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ADMISSIBILITY, DIFFERENCE EQUATIONS AND
RECURRENCE IN ESTIMATING A POISSON MEAN!?

By IAIN JOHNSTONE
Stanford University and Mathematical Sciences Research Institute, Berkeley

Consider estimation of a Poisson mean A based on a single observation
x, using estimator d(x) and loss function (d(x) — A)%/\. The goal is to decide
(in)admissibility of d(x). To every generalized Bayes estimator there corre-
sponds -a unique reversible birth and death process {X;} on Z,. Under side
conditions d(x) is admissible if and only if it is generalized Bayes and {X,} is
recurrent. Explicit equivalent conditions exist in terms of difference equations
and minimization problems. The theory is a discrete, univariate counterpart
to Brown’s (1971) diffusion characterization of admissibjlity in estimation of
a multivariate normal mean. A companion paper discusses simultaneous
estimation of several Poisson means.

1. Introduction. Consider the problem of simultaneously estimating the
unknown parameters of several independent discrete distributions such as Pois-
son or negative binomial. Recent work (discussed and extended in Ghosh et al.,
1983), shows that substantial savings in frequentist risk can be attained by
constructing alternatives to the usual maximum likelihood (MLE) and minimum
variance estimators. This complements insights originally obtained in the mul-
tivariate Gaussian problem by Stein, and later Efron and Morris and others.

In comparing risk functions of competing estimators, the qualitative issue of
admissibility has proved a useful prelude to the quantitative problem of con-
structing and evaluating better estimators. Thus Stein (1956) first established
the unexpected inadmissibility of the ML estimate of p = 3 Gaussian means
under squared error loss. With James he then showed (1961) that an estimator
of simple form could attain risk improvements of up to (1 — 2/p)100%.

Admissibility alone is a weak optimality property, so a finding of inadmissi-
bility against an otherwise plausible estimator is of greater statistical significance.
Inadmissibility is often most conveniently established by solving differential
inequalities (Stein 1973, 1981, Ghosh et al., 1983), especially as this process
explicitly constructs a better estimator. A classical approach, that of explicitly
describing all admissible estimators (the minimal complete class), can still be of
use if the differential inequality is intractable or a quick qualitative answer is
desired. The latter method, in the context of simultaneous estimation of Poisson
means, is the primary subject of this paper and its companion. Roughly, to each
“potentially admissible” estimator is associated a birth-death Markov chain, and
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1174 1. JOHNSTONE

admissibility corresponds exactly to recurrence of the chain. The apparatus of
probabilistic potential theory and difference equations (including recent results
of Griffith-Liggett, 1982, and Lyons, 1983) is thus available for testing admissi-
bility.

L. Brown (1971) discovered and elaborated this phenomenon in the multivar-
iate Gaussian means problem. The simplest and most striking instance is the
association of Brownian motion (B.M.) with the MLE and the interpretation of
Stein’s result via the transience of B.M. and existence of superharmonic functions
on RP for p = 3. His idea, also used in the present paper, was to reformulate the
admissibility question for a particular estimator in terms of a minimization
problem familiar in the calculus of variations. The chief step, conceptually and
technically, is in establishing this equivalence—the translation into differential
equations and probability is then accomplished via more familiar methods.

This paper gives an account of the form this theory takes in the simplest
discrete context: estimation of a single Poisson mean for a normalized squared
error loss function. The restriction to one dimension affords explicit tests for
recurrence/admissibility, simplicity of notation and technique, and more com-
plete results. The companion paper (Johnstone, 1984; referred to as II) treats the
statistically more interesting but technically harder question of simultaneous
estimation of several Poisson means, and presents new, general (in)admissibility
results for this problem.

OUTLINE. Suppose that X has a Poisson distribution with mean A € (0, »).
The problem is to estimate A using an estimator d(x) € [0, ) and loss function
L_,(d, \)= (d — X\)?/\. (Of course, the case of an i.i.d. sample of size n is included,
by sufficiency.) For this loss function, the “usual” estimator d (x) = x has constant
risk equal to 1 and is minimax. A multiplicative factor ™™ in the loss function
has no effect on admissibility considerations in one dimension, but decisively
affects admissibility of the MLE in two or more dimensions (Clevenson/Zidek,
1975, Peng, 1975). Clevenson and Zidek argue that the choice m = +1 also has
some practical appeal—errors of a given magnitude are more heavily penalized
when X is small.

We seek necessary and sufficient conditions for an estimator d(x) to be
admissible. A complete class theorem due to Farrell and Brown (1983) provides
a reduction of the problem—all admissible estimators are conditionally Bayes
(in a sense elaborated in Section 2) and have a basic “logarithmic difference”
representation: if d(x) is admissible and its first nonzero value occurs at
x =r+ 1= 0, then there is a finite measure P(d\) on [0, ») such that

(1.1) d(x) = dp(x) = ps/Px-1, x=r+1,

where p, = [ A*"P(d\). We may therefore restrict attention to such estimators
in characterizing admissibility.

When r = —1 or P({0}) = 0 (the cases of greatest statistical interest), dp may
be regarded as a generalized Bayes estimator with respect to L_, and the prior
7(d\) = A "e*P(d\) supported on (0, ®). That not every admissible estimator is
generalized Bayes follows from noncompactness of the parameter space (0, «).
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The mathematical connection between dp and its associated birth and death
process is obtained in a discrete minimization problem in the calculus of varia-
tions. To arrive at the minimization problem, we use a version of the necessary
and sufficient condition for admissibility due to Stein, Le Cam and Farrell
(see Farrell, 1968, Section 3, or Brown, 1976, Chapter 5). Write R(}\, d) =
E,\L(\, d(x)) and B(d, P) = [ R(\, d)P(d\) for the risk and integrated risk of d
respectively, with respect to a loss function L.

Then d is admissible iff the difference B(d, @) — B(dg, Q) can be made
arbitrarily small as @ ranges over a certain class 2 of measures with finite total
mass. For an appropriate choice of quadratic loss function, and for d(x) = dp(x)
for x = r + 1, it follows (Section 3) that

(1.2) B(dp, Q) — B(dg, Q) = X7 (Dus)’a,.

Here u? = ¢./p., Du, = u, — u,—, and a, = p%/p,_:x!. These relations lie at the
root of the connection between admissibility and both difference equations and
birth-death processes.

The expression ¥, (Du,)%a, depends on Q only through u, which ranges through
a class of functions %. determined by 2. Section 3 shows that %, may be
replaced by %, = {u,:Z — R: u, = 1, U = lim,_-u, = 0}, which yields a more
familiar variational problem with boundary conditions and the following result.

THEOREM 1.1. If d(x) is admissible then
(1.3) inf., Y% (Du,)%, = 0.

By formal analogy with electrical circuits, condition (1.3) has a physical
interpretation as a “zero energy” condition. Let pairs of succeeding sites s — 1
and s be connected by resistors with conductance a,, with sites r and n being
held at fixed voltages 1 and 0 respectively. As a consequence of Ohm’s law, the
resultant voltage configuration v, (r = s < n) leads to energy dissipation at the
rate Y741 (Dvs)%a,. Thomson’s principle states that {v,} minimizes Y7, (Du,)?a,
amongst all functions u satisfying u, = 1, u, = 0. Condition (1.3) refers to the
(physically unrealizable) system on Z, = {r, r + 1, - - . }; alternatively it describes
the behavior of the minimal energy dissipation rate as n — . These viewpoints
are treated more explicitly in II. For historical remarks and further details from
a probabilistic perspective we refer to Griffeath-Liggett (1982) and an entertain-
ing monograph by Doyle and Snell (1981).

The main result of this paper is that under two mild statistical conditions, the
“zero energy” property (1.3) is equivalent to admissibility of dp. The first condi-
tion

(1.4) dp(x) — x < M1 + V%),
corresponds to x + (dp(x) — x)* having bounded risk, while the second,
(1.5) dp(x + 1) — dp(x) € 0(1),

is of yet milder character, and amounts to dpr having bounded posterior risk for
each x. (Proposition 6.1). In the situation of greatest interest, when dp has
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bounded risk, (1.5) is unnecessary. The conditions correspond to those of Srini-
vasan (1981) in the normal case, and are discussed further in Section 6.

THEOREM 1.2. Under (1.4) and (1.5), if ming, Y% (Dus)?%a, = 0, then dp is
admissible.

Thus, from the statistical perspective of characterizing admissibility, nothing
is lost at the inequality in (1.2) (essentially a linearization of the problem), or in
the extension from %.,to %,. A heuristic argument and then the detailed proof
are given in Section 5. A necessarily bizarre counterexample is given in Section
7 to show that condition (1.4) cannot be dispensed with.

Condition (1.3) can be translated into checkable probabilistic and analytic
criteria for admissibility, given in Theorem 1.3 below. Let | u || = 321 (Du,) %as.
The Euler-Lagrange equation of the variational problem inf, || u |2 = 0 gives a
necessary condition satisfied by any local optimum, if such exists. Indeed, if i
attains the minimum, then inf,, |u|? > 0, and & satisfies the second order
difference equation

(1.6) Aus := D(as+1Duse1) =0, s>r, U, =1, u.=0.

Associated with the second order difference operator A is an irreducible
continuous time Markov chain (X;, P*, x € Z,) on Z, whose infinitesimal
generator is A. Since the difference operator is local—Au, depends only on u,,
U1 and u,_,—the corresponding Markov chain is a birth and death process.
Hence transitions from x can occur only to x + 1 and x — 1, at rates a..; and a,
respectively. These processes are discrete state space analogues of diffusions.

It is a familiar consequence of the Markov property that hitting probabilities
of a set B satisfy Au, = 0 for s € B. In particular, k., = P*(3 t = 0: X, = r) satisfies
Ak, = 0 for s > r and k, = 1. The process is recurrent iff k, = 1 for all x, while in
the transient case k, — 0 as x — . Hence k, solves (1.6) iff {X,} is transient.
The results indicated in this discussion are summarized and extended in the next
theorem: a short proof is given in Section 4, together with admissibility applica-
tions in Sections 4 and 5.

THEOREM 1.3. The following are equivalent:
(i) infq [l ul®=0,
(ii) the boundary value problem (1.6) has no solution,
(iii) {X.} is recurrent,
(iv) X7 1/a, = o,
In the transient case, the hitting probability k. is the unique solution of (1.6)
and is the unique function in %, minimizing || u || It is given by

k. =[27 1/a)™ 35 1/a,, x=r.
In the recurrent case, the embedded discrete-time chain {X,} is null recurrent

ff X a, = .

Most, if not all, parts of this theorem are well known in various contexts in
probability and differential equations (e.g. Fukushima, 1980, Section 4.4; Brown,
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1971; Ichihara, 1978). We present the results in this form because of their
statistical relevance, simplicity and completeness.

The connection between admissibility and recurrence is thus indirect, going
via a variational problem of analysis. Whether the link can be made more direct
is an interesting open question. Nevertheless, the Markov process viewpoint
already provides useful intuition and constructions, especially in the multipara-
meter case (cf. Johnstone and Lalley, 1984 and II, Section 3). This is perhaps
obscured in our one-dimensional setting by the availability of explicit analytic
solutions to (1.6).

As a result, the special condition (iv) above yields the easiest test for admis-
sibility. For example the linear estimators d,s(x) = (x + «)/(1 + 8) are, at least
for large x, generalized Bayes for the conjugate priors 7 (d\) = A%~ It is easy
to check that a, ~ Cx**'/(1 + 8)* and hence that d.s(x) V 0 is admissible iff
B>0,or3=0and o <0. :

Just as the normal distribution is the prototype of a continuous exponential
family from the point of view of the recurrence characterization, the Poisson
density is the prototype of discrete exponential families on Z .. All results stated
above extend easily to “power series distributions” except for the admissibility
theorem (1.3), which will be studied elsewhere. Hence important distributions
such as the negative binomial and logarithmic may also be included in the theory.

It is natural to seek a connection between this approach and that of Hudson
(1978), Hwang (1982) and Ghosh et al (1983), who for multiparameter discrete
exponential families construct a difference inequality Z,(x) < 0 and employ its
solutions (if any) to prove inadmissibility of d and exhibit dominating estimators.
It is shown in Section 8 that the operator 9, is precisely the (nonlinear, second
order) operator that arises in the Euler-Lagrange equation for the original
minimization problem defined by (1.1). We conclude that the “linearized” prob-
lem (1.3) suffices to resolve the qualitative property of admissibility but not for
the quantitative problem of constructing a better estimator.

2. Decision theoretic preliminaries. Since the loss function is strictly
convex in d, nonrandomized decision rules d(x): Z+ — [0, ») form a complete
class. Moreover, procedures with everywhere finite risk functions form a complete
class. This is a fairly general fact in one-dimensional estimation problems
(Brown, 1976, Theorem V.2.4), but in our case it suffices to observe that if
R(\, d) = o, then R(\’, d) = o for all \" = \. If Ay = inf{A:R(\, d) = =}, then
d’(x) = min{d(x), Ao} has everywhere finite risk and dominates d(x).

Let 9, = {d(x):d(x) = 0 for 0 < x < r} and let d be a nonrandomized rule in
D\D,,1. To discuss the admissibility of d(x) in the original problem, & say, it
is convenient to consider a corresponding Poisson decision problem &, condi-
tional on observing x = r + 1. Thus the sample space is Z.,;, supporting
conditional densities P,(X = x| X > r) = ¢ (A)A*/x!, where of course ¢,(\) =
.- A*/x!. The parameter space is extended to [0, ) and for loss function we
take g,(A\)(d — \)?, where the factor g,(\):[0, ) — (0, ), although not affecting
admissibility conclusions, will be specified below for technical convenience. The
rationale for bringing in the conditional problem and compactifying the param-
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eter space is explained by Brown (1981) and Brown and Farrell (1983), who
construct complete classes of stepwise Bayes procedures in finite sample space
and discrete exponential family settings respectively. Here we note only the
Brown-Farrell example: d(x) = 0, %%, 1 according as x is 0, 1 or = 2. This estimator
is admissible, but not generalized Bayes for any prior concentrated on (0, ). It
is however Bayes in %, for the prior P(d\) = 6, + Yedy;.

LEMMA 2.1. Letd € D\ D,,1. Then d is admissible in 2 iff it is admissible
in Z,.

PROOF. Suppose that d’ dominates d in .. Since, by assumption, d has
finite risk in &2, d’ and d have risk functions in &, that are continuous as
functions from [0, ) — [0, ]. Defining d’(x) to be zero for 0 < x < r, it is then
clear that d’ dominates d in & )

Conversely, suppose that d is admissible in &,. It is enough to show that d is
admissible in 2._;, and then iterate. If d € 2,_,\ Z,, then d, > 0. Denote the
risk function of a rule d in &, by R.(d, \): clearly

Rr—l (J’ O) - Rr—l (d’ O) = 8r11 (O)d~l2' > 0’

so that d cannot dominate d. 0

Let P(d\) be a finite measure on [0, ©) having all moments finite. Consider
P as a prior measure on XA in problem &, the posterior density is then well
defined for x = r + 1 and is proportional to ¢;*(A)A*P(d\). Choose g,(\) =
&-(MAT1 € (0, ) for \ € [0, ). Minimizing posterior expected loss to evaluate
the Bayes rule requires d to minimize

2
(AN = N2 T (AN dP(N) = peoild — Px) + x<@_&>,
fg()( ) (M) ™) p1< o D .

where p, = [ A*"P(d)). Thus the Bayes rule dp(x) = p,/p,—1 for x = r + 1, and
substitution into the previous display yields an identity which is important in
Section 5:

(2.1) l% f (A —dp(x))2A* "1 dP(\) =dp(x + 1) — dp(x), x=r+1.

To make precise the discussion of Section 1, define the integrated risk in &,
by B,(d, P) = [ R.(d, \)P(d\), and note that B.(dp, P) = B.(P) = inf,B,(d, P).
For Ao € (0, ), let 2 be the set of measures  with finite total mass and compact
support in [0, ) such that B(dg, @) < ® and Q([A¢, Ao + 1]) = 1. The Stein-
LeCam-Farrell theorem says in this context that an estimator d(x) € £, is
admissible if and only if

ianEQBr(d"Q) - Br(dQ’ Q) =0.

Now we record a basic and well-known identity valid for any statistical
estimation problem with a loss function of quadratic type. Suppose that @ is a
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finite measure with support compact in (0, ©). For any decision rule d(x) with
finite risk, B,(d, Q) < « and

B.(d, @) — B:(Q)
(2.2) = Ya>r % J; {d*(x) — dg(x) — 2[d(x) — de(®)INA*"! dQ(\)

= Zx>r [d(x) - dQ(x)lqu—l/x!.

Here we have used Fubini’s theorem and the definition of dg(x).

Brown and Farrell (1983) have studied “Sacks-type” complete class theorems
for simultaneous estimation of the means of independent Poisson laws. Their
Theorem 5.1 specializes their results to one dimension, which for convenience
we repeat here together with a direct proof. .

THEOREM 2.2 (Brown, Farrell). Let d(x) be a nonrandomized decision rule
with r + 1 = inf{x € Z,:d(x) # 0}. If d is admissible, there is a finite measure
P(d)) on [0, ©) such that p, = [ N*""dP(\) < for x = r, and

(2.3) d(x) = ps/ps—1 for x=r+1,
so that d is Bayes in problem Z,.

REMARK. Note that d(x) is thus monotone nondecreasing in x. This follows
from the (strict) monotone likelihood ratio property of the kernel f(x, \) = A* in
A and x (Lehmann, 1959, page 74).

NOTATION. Let & = {d(x): d(x) = 0,0 < x < r and 3 P(d\) such that
px < o for x = r and (2.3) holds}. Thus the class of admissible rules in & is
contained in U;; %,.

ProoF (Farrell). Since any measure @ € 2 satisfies Q([Ao, Ao + 1]) = 1 (see
Section 1), it follows that infoe og. > 0 for each integer x = r + 1. So if d(x) is
admissible, we deduce from (2.2) the existence of a sequence of probability
measures {@,} with compact support in (0, ) for which dq (x) — d(x) for
x=r+1.

Let P,(d\) = Q,(d\)/@x([0, ®)). Since

f A dP,(\) = [IL, do,(r +1), k=1,

all positive integral moments of the probability measures P,, concentrated on
(0, ), converge to finite, positive limits. Standard weak convergence arguments
produce a unique limiting p.m. P on [0, ), which is easily seen to have the
desired properties.

3. The variational problem—a necessary condition for admissibil-
ity. In this section, we establish Theorem 1.1. Let r = —1 be an integer and
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suppose that d € %, so that d is Bayes in problem £,. To apply the Stein-
LeCam characterization given previously, we consider the difference in integrated
risk B,(d, Q) — B,(Q) for priors Q with finite total mass and compact support in
(0, ). Substituting (2.3) into (2.2) gives

(3.1) B.(d, Q) — B(Q) = Yr+1 (De/Pe-1 — Qx/qx-1)"qu—1/x.
Setting h, = u? = q./p., we find that this

(3.2) = 371 ((he = he1)?/Pe1)(D3/Dr-1x!)
(3.3) = X (U = Ue1)*(1 + w/tie1)’an,

where a, = p2/p,_,x!.
Since u, > 0, it is clear that

(34) (1 + ux/ux—1)2 = ]-’

and this yields (1.2).
From Theorem 2.2 and the Stein-LeCam theorem, we conclude that if d(x) is

admissible (and belongs to %), then
(3.5) inf,e %o Yrer+1 (Dux)2ax = 0.

REMARK 3.1.

a) If u, is a decreasing function of x (for example if dQ/dP = g(\) is
decreasing), then (1 + u,/u,—;)? < 4. The “natural” priors for proving admissibility
via Blyth’s method have g(\) decreasing (c.f. Section 5). Hence the simplification
at (3.4) (effectively a linearization—see Sections 4 and 7) preserves the essence
of the statistical problem.

b) In the continuous case, the factor corresponding to a, is just the marginal
density of the prior. When r = —1 or P({0}) = 0, p,/x! is the marginal density of
the prior w(d\) = A77e*P(d\) in problem & so that a, = dp(x)rp(x). The
appearance of the factor p,/p,-; is forced by the discreteness of the problem.

The class of functions %., appearing in (3.5) is somewhat artificial. We
replace it with a class satisfying boundary conditions of a kind more commonly
associated with variational problems. The sequence of measures occurring in the
Stein-LeCam theorem all satisfy @([Ao, Ao + 1]) = 1. It follows that u? = ¢,/p, =
1/p,. Inspection of (3.1) reveals that B,(d, Q) — B.(Q) is unaffected if P(d)\) is
multiplied by an arbitrary constant b. Thus we can rescale u? by any desired
value—in particular the infimum in (3.5) can be replaced by an infimum over
U N {u,:u, = 1},

Assume temporarily that the support of P is unbounded. Since @ € 2 has
compact support, it can easily be verified that u2 — 0 as x — . (In fact, the
convergence is exponentially fast.) Thus, we may replace . in (3.5) by
%2 N %, where %, is as defined in Section 1. Dropping the restriction that
u € %., it follows that if d(x) is admissible, then (1.3) holds.
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Condition (1.3) is purely analytical. It may be rephrased more perspicuously
in terms of the constants {a,} alone.

LEMMA 3.1. infq, Y741 (Dus)?as = 0 iff X7 1/a, = .

PROOF. From the Cauchy-Schwartz inequality, if n > rand u € %,,
(3.6) (1 = u,)® = [T71 Du,)? = (Xrh1 (Du,)?a,) (X7 1/a,),

with equality iff Du, = c¢/a, for r + 1 < s < n. For each n, choose ¢ so that
u, =0. Now let n — o0. [1

Let us now suppose that supp P is bounded. The above approach could prob-
ably be adapted to this case, since all that is required for our application is
sup(supp P) > sup(supp ). Here is a more direct route.

LEMMA 3.2. If supp P is bounded, then Y7\, 1/a, = .

PROOF. Let M be an upper bound for supp P. Now dp(s) = M, while for
s=zr+1,

p. < P([0, 1)) + M*"P([1, M]) < CM".
Since a, = dp(s)p,/s!
Xra 1/a; = (1/CM) X7 sY/M* = . [0

Combining the two lemmas, and the result for unbounded supp P, we obtain
Theorem 1.1.

REMARK 3.2. The import of Theorem 1.1 is that extension of the class of
“feasible” functions from %o to %, yields a familiar variational problem with
boundary conditions. The connection to difference equations and Markov proc-
esses that results is described in the next section. Section 5 shows, modulo
regularity conditions, that there is no harm from a statistical point of view in this
change in the set of feasible directions.

REMARK 3.3. In Section 6.2, we show that all truncated Generalized Bayes
procedures (i.e. in some %,) with supp P bounded are admissible. This is trivial
whenever B(P) < o, but the latter does not follow from bounded support if
r>1.

REMARK 3.4. There is no difficulty in extending the results of this section to
discrete exponential families (the so called “power series distributions”):

f(xla) = 0x¢(0)txy X = 0’ 1’ D)
where ¢(x) > 0 for all x = 0 and the parameter space
Q=1{0>0: 3¢ 0°t, < »}

is an interval with left endpoint zero and right endpoint w, < «. Examples
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include the Poisson, negative binomial (f(x|8) = (;*§"1)6*(1 — 0)") and logarith-
mic distributions (the latter two having w, = 1). In general, a prior P(df) on Q
leads to p, = [ 6*"P(df) in problem &, and for the loss function L(d, §) =
S, 0°t,)07X(d — 0)2, dp(x) = p./px—1 as before. The Brown-Farrell theorem
applies in this generality, as does the argument that u2 = q,/p, — 0 as x — ®
(at least if sup(supp P) = o). If sup(supp P) < wo, Lemma 3.2 remains in
force, the only change in the proof being to observe that Y, 1/M°t, = o since
M < w, implies }; M°t, < . Consequently, Theorem 1.1 remains valid with

a, = pf:tx/px——l .

4. Difference equations and recurrence. This section considers equiv-
alent analytic and probabilistic forms of condition (1.3).

Analytic versions. Let u, k be real-valued functions defined on
Z,={r,r+1, ...}

which vanish at . Since the coefficients a, (corresponding to a generalized Bayes
estimator dp € %) are positive, the expression

(u, k) = 2:0+1 Qs(Dus)(Dks)

defines an inner product on the class of functions for which |u|? < . (In
analogy with differential equations and Markov processes, the linear space of
such functions may be called the Dirichlet space corresponding to the generalized
Bayes estimate dp. This point of view is exploited in Johnstone and Lalley
(1984).)

First we derive the Euler-Lagrange equation associated with the minimization
problem (1.3). Let k be a function on Z, with bounded support such that k. = 0.
Suppose u attains the minimum of | u /%2 over %,. Then u + ¢k € %, for all &,
and hence

0 =< lim,,o (1/e){llu + ek |® — [ ul?
=2 2:0+1 as(Dus)(Dks)
-2 2:0+1 ksD(as+lDus+l) - 2krar+1Dur+1-

Since the last term is zero, and k is arbitary, it follows that u satisfies (1.6) of

Section 1.
It is easy to solve (1.6) and the minimization problem explicitly.

THEOREM 4.1. ming [u]|? = [¥%1 1/a.]™", and ming, || u||? > 0 iff there is a
solution uy to (1.6).

In the case miny, || u||? > 0, the minimum is uniquely attained by uo. The latter
is the unique solution to (1.6) and has representation

(4.1) Uo(s) = [X7 l/ax]_l Yo+ 1/as..

PrROOF. Clearly the general solution to Au = az41(Dusy1) — as(Dug) = 0
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satisfies Du, = ¢/a, and has the form u, = ¢ 3%, 1/a, + d, for arbitrary constants
¢ and d, and also attains equality in (3.6) forr + 1 <s < n.

Now let n — . If Y721 1/a, < o, we can choose ¢ and d uniquely so that the
resulting solution u, satisfies the boundary conditions imposed by %;. Indeed,
uo(s) = co Yy 1/a,, where ¢o = [X%:1 1/a,] 7", and it is clear from (8.6) and strict
convexity of u — || u |2 on %, that u, uniquely minimizes || u ||, with the claimed
minimum value.

If Y71 1/a, = o, then the functions

K = (27 1/a:] (500 1/0]Xrzezn

are in %, and have || ™ |2 = [¥7; 1/a,]™ — 0. It is also clear that no choice of
¢ and d will satisfy the boundary conditions. [0

Probabilistic version. It is well known that one can associate a diffusion (a
continuous strong Markov process) with a nice elliptic second order differential
operator, which then becomes the infinitesimal generator of the process. In the
discrete problem (1.6), we encounter the second order difference operator A. This
can be represented as a tridiagonal matrix @ = (gs), s, t, =r. Fors>r,

(4'2) Qss—1 = Qsy, (Qss+1 = As+15, (gss = _’(as + as+1), Qst = O, otherwise.
For s = r, we put
(4.3) Qrr = —Qry, Qrr+1 = Gr, @Gn = 0 otherwise.

On countable state spaces, the infinitesimal generator of a Markov process is
an infinite matrix. The matrix @ is just the generator of an irreducible birth and
death process on the state space Z, = {r,r+1, ---}.

The boundary condition (4.3) is chosen to preserve the symmetry at € (and
hence the time reversibility of the process). Thus, on hitting the lower boundary
r, the process waits for an exponentially distributed time (mean 1/a,) and then
jumps tor + 1.

Technical remark. The construction problem (existence and uniqueness) for
a birth and death process {X;, t = 0, P*} with prescribed transition rates is
discussed for example in Dynkin and Yushkevich (DY, 1969, Chapter 4).

If the transition rates a, increase sufficiently fast as s — oo, the process will
“explode”. Let 7, be the time of the nth jump of the process, and T' = lim,, 7.
It is shown in DY that either P*(T = ) = 1 for all x € Z, or P¥(T < ) = 1 for
all x € Z,. The latter event corresponds to explosion, and occurs iff (DY page
173)

X sfas < oo

In this case, we adjoin the point {0} as an absorbing state to the state space, and
set X, = oo for ¢t = T. With this modification, the rates (4.2) and (4.3) correspond
to a unique right continuous strong Markov process of Z, U {oo}.

For our purposes, it will usually suffice to consider the embedded discrete time
Markov chain {X,, n = 0, P*} with transition probabilities P = (py), s, t = r



1184 I. JOHNSTONE

given by

p _ Qas p — As+1 s>r
s,s—1 — ’ s,s+1 — ’
(4.4) as + As+1 as + as+1

Drr1 = 1, DPse =0 otherwise.
We now give the probabilistic interpretation of Theorem 4.1. Introduce
kk=P(3n=0X,=r) for s=r.

Recall that if k, = 1, the chain is recurrent, otherwise it is transient. Since all a,
are positive and finite, recurrence of the chain is equivalent to recurrence of the
process. In the transient case, k; is clearly decreasing, and by a simple contradic-
tion argument, k. = 0. The next result is easily obtained from Theorem 4.1 and
standard probabilistic arguments (e.g. Karlin and Taylor, 1975, 146-147).

THEOREM 4.2. {X,} is recurrent iff ming, | u|® = 0.

If {X,} is transient, k, minimizes || u|? over %,, solves the boundary value
problem (1.6) and has the representation (4.1).

COROLLARY. If d(x) is admissible then the corresponding birth and death
chain {X,} is recurrent.

REMARK 4.1. The simplicity of the proofs in this section depends heavily on
discreteness of the sample space and the availability of explicit representations
using 1/a, in the one dimensional case. The results of this section (except those
involving Y73, 1/a,) remain valid for arbitrary dimension k = 1 and are proved
in II. The main tool there is the maximum principle for the self ajoint difference
operator A.

Suppose now that {X,} is recurrent. We seek conditions on the prior P(d\)
and the estimator dp(x) under which {X,} is null recurrent. The distinction
between null and positive recurrence in the Gaussian case is important in
discussing “immunity” to the Stein effect. (Gutmann, 1982, 1983; Johnstone and
Lalley, 1984.) Recall that {X,} possesses an invariant measure p which is unique
up to a multiplicative constant (Feller, 1967, Chapter 14), and that {X,} is null
recurrent if and only if u is infinite. Harris (1952) gives a necessary and sufficient
condition for a recurrent irreducible birth and death chain on Z. to be null-
recurrent and calculates the invariant distribution in the positive recurrent case.
In our situation (cf. (4.4)), this reduces to

LEMMA 4.3. ({X,} is null recurrent iff both

Y1 =00 and Y7 1/ap = oo,
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In the positive recurrent case, the invariant distribution {u:}i=, is

pr=clar + ar1), k=r; =3P, (@ + Qrir).

ExXAMPLE. For the loss function L(d, A\) = A"}(d — \)?, the conjugate priors
m,(d\) = A"d\ lead to generalized Bayes estimates d,(x) = (x + v)*, with
a, = (x+ vy)I'(x + v + 1)/T(x + 1). It is easy to check that the corresponding
chains are recurrent for ¥ < 0, and null recurrent for —2 < vy < 0. Also, d, is
admissible iff v < 0 (use Theorem 1 in Karlin, 1958, or Theorem 1.2).

The priors 7.(d\) = e~ d\ for « = 0 yield Bayes estimates

d.(x) = x/(1 + @),

which are admissible for all « = 0, with a, = x/(1 + «)**2 In this case the
corresponding chains are recurrent for all « = 0, but null recurrent only if o = 0.
Combining the two cases, one sees that only estimates that are “very close” to
the MLE d(x) = x lead to null-recurrent chains.

The condition for positive recurrence can be expressed in terms of the prior
P(d)), at least under a mild technical side restriction. On (0, «), let w(d\) =
A7e*P(d\).

LEMMA 4.4. If [*Ndr(N\) < o then Y, a, < . Conversely, if [\ dw(\) = oo,
and either

(4.5) dp(k + 1) € O(dp(k))
or

(4.6) lim inf, dp(k)/k > 0
then Y, a, = .

PrROOF. By Fubini’s Theorem,

j(: AP\(X=r+1)dr(N)

= 27:=r+1 pk+1/k!
= Yi=r+1 (B + 1)/dp(k + 1))ar+1 = Yk=r+1 (dp(k + 1)/dp(R))as.

Since dp(x) is monotone in x, this suffices for the proof.

REMARK 4.2. The analogous result for the normal distribution asserts that
positive recurrence is equivalent to the prior having finite total mass—i.e., a
proper prior. This effect would also occur in the Poisson problem if the loss
function were changed to A™%(d — \)2. Admissibility can be trivially established
in the positive recurrent case—see Section 6.2.



1186 I. JOHNSTONE

REMARK 4.3. The hierarchy of possible cases can be summarized as follows:
(with an example of the corresponding 7 (d)\) in parentheses)

positive Ya, <o (A% d)\)
null Y a, = (d\)

Recurrence Y 1/a, = «

non-explosion Y x/a, = (Ad))
explosion Y xfo, <o (A2 dM).

We note that if 0 < lim inf, .. d(x)/x < lim sup,_.» d(x)/x < o, then explosion
occurs if and only if the marginal density 7 of P satisfies 3* 1/, < .

Transience Y 1/a, < o

REMARK 4.4 As all results in this section apply for arbitrary sequences {a,}
of positive constants, they hold for the discrete exponential families of Remark

3.4.

5. The main admissibility theorem. This section is devoted to the proof
of Theorem 1.2. The heuristics for the proof of this result are similar to those for
the normal case, but the details of the argument reflect the lack of any invariant
structure in the Poisson problem. Suppose the inequality in (1.2) were an equality;
it would then suffice for admissibility to take a minimizing sequence {u™} i(n) %,

and construct priors {@,}] € 2 such that the resulting functions @ =
(q\”/p:)/? € %.,also form a minimizing sequence. The priors @, are defined by

Q.(dN) = [u™(I\D]?P(dN),

where [\] denotes the integer part of A.

It follows that @%(x) = q./p. = E(u?([\]) | x), where we have omitted reference
to n. Assume here a strengthened form of (1.4): that d(x) — x € O(+x). Suppose
also that P({0}) = 0, so that dp is generalized Bayes for the prior measure 7 (d)\)
= N\7e*P(d\) in the original problem . It is easy to check from this and (1.5)
that the posterior distribution of A given x becomes asymptotically “concentrated”
at x; as x — oo:

E(\|x) =dp(x +1) ~x and
Var(A | x) = dp(x + 1)(dp(x + 2) — dp(x + 1)) € O(x).
This suggests that if u is fairly smooth, then
4, = u, and (Di,)®* = (Du.)?
so that {2} should be a minimizing sequence of the desired type.
These arguments will be legitimized “in mean” in steps 1° — 3° below.

Throughout, M denotes a constant depending on P but not on A or x, but not

necessarily the same at each occurrence.
Suppose that d = dp € %, and that (1.3) holds. We shall show that dp is

admissible in %, and then appeal to Lemma 2.1. The sufficiency part of the
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Stein-LeCam theorem, originally due to Blyth, calls for a sequence of finite
measures {Q;} on [0, ) such that
(1) Br(Qz) < o,
(ii)) Q:([p, p + 1]) = 7y for some positive constants p and n and
(iii) B.(d,, ;) — B,(Q;) > 0 asi— oo,

Given (i)-(iii), the proof is standard (cf. Berger, 1980; Brown and Hwang, 1982).

1°. Let v: Z,.; — R, and by convention set v; = v,4; for 0 <i <r + 1. Let
X\ denote the least integer greater than or equal to A. Following the heuristics of
Section 1, we let Q(d\) = (vx)?P(d\). If v is such that B,(Q) < =, then the basic
equation (2.2) holds with d replaced by dp. This paragraph expresses the right
side of (2.2) in terms of global differences of v at (5.4), which are converted to
one-step differences in 2°, leading to the final result in 3°.

Let m, be an as yet unspecified function and note for x = r + 1 that

1
qx—l

Factoring the difference in squares and using the Cauchy-Schwartz inequality
yields

do(x) — dp(x) = f (\ = dp(x))(0F — mi) N1 dP(N).

[do(x) — dp(x)]?gx-1 < q2 f [v% + m2]\*""1 dP(\)

X f (A = dp(x))*(vx — m.)2A*" 1 dP()).

Now let m, = [ vxW,—,—1(d\), where W, (d\) is the probability measure with
dW,_,_1/dP < \X* "' for x = r + 1. Thus m?2 < ¢,_1/p«-1, and

[do(x) — dp(x)]%qs—1 < 4 f [N = dp()]*(vx — m)*A*"1 dP(N).
Using the inequality

(5.1) (ox — m)? < 2(vx — V)2 + 2 f (vx — Ux)°*Woer1(dN),

the identity (2.1) and the bounds (1.4), (1.5)

B(dp, Q) — B(d, Q)
(5.2) '
=M f dP(A\) Tesr [ — dp(x))? + x](vx — v5)N""Y/xl.

It is now convenient to extend the definition of d from Z. to R, by linear
interpolation. Condition (1.5) implies a Lipschitz bound (with constant M) for
the (interpolated) rule d, and hence

(5.3) (A —dp(x))2 <200 — dp(\))?2 + 2M (A — x)3,
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so that (5.2) is bounded above by

(5.4) M’ f AP\ = dp(\)? Tasr (0 — V)N V/x!
+ B [x + (& = M), — 022 Val,

2°  To bound the sums on x in (5.4), we need some Poincaré inequalities for
Poisson measures. These are proved in the appendix.

LEMMA 5.1. For any function u: Z. — R, such that Eu*(x) < o, and for all
A=0,

E[u(x) — u(X)]? = 2(\ + DE[D*u(x)]?
[u(x) —uM)P =200 + DE ¥ [D"u(x)]2

E<(" )[ @) = uM]? = 50\ + 1)E<(—"_T7‘)—2

+ f)[Dm(x)]z.

A

To apply Lemma 5.1 to (5.4), note that the function vx is constant for
A < r + 1, and hence there is no harm in inserting I, = I'{x > r} in all integrands
in the statement of Lemma 5.1. It follows that (5.4) is bounded by

x—r=1

(55) M Yusr (D*0,)? f dPOV + DA — dp(V)]* + 2 + (x — 2
Use the Lipschitz bound on dp to bound the term in curly brackets in terms of

(dp(x) — x)2+ x + (A — dp(x))>

Now evaluate the integral on \, using the definition of p;, (2.1), (1.4) and (1.5)
to bound (5.5) by

(5.6) M 3. (D*0)(dp(x) — )* + x + dp(x)][m, + memn/x].

3°. Since dp(x) = dp(r + 1) = M, > 0, it follows that

Ty-1/X = my/dp(x) < Mm, for x=r+ 1
From (1.4) and (5.6), this implies
B.(dp, Q) — B.(Q) = M >, (D'0.)x[1 + (dp(x) — x)*/x]m.
Let a, = x*((dp(x)/x) — 1) = B <o by (1.4). Then, writing d; for dp(x),
[1 + (d — x)*/x]x(x)/m(x — [xV] + 1)
< (1+ad) IIED2 (1 + awif(® — V) = L

From (1.5), it is easy to show that D~ a, € O(x™?), so for 0 < i < [x'/?], there
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exists a constant M such that a,—; < a, + M. Thus the product in L, is bounded
by

exp{(a, + M) Zg‘l/z]d (x — i)7V3.

If x — [x?] > x/4, then the sum above is bounded between % and 2. Letting
¢, = +1 according as a, + M is greater or less than zero, we obtain

L, < (1 + a2)exp 2(a, + M) = M’,
since o, < B. Noting that (x + 1)7.41 = 7.d;(ds+1/d:) < Ma, by (1.5) we find
x[1 + (dp(x) — x)%/x]m, < M(x — [x"%] + D < M a0,
Now it is clear that 3 1/a(x — [x'/?]) = 0 if 3* 1/a(x) = o, 50 it follows from
Lemma 3.1 that dp is admissible. 0

REMARK. The Poincaré inequalities of Lemma 5.1 are no longer valid without
extra hypotheses on the rate of growth of v in dimensions d > 2. Typically such
hypotheses are satisfied by solutions of elliptic difference equations or by suitably
smoothed versions of v. See II or Johnstone and Shahshahani (1983) for examples

and further details. ,
Theorem (1.2) can be applied to yield a more specific criterion for admissibility.

COROLLARY 5.2. Suppose that d(x) = dp(x) for x large. If for some a > 1,
d(x) = x + a/log x for large x, then d(x) is inadmissible. Conversely, if d(x)
satisfies (1.4), (1.5), and for some a < 1, d(x) < x + a/log x for large x, then d(x)
is admissible.

ProoF. Note first that for any large ro

T = pu/x! = c(ro) IIL,, difi.

In the first case, suppose that the inequality holds for x = ro. Choose 8 <1 so
that a8 > 1. Then for r, sufficiently large,

log(IT7, di/i) = log II7, (1 + (a/i log i))
= af Y% (1/ilog i) ~ af log log x, as x — 0.
Consequently, for large x, =, > c(log x)”, where y > 1, so that
¥* 1/a, = ¥* (1/x(log x)") < .

In the second case, ¥ ® 1/a, = ® follows from a similar argument, this time using
log(1 + x) < x. Now apply Theorems 1.1, 1.2 and Lemma 3.1. 0

REMARK. A more general sharp comparison criterion can be given using Dini
functions (cf. Srinivasan, 1981; or Section 6 of II for a statement in the Poisson

context).
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6. Discussion.

1. Risk restrictions. The growth conditions on dp(x) imposed in Theorem 1.2
may be reexpressed in terms of boundedness of risk and posterior risk. In addition,
generalized Bayes rules with bounded risk necessarily have bounded increments,
thus condition (6.1) is then redundant.

Thus, if one regards rules with unbounded risk as undesirable, then (6.2) is a
reasonable restriction on dp(x) itself. This is the analog of Brown’s result
characterizing bounded risk generalized Bayes rules as bounded perturbations of
d(x) = x in the normal case.

PROPOSITION 6.1.
(6.1) dp(x + 1) — dp(x) € 0(1) « E[L(dp(x), \) | x] is bounded as x — .

(6.2) dp(x) — x € O(Vx) as x —> ® & R(), dp) is bounded as X — o,
and either condition implies (6.1).

(6.3) dp(x) — x < MVx & R(), dp(x) V x) is bounded as A — .

PROOF. Strictly speaking, E[L(dp(x), \) | x] is well defined only when r = 0
or P({0}) = 0, so that the prior measure 7 on [0, ©) in problem & can be de-
fined by w(dX) = A 7e*P(d\). In general, the posterior risk is defined as
J (A = dp(x))2A*"! dP(\)/p.. This is of course consistent with the usual
definition in the special (but usual) case described above. Now (6.1) is just a

trivial consequence of (2.1).
If (6.2) holds, then for some constant c,

E\d(x) = A2 < Ex(x — A + ¢Vx)% + (x — A — ¢Vx)?
=2E(x — \)2 + 2¢2Ex = 2(1 + cH)),

from which the conclusion follows.
For the converse, we use the monotonicity of the Bayes rule dp(x). If (6.2)

fails, there exists an increasing s;;z_qpence {x,} such that | dp(x,) — x,| > nVx,. It
follows that | dp(x) — x,| = nvx,/2 for all x in at least one of the intervals

A= (xp, x, + n\/gc—,,/2) or Ay, = (x, — n\/&—,,/2, x,). Then
(1/%0) Ers,(dp(x) — N)? = (n®/4) mini—; s Pr—, (x € An)
~ (n?/4)[®(n/2) — #(0)] ~ n?/8 as n — o,

since Z{(x — \)/ Vx} — N(0, 1) as A — . Thus R (., dp) is unbounded. (6.3) is
proved in a similar fashion.
For the second part of (6.2), note from (2.1) that

D*dp(x) = Var(\ |x — 1)/E(\ | x — 1)
= (2/dp()E[(N = x)*| x — 1] + (dp(x) — x)%.

(Note that for x large, the posterior distribution of A | x for the “prior” = (d\) =
A7e*P(d\) in problem & is well-defined.) From (6.2), the second term is
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bounded, and the first equals (2/7(x)) [ (A — x)%/A)pr(x)dP (). Borrowing from
II, Proposition 5.5, the fact that for a suitable constant ¢, A™*(A — x)%pa(x) <
M[pxr(x + cvx) + pr(x — cvx)], where x — cVx is taken as zero for x < cvx, we
obtain as in 3° of the proof of Theorem 1.2 that

D*dp(x) < M, + My[n(x + cvVx) + n(x — cvVx)]/m(x) < M. O

2. Bounded support and positive recurrent priors. In both these cases admis-
sibility can be easily established without recourse to Theorem 1.2. Suppose that
d € %, so that d is (unique) Bayes with respect to a prior P on [0, ).
Admissibility of d in & and & will follow trivially from finiteness of B,(dp, P).
If supp P is bounded, finiteness of B,(P) is a consequence of the boundedness of
R.(d, \) at A = 0. Suppose now that the birth-death process corresponding to P
is positive recurrent and that one of the mild conditions (4.6) or (4.6)" hold. A
short calculation shows that B.(dp, P) = Y71 (pPe+1/x! — a.). Now ¥ a, < o by
assumption and finiteness of the first term follows as in the proof of Lemma 4.4.
Thus the force of Theorem 1.3 results in showing admissibility of “null recurrent”
estimators. Incidentally, finiteness of integrated risk does not imply positive
recurrence, as consideration of the conjugate prior 7 (d\) = A~2 d\ shows.

3. Other approaches to proving admissibility. Although the primary purpose
of this theory (at least in one-dimension) is the characterization of admissibility,
it can of course be used to establish admissibility of estimates not covered by
existing methods. Brown and Hwang (1982) have developed a simple and unified
approach (also using Blyth’s method) for proving admissibility of generalized
Bayes estimates of the mean vector of a multiparameter exponential family. The
simplicity is achieved by using a single sequence of priors for all estimators.
There is a cost in terms of regularity conditions and we give here an example of
an admissible estimate which fails the Brown-Hwang sufficient conditions.

The growth condition used by Brown and Hwang is in this problem

f“‘+f°° p() d) <o
0 1+: AM(log X\)Zlog®(|log A | V 2) ’

where p()) is the prior density. This condition fails if
p(A) = (log N)log(|log A | V 2).

However one can show fairly easily that «(x) = log x(log log x) + O(x~'/?) as
x — o, and this implies condition (5.1), that a, ~ x(log x)(log log x) for large x
and hence the admissibility of dp(x).

7. A counterexample: a recurrent, inadmissible estimator. In view of
Proposition 6.1, the characterization theorems of previous sections assert that
generalized Bayes rules with bounded risk are admissible iff the tail of the prior
is light, in the sense that },* 1/a, = «. Unfortunately, the bounded risk (of dp(x)
V x) requirement in Theorem 1.3 cannot be completely dispensed with. We use
a “large gap” construction to build a prior with light tail such that the correspond-
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ing Bayes estimator has risk > 1 for all A\. An earlier construction of this sort
was given in the normal case by Brown (1979).

Let by = 0. Place mass v; = 1 at a; = 1, choose an integer b; = 160 and let
co = byv1pg, (b1). Inductively, for i = 1, choose a;,; = 2b; + 5 such that
(7.1) Ya(@ss1 — bi)?Po,_ (bi + Vb; < x < @141) > by,

i-1

Now choose b;,; as the smallest integer = a;.; such that p,,,, (bi+1 — 1) < p,,, (b:).
By increasing a;; slightly (which does not affect (7.1)), we can ensure

(7'2) pa,-.,,l(bi) = Dayy (bi+1 - 1)

Note from (7.2) and Jensen’s inequality in turn that

a: : bit1 3 3
1'—“5,-—,~—1-1f1 . ds < log =
Og[b,-+1 - 1] (b = b = D7 ) loglp 7| ds < log g

so that a;4; < (34)(b;+1 — 1). Finally place mass v;; at a1, where v;,, satisfies

(7.3) Vis1Pay, (bi + 1) = vip,,(b:)bi/(b; + 1).

—W———+——

1 1 L
bo a1 b biy a; b bi+1 b;+b; Qi+l

In outline, (7.2) and (7.3) ensure that the marginal density = (x) of the prior is
small at b; + 1 (less than 3¢y/(b; + 1)), and approximately equal to = (b;) (so
that d(b; + 1) < 3(b; + 1)), so that Y7, 1/d(x)w(x) = o and the tail of the
prior is light. However, the gaps between a; and a;., are so large that if x € [b; +
Vb, ais1], then dp(x) = a;+1 — 80. Condition (7.1) says that for A € [b;_;, b;], this
event has sufficiently large probability that dp has risk > 1. This argument
applies for all i = 1, so dp is inadmissible, being dominated by the MLE.

In completing the verification we need a useful bound (proved in the Appendix)
on the tails of the Poisson distribution, which will also be extensively used in II.

PROPOSITION 7.1. Ifx,y ERY,y>xory = x — 1, then p\(y)/pr(x) <
Wx)*If0<x— 1<y < x, then p\(y)/pr(x) < e*P(\/x)*"*, where ¢(2)
= (d/dz)log T'(2) is the digamma function.

Returning th the counterexample, to see first that (b, + 1) < 3co/(b; + 1),
note that (7.3) and (7.2) imply
(7.4) vibipa,(b;) = co, for all i.

Thus it suffices to show that 372, v;p,,(b; + 1) < 3vi41pa,,, (b + 1). Using (7.3) and
(7.4) together, then (7.2), Proposition 7.1 and b;_,/a; < %, we find

[Vi+1Daiy (bi + D] 7! Tjmivr vipay(bi + 1)

(7.5)
= Y>i+1 Pa(0:)/Pa;(bj-1) < Tjsira (£)17% < 1.
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A similar argument is used for j < i, but bounds p,(b:)/p,;(b; — 1) and employs
the relation a;/(b; — 1) < %. For the bound on d(b; + 1), use (7.4):

d(b; + 1) _ w(b; + 1) - 3co/(b; + 1) <3

bi+1 w(b;) ~  vipa(bi)

Finally, suppose that b; + Vb; < x < a;4;. From the monotonicity of dp(x),
(7.4), (7.2) and Proposition (7.1), we have

Gis1 — d(x) < ais1 — d(b + Vb + 1) < T4 (@01 — a))P(a;]| x = b; + Vb))

%1 Pe(bi + Vb)) _ pa,, (b)
a.l pa](bl - 1) pa,~+1(bi + \/b—l)

= Ti b¥/a)) () B0() B

< 4b%(%) "% + 2b%(3%)%/* < 80.

=i

8. Relation to difference inequality methods for inadmissibility. The
present method for establishing inadmissibility is nonconstructive: convergence
of ¥ 1/a, and the consequent availability of a solution to (£) do not seem to
yield an improved estimator. In view of the extensive recent work on constructing
improvements of inadmissible estimates by solving differential (or difference)
inequalities (see e.g. Berger, 1980a; Hwang, 1982a; Ghosh, Hwang, Tsui, 1983),
it is of interest to connect the two approaches.

For a large class of continuous exponential families with density of the form
e ¥9¢(x) dx and squared error loss for estimating 6, the Euler-Lagrange equation
for the Stein-LeCam minimization coincides with the differential equation ob-
tained via Stein’s (1973) unbiased estimator of risk. Specifically, if F and G are
priors, with f(x) = [ e ¥® dF(0), g(x) = [ e* ¥ dG(0),j* = g/f and correspond-
ing generalized Bayes estimates dr = Vf/f, d, = Vg/g, then under appropriate
conditions (cf. Brown, 1971, for the normal case):

B(dr, G) — B(dg, G) = —4 fj V.(ft Vj) dx,
while using Hudson (1978) or Lemma 1 of Berger (1980a), one finds that
R(dr, 8) — R(dg, 0) = —4 E,(1/ftj) V-(ft Vj).

Consequently, in the transient case, the solution to the minimization can in
principle be used to construct a better estimator.

For discrete exponential families of power series type, the situation is less
clear cut. Stein’s unbiased estimate of the difference in risk between two esti-
mators was extended to estimation of the parameter of discrete power series
families by Hudson (1978), Hwang (1982a) and others. They obtain a difference
operator . such that solutions to ¢, < 0 will allow construction of improved
estimators. We show below that the equation ¢, = 0 is the Euler-Lagrange
equation for the original minimization problem related to the expression (3.3),
whereas (1.6) is the Euler-Lagrange equation of the “linearized” expression (1.3).
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Thus the simpler equation suffices to resolve the issue of admissibility for a given
estimator dp; but to proceed further to construction of a better estimate, the
more complex operator (8.3) (or equivalently) (8.2) is required.

Using the notation of Sections 3 and 5, with the discrete exponential family
density f(x | 6) = 0*¢(0)t., we recall that

2 9
B,(dp, Q) — B.(Q) = X2, (ﬂ—b) Px et
px px-—l qx—l
(8.1) (Dh.)?
:°+1 h jl a; = T(h)’ say.

Here h, = q./p.. Note that we do not write h = j or use the inequality 1 + j./j.—1
= 1. Suppose that dp is inadmissible (so that inf,e4 T'(h) > 0), and that the
infimum is attained by some function h° € %,. Calculating the Euler-Lagrange
equation by considering lim, ,o[T'(h + ek) — T'(h)]/e as in the argument before
(4.1), we find that h° satisfies the quasilinear elliptic equation

2
(8.2) Ah, = 2D<a;;+1 th+1> + Gyi1 (D};l+1) =0, x=r+1.

Hwang (1982) considers the difference in risk between two estimators d and d
(which we assume to lie in 92,) by writing d, = d, + r,¢., where r, depends on d,
and ¢, is to be determined. For the one-dimensional case with loss §71(d — 6)2,
his results specialize to give

R, d) — R(6, d)
= Ey[2(d; — d.) + (d3+1 — dis1)(tesr/t2)] + (d5 — dB)Po(X = 0)
= Ey(e. + &) + (d — d§)Py(X = 0),
where ¢, = 2{d,+17+1(t41/t:) — Fi}des1, and
(8.3) & = 21Dy + rii(terr/t) P2

One chooses r, recursively to make ¢, zero and then seeks a solution ¢, to the
now first order difference inequality ¢ < 0.

To connect this with the minimization problem, take d = dp = p,/p,-1, d = dq
= ¢./qx—1 for x = r + 1, with both equal to zero for x < r. Solving e, =0 forx = r
then implies that r, = ¢/t.p, for some constant ¢, (which is set to 1) and hence
that

% _ Pe ) _ g, Dhs
x—1 Dx-1 hx—l

1 ~
¢x = ’T (dx - dx) = pxtx<

for x = r + 1. Therefore

1 Dh, (Dh.41)*
= it [2 D<ax+l h:l) + a1 h,-%H ]

1
D=x t.

Ah, for x=r+1.
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It is easily checked that ¢, + . equals 0 for x < r and equals
[da(r + 1) — d3(r + V)][t,1/t;] for x=r.

Thus, if h, solves the Euler-Lagrange equation (or inequality with < 0) for
x=r+ 1and h,4; < h,, then the estimator d = ¢./q.-11;.>n is as good as d. It is
better if strict inequality occurs somewhere; alternatively, if £ h = 0 and h #
constant, then the estimate d’ = (d + d)/2 will strictly dominate d.

Let us note that treating (8.2) as a quadratic in Dh,, leads to the following
recursion for a solution:

1/2
Dhos oy (14 2P0 s
hx Q41 hx—l

and this solution will be nonnegative and decreasing (if it is well defined).

APPENDIX
Poincaré and other inequalities for Poisson measures on Z

As a preliminary, we record a Poisson version of the simplest bound on Mill’s
ratio for the normal distribution (Feller, 1968, page 175).

LEMMA Al. Let P(s) = P\(X < s) and P(s) = P\(X = s).
If s < A\, then P(s) < (s + 1)pa(s) = (A + 1)pa(s).
If s = \, then P(s) < (s + 1)px(s).

PrROOF. The first statement follows from the inequality A\*/x! < \°/s! for
x < s < A\ For the second, note that for s = A + 1, P(s) — P(s + 1)

=< (s + 1)pr(s) — (s + 2)pa(s + 1). Finally, if s = A,

PO) _ 5o A*
A “TON+1D) - (N+0)

<=\x+1.0

PROOF OF LEMMA 5.1.  Let k(x, ) = 1, x/\ or (x— A)?/X. From the Cauchy-
Schwartz inequality, if x > X, then [u(x) — u(A)]®> = (x — N) Tx<s<x [DYus)?
Thus ‘

(A1) Toor [ue — usl?k(x, Mpa(x) < Teox [Duf]? Tuss (x — Nk(x, M)pa().

The inner sum is evaluated using “summation by parts” identities for the Poisson
distribution, based on the relation xp,(x) = Apx(x — 1). Let P(s) = X.=s pr(x);
then for all s =0, A > 0,

2:0+1 (x — )\)Px(x) = )\PA(S)
(A.2) Y21 (x — A)2a(x) = Ap(s)[s — A] + AP(s)
T2 (x = A)3pa(x) = Apa(s)[(s — N)% + 2s] + AP(s).



1196 I. JOHNSTONE

When taken instead over x < X, the sum on the left side of (A.1) is bounded by
ZOss<>T [Du:]2 EOsts (X - x)k(x’ A)Px(x)-
To evaluate the inner sum here, convert the sums in (A.2) to the range 0 < x
< s by using the relations E(x — A\) =0, E(x — A\)®2 = E(x — A\)® = \. In the case
k(x, \) = 1, combining the two bounds leads to
E[u(x) — u(X)]2 = AE[Du*(x)]® + (A = X) Jsox [Duf]?P(s + 1)
+ (XN = \) So<x [Duf]?P(s),

where P(s) = ¥§ pa(x). The second term on the right side is negative, and the
third is bounded by (1 + A\)E[Du*(x)]? from the first part of Lemma A.1. When
k(x, \) = x/), a similar argument applies, using instead the second part of Lemma
Al
Proceeding analogously with k(x, A) = (x — A)?/A, one finds that
E(x — N)*/Au(x) — u())]?
< AE[(x — N)?/A + 22/A][Du;]? + Teax [Du]?P(s)
+ Yoerx [DuP(X = Mpr(s)(X — s) + P(s — 1)].

This leads to advertised bound if one replaces A — s by the upper bound
1+ M[(s = A)2/A+s/AL

Finally, Proposition 7.1 is a corollary of some simple inequalities for the
gamma function T'(x) = [§ e~'t* ' dt. Let ¥(z) = (d/dt)log T'(z) be the digamma
function.

LEMMA A.2.
(i) 2°<T(@z+a)/T(z)<(z+a—-1)* for a=1,
(i) T(z+a)/T(z) =e*V2® for 0<a=<1l,z=1.

ProOF. Let H,(a) = log T'(z + a) — a log z — log T'(2), so that H;(a) =
¥(z + a) — log z. Using the integral representations (Lebedev, 1972, page 6-7),

o et e—tz f“’ e—t e—tz
(A.3) v(z) = J(: <t —1= e“) dt, logz= 5 ( ; ; ) dt,
so that

(A4) H( )—fw 1€ Vpegy
’ @)= 0 t 1—¢e )

Since H,(1) = 0 and from (A.4) H,(a) = 0 for a = 1, the left side of (i) follows.
ForO<a<1landz=1,

Hz(a)=f0 H. () dbzafo (1— 1 )e“‘dt2¢/(l),

t 1-—e

which yields (ii). Finally, the right side of (i) is easy to establish in a similar vein,
using the identity ¥ (z + 1) = ¢(2) + 1/z.
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