, . .Pr{p=k}=n(k—p,P—Fk), for 0<k=<P,

where 7(k — p, P — k) = 0 if k < p and it only depends on k — p and P — k if
p < k < P. This result has been extended to a more general setting in Hannan
(1980) where the Gaussian assumption is removed. For BIC and ¢ (k, 0), Hannan
and Quinn (1979) have shown that they are strongly consistent in modeling

stationary AR models.
Now, for the nonstationary AR models, we have the following result.

THEOREM 1. Suppose that X, is a nonstationary AR(p) process and satisfies
the conditions of Section 1, and that ¢ is estimated by the least squares method
mentioned above. Then, (i) for AIC(k), the limiting probability (2.3) continues to

hold, i.e.,
lim, .Pr{ip=k}=n(k—p,P—Fk), for 0<k=<P.
(ii) BIC(k) and ¢ (k, 0) are weakly consistent.

To prove this theorem, we use some properties of the nonstationary ARMA
models derived by Tiao and Tsay (1983). For a nonstationary AR process X, in
(1.1), let d be the true order of U(B) and m the highest multiplicity of the roots
of U(B).

LEMMA 1. Suppose that X, is a nonstationary AR process and satisfies the
conditions of Section 1. Then,
(i) Yk X7 =0p(n*"),
(i) (X1 XP) 7= 0p(n™?"),
(i) X?=0,(1).

ProOOF. The results (i) and (ii) are, respectively, Lemmas 2.4 and 2.6 of Tiao
and Tsay (1983) while (iii) can be easily proved by using the same techniques as
those of Lemma 2.4 mentioned above. 0

Using this lemma, we consider the AR(k) regression of X, in (2.2) in the
following two cases.

CASEl. 0=k=d.

In what follows, unless otherwise stated, the summation notation Y, is summing
over t from d + 1 to n.

LEMMA 2. Suppose that X, is a nonstationary AR process and satisfies the
conditions of Section 1. Then,

(l) 2 é%+1,t = z élze,h
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(i) ¢k=3Xék/(n—d—1)+0y(1),

where é;,(j = k or k + 1) is the least squares residual of autoregression of order j
in the form of (2.2), and &7 is defined in (2.1).

ProoOF. Part (i) is a well-known result in the least squares theory. For Part
(ii), we notice that the two quantities only differ in finitely many terms in the
beginning of the summation and Lemma 1 shows that the effect of such difference
is of order 0,(n7").0

Based on this lemma, it will be seen later that properties of the least squares
estimates of the following two autoregressions are of importance:

24) X,=®u-nXem1+ -+ + Poor@-1)Xi-g41 + €410, t=d+1,---,n

25 X, =& X1+ - + Py Xi-a+ e, t=d+1,---,n
Given the nonstationary polynomial U(B) of (1.1), we may factor it as
(2.6) U(B) = [ U.(B)
where U,(B) = 1 — Uy, B — --- — Uy B® are polynomials in B of degrees d,

such that (a) ¥ ™, d, =d, (b) U,(B) is a factor of U,+:(B), and (c) the multiplicity
of any root of U,(B) is 1. Also, let us define

2.7) X=X, Xju = U1(B)Xjory, for j=2, -, m+ 1.

The factorization (2.6) and the transformation (2.7) have been found useful in
deriving the stochastic orders of certain statistics of the nonstationary ARMA
models, see Tiao and Tsay (1983, page 862) for details. Note that for 1 <v = m,
m — v + 1 is the highest multiplicity of the nonstationary roots, roots with
modulus 1, of the series X,, and X,.+., = U(B)X, is a stationary AR(p — d)
process.

From (2.7), the least squares autoregressions (2.4) and (2.5) can, respectively,
be linearly transformed into

1 wd -
(2.8) Xo= 3 2% i Xo—i + DT 1imy Xmg—i + €1

(2.9) X =307 T8 vy Xowmi + T Yiem Xme—i + €d.

Let Yg,1 = (Xie-1, -+ Xl,t—dl, Xoi—1, -y X2,t—d2’ coey X1y o0y Xm,t—d,,,)' be
the vector of regressors of (2.9) and T'; be the corresponding vector of coefficients,
i.e., Ty is defined analogously to Y,,—; with v;., in the place of X, ;. Also, let
Y._1._1 be the vector of regressors of (2.8) obtained by deleting the last element
of Y,,_1 and n,4_, the corresponding vector of coefficients. Then, the least squares
normal equations of (2.8) and (2.9) can be written, respectively, as

(2.10) Aiing-1 = By
(2.11a) AT + AYa,m = Bn
(2.11b) Anl + 3 Xrted, Ydom) = 2 Xm—a,Xe,
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where
— — — — ~d
All - Z Yd—l,t—lY,d—l,t—la Bll - 2 Yd—l,t—IXty A12 - Aél - 2 Yd—l,t—IXm,t—dmy I‘((i—)l

denotes the first d — 1 elements of T'y, and the notation & of the parameter (or
vector) w denotes its least squares estimate.
From (2.10), (2.11) and the ordinary least squares theory, we have that

(212) Yo m [Z XEi-a, — Aat(An) Al = ¥ Xoi-a, Xi — Az,

(2.13) T = fla-1 — (A1) AsoFa, o)
(2.14) Yéi=Y X - Bfl’;ld—l =Y X? — B{i(A1)"'By,
(2.15) Yéii=Y éi1— ng(m)[z X2 i-a, — As(An) AL

In the above, (2.12) is obtainicu by premultiplying A, (A;;)™" to (2.11a) and then
subtracting the result from (2.11b), (2.13) follows from (2.10) and (2.11a), (2.14)
can be easily obtained by using the property ¥ é3-.; = ¥ é4-1,X:, and (2.15)
follows from (2.12)-(2.14).

LEMMA 3. Suppose that X, is a nonstationary autoregressive process and
satisfies the conditions of Section 1. Then, the least squares residual variances of
(2.4) and (2.5) are related by

2 élzi,t/z ég—l,t = 1 - ’;Itzim(m) + Op(]-)-
Clearly, this lemma is a generalization of equation (D.5) of Ramsey (1974,

page 1297), see also Shibata (1976, page 119). Now, to prove the above lemma
we only need to show, from (2.15), that

(2.16) (2 %_1)7 Y X% ima, — A2(An) TP A] = 1 + 0p(1).
To do this, we first establish the following two lemmas.
LEMMA 4. Let W, = Uy (n)Xm-a, + Xm+1,:. Then, the sum of squares of the
least squares residuals of the autoregression (2.8) can be written as
Y %1 =3 Wi — Rau(An)'Ryg,
where A, is defined in (2.10), and Ry = Rz = Y Ya_1,-1 W, with Yy_1,, also
defined in (2.10).
PROOF. From the transformation (2.7), we have that
X =30 T8 Ui Xop-i + Xmars
= Y05 Y& Ui Xoe-i + 220 Uiim Xomi-i + W
Substituting (2.17) into By; = ¥, Y4-1,-1X;, one can easily obtain that
(2.18) (A11)7'By = Ugor + (An) 'Ry,
where U,_, is defined analogously to 14—, of (2.10) with the true coefficient Ui,

(2.17)
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in the place of 7;.,. In (2.18), we use the property that for a nonsingular (d — 1)
X (d — 1) matrix H, H'H; = {; where H; is the ith column of H and ¢; is the ith
unit vector in the (d — 1)-dimensional Euclidean space.

By (2.14) and using (2.18) and (2.17) twice, we complete the proof. [

LEMMA 5. Suppose that X, is a nonstationary AR process and satisfies the
conditions of Section 1. Also, h is a fixed integer. Then,

(1) Z Xv,t m+1,t+h = Op(nm_u+1), for 1<sv= m,
(i) Y X, Xjwn= Op(n2m_v—j+2) for 1=v,j=m,
(iii) [¥ X?n,t—dm — Ao (An)TAR] T = 0,(n72).

Proor. Parts (i) and (ii) are Lemma 2.5 of.Tiao and Tsay (1983). For
Part (iii), we note that the stochastic orders of the inverse of the X’X-matrix,
A=YY,,.Y/, 1, of the autoregression (2.9) can readily be obtained from the
results of Tiao and Tsay (1983), see for example (3.8), (3.9), and Lemmas 2.7 and
3.2 there. In particular, the stochastic order of the (d, d)-th element of A™! is
0,(n7?). On the other hand, from the inverse identity of a symmetric matrix

[M N]‘l_[M‘1'+ FE™'F’ —FE—IJ
N’ D -E"'F’ E

where E=D — N’M™!N, F = M !N, one can see that the (d, d)-th element of
A7 is [Y X5 i—a, — A2i(A11) T Aj]7h This completes the proof of Part (iii). O

PrOOF OF LEMMA 3. Since U, (n) is either 1 or —1, we have, from Lemma 4,
that
2 é¢2i—1,t = Z X?n,t—d,,, + 2Ud,,,(m) 2 Xm,t—dem+1,t + 2 X72n+1,t

(2.19 -
) = (Us,om)A21 + A$)(AnL) ' (Us,mAre + Al)

where (A%) = A% =Y Yu-1,-1Xm+1. Next, we note that the stochastic orders
of the elements of A} can readily be obtained from (a) the order of the
determinant of A~ (Lemmas 2.7 and 3.2 of Tiao and Tsay, 1983), (b) orders of
the elements of A (Lemma 5(ii) and Lemma 1(i) of the present paper), (c) the
resut 0< Y X2, 4 — Aoi(A1) 'A< Y X2, —a, = O,(n®) (the inequalities hold
because A~! and A1 are positive definite which in turn follow from the positive
definiteness of A, Lemma 2.3 of Tiao and Tsay; 1983), and (d) the relationship
of determinants

det[A] = det[A;][Y Xhi—a, — A21(A11) A,

where det[A] denotes the determinant of the matrix A. More specifically, (a), (c)
and (d) provide the stochastic order of det™[A;;] while (b) can be used to obtain
the orders of the cofactors of the elements A;;. Using these stochastic orders and
Lemma 5(i), one can easily show that

(2.20) (A1 + A$) (A1) (A + AL) = Ay (An) T Are + Op(n).

Moreover, since X,,+1, is stationary, we have ¥, X%,,, = 0,(n) and, from Lemma
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5(1), ¥ Xmt-a,Xm+1: = Op(n). By these two order properties and (2.20), (2.19)
can be simplified as

(2.21) Yéi=3 Xoi-a, — Aa(An) A + Oy(n).

From (2.21) and Lemma 5(iii), we have that

(222) [¥ Xhi-a, — An(An) T Ap] ™ T €31 =1+ 0p(n™") =1 + 0,(1).
Lemma 3 then follows directly from (2.22) and (2.16). 0

CASE2. d=<k=P.

We now consider the AR(k) regression of X, for P = k = d. It is shown in
Section 4 of Tiao and Tsay (1983) that the least squares estimates of the AR(k)
regression in (2.2) when k& = d can asymptotically be obtained from those of (2.5)
and the following autoregression:

(2.23) Z:= Bre-aryZi-1 + -+ + Br-dk-a)Zit-k+a + sy, t=k+1,---,n
where Z, = U(B)X,. More precisely, the least squares estimates involved are
related by ‘

(224) (1 -3k, ®uB) =1 - T4, diwB)(1 — 3524 Bue-ayB") + 0p(1).

A detailed proof of (2.24) can be found in Lemma 4.1 and equation (4.19) of Tiao
and Tsay (1983). Also, for the autoregression (2.5) or (2.9), Theorem 3.1 of the
above paper shows that

(2.25) ’;521,,,(m) =1+ 0,(1).

Here, again, we make use of the fact that U, (m) is either 1 or —1.
Next, let £2_, be the least squares residual variance of the autoregression
(2.23) if & > d, and be the sample variance of the stationary process Z, when

k=d.

LEMMA 6. Suppose that X, is a nonstationary AR process and satisfies the
conditions in Section 1. Then, for any integer k = d, the least squares estimates
and residual variance of AR(k) regression in the form of (2.2) satisfy

(i) ‘I’k(k) = Br-atr-a) + 0p(n71) = Br-aip-a) + 0,(1),
(i) o}=E}a+0,(n” 5),

where 60(0) =1lor -1

Proor. The result (i) follows directly from (2.24). (ii) can be proved by the
linear transformation (2.7) and (2.24), see Lemma 6.1 of Tsay and Tiao (1984)

for details.

PROOF OF THEOREM 1. Let us start with Part (i). First, consider p = k with
P =k = d. In this case, Lemma 6(ii) and Lemma 2(ii) show that

&I2e+1/5'i = f%ﬂ—d/f%—d + Op(n_'S)-
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Using this result and Theorem 1 of Shibata (1976), we have
(2.26) lim, .Pr{p=k}=a(k—p,P—k), if d<k=<P.
Next, consider p = d — 1. From Lemma 3 and Lemma 2(ii),
03/053-1 =1 — 45 (m) + 0p(1).
It is then clear, by (2.25), that
(2:27) n log(63-1/6%) —p »,
which in turn implies that
lim,_...Pr{n log(¢3-,/63) < 2} = 0.
In (2.27), —p denotes convergence in probability. Therefore, for the AIC criterion
lim, . Pr{p=d — 1} = 0.
Finally, for p = k with 0 < k < d — 1, we have, by Lemma 2, that
0% = 653-1 + 0p(1).
Hence, by (2.27), .
lim, . .Pr{p=%k}=0 for 0<=k<d-1.

This completes the proof of Theorem 1(i). On the other hand, Theorem 1(ii)
follows immediately from Lemma 6(i) and the following result of Hannan and

Quinn (1979).

LEMMA 7. Suppose that Z, is a stationary AR(p) process and satisfies the
conditions of Section 1. Then, there is an integer N, Pr(N < o) = 1, such that for
n > N, log{l — 32.,} + 2¢ loglog n/n > 0, almost surely, p < v < P. Of course,
here B, is the least squares estimate of B, in the autoregression (2.23) with
v=k—d.

3. Concluding remarks. In this paper, we generalized the order selection
criteria AIC, BIC and ¢(k, 0) to the nonstationary autoregressive models. One
obvious advantage of such generalizations is that they eliminate the need to
determine the order of differencing in practical time series modeling. We remark
here that Theorem 1(i) has also been investigated by Yajima (1982) for the
special case where U(B) = (1 — B)? and a, is Gaussian.
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