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ON THE INFORMATION MATRIX FOR SYMMETRIC
DISTRIBUTIONS ON THE HYPERSPHERE'

By Louis-PAuL RIVEST

Laval University

A general definition of symmetry for a directional model is given. Then
the information matrix for the parameters indexing a symmetric density is
shown to be block-diagonal: one block for the location and one block for the
shape. This result is used to construct an algorithm for the efficient estimation

" of the parameters. Examples are given; a new symmetric distribution, the FB,
is introduced; it generalizes the classical distributions on the hypersphere.

1. Introduction. The Fisher information matrix plays an important role
in the asymptotic theory of any statistical model. In this work the Fisher
information matrix for the parameters indexing a symmetric distribution on the
hypersphere is shown to be block diagonal: one block for its generalized location
and one block for its shape. For instance the information matrix for (u, )
indexing the Fisher-von Mises density:

f(u) = c(k)exp(ku’p) p € Sp, k>0

where S, is the unit sphere in R* is made of two blocks: a(k — 1) X (k — 1) matrix
for the parameters indexing u and a 1 X 1 matrix for «.

In Section 2, a general definition of symmetry is given. Section 3 contains a
proof of the main result; an algorithm for the estimation of the parameters of a
symmetric density is also suggested. Section 4 presents some symmetric models.

2. Symmetric models.

NOTATION. .O(k) is the group of orthogonal transformations on R* and &
is a subgroup of O(k)

f(u) is a density with respect to the Lebesgue measure on S;.

.F1, Iy, - -+ , I, are the components of a vector r in R*.

DEFINITION 1. &‘symmetric models. A density f(u) is said to be &symmet-
ric if there exists a rotation P in O(k) such that the density g of r = P’u satisfies:

i) E(n) =0 ‘
1) ii) E(r}) =E(¢3) = --- = E(r})
ii)) g(r) = g(Hr)

for all H in &
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REMARK 1. Since the determinant of H is +1 (1) iii) implies that r and Hr
have the same density for any H in &,

REMARK 2. & ‘-symmetry is not uniquely defined: for any rotation Q in O(k)
let &4 = {Q'PHP’'Q: H € &'}; then if f is & symmetric, for any H in &, the
density g;(s) of s = Q’u satisfies g;(s) = g, (Hs); hence if s satisfies (i) and (ii), f
is also &-symmetric. &symmetry and & -symmetry are equivalent for f.

A way out of this problem is to define P in terms of the moments of u. For
instance, as will be shown in Proposition 1, the symmetries in Examples 2 and 3
are defined using subgroups & for which P is the eigenvector matrix of E(u u’).

EXAMPLES.
1) If &= O(k) then f is & symmetric if and only if it is equal to the uniform

density on S;.
— 1 0 . —
o = {(0 H)H € O(k 1)}

2) If
&~symmetry is equivalent to rotational symmetry.

3) If & = {diag(+1)} then it can be named strong antipodal symmetry. The
Bingham density (Mardia, 1972) is strongly antipodal.

The key concept needed to establish the main result is a symmetry weaker
than the three types aforementioned:

DEFINITION 2. 2-symmetry. A density f is said to be 2-symmetric if it is

&symmetric where
_Jf10
& = {(O diag(il))}'

Let {p;}*, denote the columns of P.

PROPOSITION 1. If fis 2-symmetric
E(u) = p,E(r), E(uu’) = P diag{E(r})}P’.
ProoOF. Let H; be a diagonal matrix of 1 except for its (i, i) entry which is

equal to —1 (i > 1). Remark 1 implies that H;r and r have the same distribution;
therefore

E(r;) = E(p/u) =0
E(rirj) = E(p/uu’p)) =0 for j#i 0O

3. The information matrix. Let {u;}-, be a sample from a 2-symmetric
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density f(u) which can be written as
(2) f(u) = g(P’u; ¢);

this section considers the problem of estimating ¢, a vector valued shape param-
eter and P. Let ¥ be a vector valued parameter indexing P. Note that the
dimension of ¥ depends on the symmetry of the model. If f is rotationally
symmetric, two rotations whose first columns are equal will yield the same
parameterization for (2). In this case only £ — 1 parameters will parametrize P
while in general k(k — 1)/2 are needed.

NOTATION. : =: (¢, ¥) denotes the Fisher information for one observation.

It can be written as
;= <v'u éw)
o

oo = E(ULUY), iy = E(UNUY) iyg = by = E(U,U)

and U,, U, denote the score vectors of partial derivatives of In f(u) with respect
to the elements of ¢ and ¥ respectively.

where

PROPOSITION 2. If g(r; ¢) is a differentiable function of ¢ which as a function
of r is differentiable and satisfies (1) iii) in S;

ay = 0.
PROOF. Let ¢; and ¥; be components of ¢ and ¥ respectively. Let

_9 .. ey = 9
gs(r) = a¢ig(r, ?), g7(r; ¢) arfg(r, )]

and g“(r) the vector of {g”(r; ¢)}. For m > 1 let H,, be a diagonal matrix of 1
except for its (m, m) entry which is —1. The assumptions on g imply:

(3) go,(Hyr) = g, (r), g (H,r) = H,g"(r).

If r = P’u one can write

U, = % In f(w) = 8,,(1)/g(c; 9)

Uy, = % In f(u) = {g"(r)}’ Ajr/g(x; ¢) = tr[A;r{g"(r)}']/g(r; ¢)

where A; = (9/0y;P’)P. Since P'P = I (3/3y;P")P + P’(9/3y;P) = 0 and
A;=—A/. Thus
E(U,U,) = E(g7%(x; ¢)g,,(r)tr[Ajrig"(r)}'])

=tr AjB,‘
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where B; = E[g7%(r; $)g,(r)r{g"’(r)}’]. Since r and H,.r have the same density,
B; = E[g7*(H,r; ¢)gs,(H.r)H,rig" (H,r)}’]
which on using (3) is seen to be equal to
H,.E[g7%(r; ¢)gs(r)r{g" ()} [H.

Right and left multiplication by H,, changes the sign of all the elements of the
mth line and the mth column except for the (m, m) entry. Since B; = H,,B;H,, is
true for any m > 1, B; is a diagonal matrix; furthermore

trA,-B,- = tl‘B,’AJ/ = —'tl‘AjBi = 0. ]

For circular variables, Proposition 2 is equivalent to the classical result that
the maximum likelihood estimate of location is asymptotically independent of
the maximum likelihood estimate of the scale or shape parameter for symmetric
densities.

This result suggests a two-step algorithm to estimate ¢ and ¢ (or P). First

given an O,(n"/?) estimate P of P, maximize
g(P'u;; ¢)
to get ¢. Then maximize
g(P'u; ¢)
to obtain P. The standard asymptotic theory of maximum likelihood estimation
(Cox and Hinkley, 1974, Chapter 9) shows that ¢ and P are efficient estimates.
An iteration of this procedure will lead to the maximun likelihood estimates.
For a rotationally symmetric model, any matrix P with its first column
proportional to ¥ u; provides an O,(n"/?) estimate of ¥ if E(r;) > 0. When all
the population eigenvalues of E(u u’) are different, the matrix of the eigenvectors
of ¥ uu/ is an O,(n"""?) estimate of P (Tyler, 1981).
For the algorithm to be valid, g(r; ¢) has to be parametrized in such a way
that the matrix P of Definition 1 is the same for all the values of ¢.
For instance Bingham and Mardia (1978) model on S;:

fu) = {F(r, v)} 'exp{—r(w'u —v)*}, TER, v>0
has a mean direction equal to u when 7 > 0 and —u when 7 < 0. If the sign of 7
is not known a priori, a reparametrization is needed in order to use the algorithm
of this section.
4. Examples. The following examples discuss distributions on S;.
1) A reparametrization of Bingham and Mardia (1978) model:
f(u) = c(x, y)exp{xpiu + y(piw)?, « >0,y €R.

When v <0 and x < —2v, f has a maximum on a small circle in a plane orthogonal
to p;. This model is rotationally symmetric. Bingham and Mardia proved that
the information matrix is block diagonal; the two-step algorithm they used to
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maximize the likelihood is similar to the one of Section 3.
2) The FB; distribution:
f(u) = c(x, B)'exp{xpiu + Bi(psu)* — (Piu)*}}
where «k = 0, 5 = 0.

Kent (1982) pointed out that when x > 0, p, is the mean direction of u, p; is
the major axis and p; is the minor axis, therefore the matrix P satisfies the
requirements of Definition 1. The density of r = P’u is equal to:

g(r) = c(x, B) 'expixry + B(r} — r3)}
so that f(u) is 2-symmetric.

When « > 0, estimating p, by p. = Y w/| ¥ w and p, and p; by the
eigenvectors of the nonzero eigenvalues of (I — p,p7) ¥ uu/ (I — p;p;) yields P,
the matrix of constrained eigenvectors (Kent 1982, page 74). This matrix is an
0,(n"'?) consistent estimate of P. Thus Kent’s moment estimates for «x and 3
correspond to the ones obtained at step 1 of the algorithm. They are therefore
efficient.

3) As a generalization of the previous distribution, the FBg density is sug-
gested:

f(u) = c(k, B, v) ‘exp{xpiu + v(piu)? + B((psu)® — (piu)?)},

where «, 3 > 0 and v € R. As for the FB; distribution P satisfies the requirement
of Definition 1. The density of r = P’u is given by

g(r) = c(x, B, v) ‘expikry + yri + B(r3 — rd)};

it is 2-symmetric. Besides being a generalization of the previous two examples,
this model contains as a special case the Bingham distribution (if x = 0). Kent’s
matrix of constrained eigenvectors will yield an O,(n~"/?) consistent estimate of
P when « > 0.
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