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ASYMPTOTIC NORMALITY OF NEAREST NEIGHBOR
REGRESSION FUNCTION ESTIMATES

BY WINFRIED STUTE

University of Giessen

Let (X, Y) be a random vector in the plane. We show that a smoothed
N.N. estimate of the regression function m(x) = E(Y | X = x) is asymptotically
normal under conditions much weaker than needed for the Nadaraya-Watson
estimate. It also turns out that N.N. estimates are more efficient than kernel-
type estimates if (in the mean) there are few observations in neighborhoods
of x.

Introduction and main results. Assume that (X, Y) is a random vector
in R% If Y has finite expectation E(Y), the regression function m(x) =
E(Y| X =x), x €ER, of Yon X exists and is (almost surely in x) uniquely defined
in view of the equation m(X) = E(Y|X). Let (X;, Y1), (X2, Ys), --- be
independent random observations with the same distribution as (X, Y). It is
required to construct an estimate m,(x,) = m,(xo, Xq, Y1, - -+, X, Y,) of m(x),
which behaves well even when only little information on the distribution of (X,
Y) is available. The point x, may be interpreted as a future value taken on by
some X for which Y is not yet observed.

Nadaraya (1964) and Watson (1964) independently proposed the estimate

=1 Y K((xo — Xi)/an)
=1 K((xo — Xi)/a,)

mi(xo) =

where K is an appropriate kernel function (integrating to one) and a, — 0 is a
sequence of bandwidths. That m} is a reasonable estimate for m may be seen by
arguments involving multivariate densities (cf. Watson, 1964), or by the fact (cf.
Devroye and Wagner, 1980) that

Xo — X,

) — m(x0)f(xo)

(na,)™ Y, YiK<

n

and

- X; ) .
(na,)™ Y&, K<x0 2 ) - f(xo) in probability.

n

Here f denotes the (marginal) density of X, assumed to be positive at x,. Schuster
(1972), under conditions requiring the existence of f and finiteness of E(| Y |?),
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918 W. STUTE

showed that
(na,) Y m#*(xo) — m(x)] = N(0, ¢?) in distribution,

where o = Var(Y| X = x0) [ K*(u) du/f(xo). See also Rosenblatt (1969). In fact,
even joint convergence in distribution of m} at finitely many points x;, - - -, x;
holds, with m¥(x,), - - -, m¥(xx) being asymptotically independent.

More generally, one might consider estimates of the form

mn(xO) = Zin=1 YiWni = in=1 Yin’(xOy le Tty Xn)y

where W,;, 1 < i < n, is an array of weights with 3%, W,; — 1. Stone (1977)
obtained necessary and sufficient conditions on the weights for the convergence

(1) ]E(f | ma(x) — m(x) | y(dx)) — 0 as n— o,

where 4 is the distribution of X. In particular, (1) was shown to hold true for
certain nearest neighbor type estimates.

In this paper the asymptotic normality of such estimates is derived under
conditions much weaker than needed for the Nadaraya-Watson estimate. Specif-
ically, only finiteness of [E(Y?) is required, while X need not have a density at
all. With the same meaning of K and a,, we shall consider the estimates

mu(x0) = (na,)™* 3%, YiK<M> .

Qan

Here F, is the empirical distribution function (e.d.f.) of X;, - - -, X,,. Technically,
m,, only depends on the ranks of X;, .-, X,. This amounts to the effect that if
X has a continuous d.f. F, the original problem of estimating m(x,) may be
transformed into one of estimating a regression function at F(x,), with the X-
sample uniformly distributed on [0, 1]. The mean square convergence of m, to m
has been studied by Yang (1981).

That m, is in fact a (smoothed) nearest neighbor type estimate may be seen
when K = 1,_1/2,1/9;- In this case m,(xo) is the average number of Y;’s for which,
when X; = x, (say), there exist no more than k, = na,/2 Xj-values with x, < X;
and such that X; < X..

Since

Fo(x) — Fu(X))

, ) — 1 in probability,

(na,)™ X K<

the estimate

2 YIK((Fr(xo) — Fu(X)))/ar)
Yt K((Fp(xo0) — Fr(X)))/an)
has the same asymptotic behavior as m,. Empirical investigations suggest,

however, that m, is superior to m, when the sample size is small. This seems to
be true due to the fact that the weights of m,, sum up to one. The kernel function

Muo(x0) =
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K is allowed to take on negative values, too. There are no reasonable grounds for
a restriction to nonnegative kernels, as is sometimes done in density estimation.
Mack (1981) proved asymptotic normality of a somewhat different type of
N.N.-estimate, under more restrictive assumptions on the distribution of (X, Y).
See also Royall (1966).
After these introductory remarks we shall now state our main result.

THEOREM. Assume that X has a continuous d.f. F, and let E(Y?) < . Let K
be a twice continuously differentiable kernel function vanishing outside some
bounded interval. For each bandsequence (a,), with a, — 0 and na3 — « we then
have

2 (na,)Y*[mn(xo) — Mn(x0)] = N(O, ¢3) in distribution

for u-almost all x, € R, where

Az = ait | yK(M)H(dx, ),

Histhedf. of (X, Y) and

ot =Var(Y| X = x) f K%(u) du.

To show that m,(x;) — m(x,) has the same limit distribution as m,(x;) —
mn(x), one needs to prove

(3) (na,)2(ma(x0) — m(x))) >0 as n— .

While the convergence of the “stochastic component” m, — m, could be proved
under minimal assumptions on the underlying distribution, (3) typically needs
some further smoothness conditions which guarantee m,(x,) — m(x,) at a
satisfactory rate. In our case, smoothness of the function

me F'(u) =E(Y|F(X) =u)

in a neighborhood of F(x,) suffices. This should be compared with the Nadaraya-
Watson estimate, in which case F was assumed to admit a density.

COROLLARY. Under the assumptions of the Theorem, let K be such that
[ K(u) du=1and [ uK(u) du = 0. If mo F~' is twice continuously differentiable
in a neighborhood of 0 < F(x,) < 1 and na} — 0, then (3) holds, so that

4) (na.) Y mn(xo) — m(xo)] = N(O, ¢3) in distribution

whenever (2) is satisfied.

If m o F7!is d-times differentiable (d = 2), the condition na} — 0 may be
weakened to naZ**! — 0, if one chooses a kernel K for which [ u'K(u) du = 0 for
1=1,2,.--,d— 1. For d > 2 this may be only achieved if one admits negative

values for K.
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With the interpretation that x, is some future observation on X, the condition
0 < F(xo) <1 may be taken for granted, the set of x, with F(xo) = 0 or F(x,) = 1
being a u-null set.

A comparison with ¢ shows that ¢3 does not depend on the (unknown,
possibly nonexisting) marginal density of X, while, if X has a density f, ¢3/¢* =
f(x0). Hence, if f(xo) < 1, m,(xo) is more efficient than m*(x,). The situation is
similar to nearest neighbor density estimation (cf. Moore and Yackel, 1977). In
each case a small value of f(x,) results in fewer X-observations in neighborhoods
of xo, so that in fixed radii estimation only a small portion of Y-data points is
involved.

2

Lemmas and proofs. In the following, let H, denote the (bivariate) empir-
ical d.f. of the sample (X, Y1), - - -, (X, Y,). We then have

o = ot | o Pl =By g gy,

Since K is twice differentiable, Taylor expansion yields

my(xo)

= a;’ f yK(M)M(dx, dy)

+ a;? f Y[Fn(x0) — Fn(x) — F(xo) + F(x)] K’(M

n

)Hn(dx, dy)

K" (A)H,(dx, dy)
2

+ a;? f Y[Fn(xo) — Fa(x) — F(xo) + F(x))?

= Il + IQ + I3,
where A is between a,'[F,(xo) — F.(x)] and a;'[F(xo) — F(x)].

LEMMA 1. (na,)?I; — 0 in probability as n — .

PROOF. Since K vanishes outside some finite interval, say (-1, 1) w.l.o.g.,
the above expansion of m,(x,) holds true with integration restricted to those x
for which | F,.(x0) — F.(x) | < a,. The Dvoretzky-Kiefer-Wolfowitz (1956) bound
for the tails of sup, | F.(x) — F(x) | yields that for given ¢ > 0 there exists some
finite C such that for n € N, sup, | F.(x) — F(x)| < Cn™"? up to an event of
probability less than or equal to ¢. On this set the inequality | F,.(x,) — F,(x) | <
a, entails

| F(xo) — F(x) | < a, + 2Cn""? < Cia, for some C, < o,
Lemma 2.3 in Stute (1982) asserts that
SUD4: | Fxg)—Fx)1=Cya, (107 )2 | Ful2o) — Fo(x) — F(x) + F(x) |

is stochastically bounded as n — . The assertion of the lemma now follows from
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the facts that K” is bounded and lim sup,.. [ | ¥ | H.(dx, dy) < o with probability
one, upon observing that ¢ > 0 was arbitrary and na3 — .0

Next, we shall show that (na,)?I, is asymptotically equivalent to

—(na,)?a;*m(xo) f K(M)[Fn(dx) — F(dx)].

For this, define

Zn=n""a;¥? Ty [Yi — m(X)] - [an(%0) — an(X)]K’

n

(F(xo) — F(X»)

with

an(x) = nY}[F,(x) — F(x)], xER
denoting the empirical process pertaining to X, - - -, X,,. Furthermore, let & =
(X1, Xz, - - -) be the o-field generated by the X-data.

LEMMA 2. Z, — 0 in probability as n — .

PrROOF. To prove the lemma we shall show lim,_.E(Z2) = 0. For this,
observe that conditionally on %, the summands of Z, are centered and uncor-
related. Hence

E(Z3] )
2
= ai'n"® Ty E(Y: - mCOP| 9){(%(3«» - an(x»K'(——-——F Lt ‘X"))} .

Let Fi._, and o, be the e.d.f. and empirical process of the sample X, - - -, Xi_1,
X1, - -+, X,, respectively. Since

Fux) =Fiy(x) = n'Firy(x) + n (e ° Xi, 1<i<n, x€ER
we obtain

an(x0) — an(Xi) = (n/(n — 1)) aho1(x0) — ab1(X)] + Ra,

where | R, | < 4n""2 From (a + b)?> < 2(a2 + b?) we therefore infer

[an(xO) - an(X)]2 = 2[ (an—l(xo) an—l(X))Q ]f:l

It follows that

E(Z2) < 2a;°n™ f h(x)[QlF(xo) —Fx)| + H <M>} F(dx), n=2,

with h(x) = E((Y — m(X))?| X = x). Our assumptions on K guarantee that K’ is
bounded. The assertion of the Lemma therefore follows from the integrability of
h and the convergence na’ — .0



922 W. STUTE

Next, consider the function

<F<x0> - F(x))
an

k(x, y) = m(x)K’ {1 (0,51 (¥) = Lo, ()}

with corresponding “von Mises” statistic

T.=n f k(x, y)[Fn(dy) — F(dy)][F.(dx) — F(dx)] = f k(x, y)an(dy)a,(dx).
Lemma B on page 223 in Serfling (1980) yields
5) E(T%) =0(1) as n— o,

That the function k depends on n (through a,) is immaterial for the proof of (5)
due to the boundedness of K’. It follows from na — o« that

az¥? f k(x, y)an(dy)[F.(dx) — F(dx)] — 0 in probability.

In view of Lemma 2 we thus obtain that (na,)'/?I, is asymptotically equivalent
to

(F<xo> — F(x))
an

a;? f m(x)[an(x0) — an(x)]K’ F(dx).

In the following we use the well-known representation a,(x) = a,(F(x)), x € R,
of a, in terms of a uniform empirical process @,.

LEMMA 3. We have

F(dx) - 0

(F(xo) — F(x))
an

az*? f | m(x) — m(xo) | | an(x0) — an(x) |
in probability for u-almost all x, € R.

PrOOF. For continuous F, the above integral is equal to
F(xo) -u
an

= ar_z3/2supu:|1<‘(lx0)—u|5a,,| &n(F(xO)) - &n(u) |

i) w1 l K(f—‘—’——>

where as before we made the assumption K = 0 and hence K’ = 0 outside (—1,
1). From Lemma 2.3 in Stute (1982) we get

a,*? f | m(F~(u)) — m(x0) | | @n(F(x0)) — an(u) | du

du,

SUPu:| F(xg)-ul=a, Ian(F(xO)) — ay(u) | = O)s»(an ) as n — oo,
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Furthermore,

1
azlj; | m(F~(w)) — m(xo) | du

n

K,<F<xo> - u>
a

= f | m(F~(F(x0) — ua,)) — m(xo) | | K'(w) | du.

Observe that F~'(F(xo)) = xo for u-almost all x, € R. By Theorem 2 in Stein
(1970), page 62-63,

lim, . f | m(F~ (s — ua,)) — mF™(s)| | K'(u)| du =0

for Lebesgue almost all s, say for all s € A. By continuity of F, we thus have
u({xo: F(xo) € A, F7'(F(x0)) = xo}) = 1.

This proves the Lemma. [

LEMMA 4. (na,)'l, is asymptotically equivalent to

i) [ 1P E ) g

n

PROOF. Lemma 3 shows that (na,)'”?I, is asymptotically equivalent to

F(x,) — F(x)
a

n

a.*?m(xo) f [an(x0) — an(x)]K'< )F(dx)

F(xo) — F(x)

= —a;%*m(x,) f an(x)K’< >F(dx)

n

= —a:"m(x,) f K(M)“u(dx),

where the last equality follows upon integrating by parts. 0
We are now in the position to give the

PROOF OF THE THEOREM. According to Lemma 4 it remains to show

1/2 _
L=(2) | = mco( L= i ) B, )G,

n

in distribution. This may be achieved along classical lines. For each n, I, is a
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standardized sum of i.i.d. random variables with

Var(l,) = a;‘{ f (y — m(x0))’K 2(Mﬂ>H(dx, dy)

2
- [ [ - m(xo»K(M;—M>H(dx, dy)] }
= a;l{ f h(x)K2<F——(x°) - F (x)>F(dx)

- [ [ o - m(xo»K(m‘)—);M)F(dx)] }

with h(x) = E((Y — m(x0))?| X = x). As in the proof of Lemma 3, it follows that
Var(l;) — h(xo) [ K*(u) du for u-almost all x, € R. So it suffices to show that
the array defining the I,’s satisfies the Lindeberg condition (for u-almost all x;).
Since the centering constants are asymptotically negligible, it is easy to see that
it remains to prove

= F(xo) - F(x)
! - 272 £\X0) — F(X)
an ‘j;ly—In(xO)laé(na")l/?} (y m(xo)) K ( an >H(dxy dy) b d 0

(6)

forall 6>0 as n— .

For this, put
ho(x) = E((Y = m(x0))?1)| y=-mixpi>al | X = %), a >0,

and assume that this conditional expectation is obtained from integration w.r.t.
a regular conditional distribution. In particular, h,(x) | 0 for each x as a 1 oo,
Since na, — », (6) will follow if

F(xo) — F(x)

@) lim sup,_..a;* f ha(x)K2< )F(dx)

n

can be made arbitrarily small upon choosing a large enough. As in the proof of
Lemma 3, it follows from standard results in differentiation theory that (7) is
equal to h,(xo) [ K*(u) du for u-almost all x, € R. In view of the above remark,
this may be made small by letting a 1 o, whence (6). This completes the proof of
the Theorem. O

PROOF OF THE COROLLARY. We have

Fin(xo) = f m(x)K(M)F(dx)

n

F(xg)/a,
a;! f K<M)F(dx) = f K(x) dx.

n (F(xg)-1)/ay,

and

Since K has bounded support, 0 < F(x,) < 1 and a,, — 0, the last integral is equal
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to one for all n = ny, say. Hence

it [ ime) = mio) M)F(dx)

n

Ma(x0) — m(xo)

f [m o F(F(xo) — ua,) — m ° F7(F(x0))]K(u) du

= I

provided that F~'(F(x,)) = xo. Since [ uK(u) du = 0, Taylor expansion of the
above integrand yields Ir = O(a?), so that the Corollary is an immediate conse-
quence of the Theorem and the assumption naj — 0.0

REMARK 1. As is apparent from the proof of the Corollary, the condition
na’ — 0 is needed only to guarantee that the deterministic error term m,(x,) —
m(x,) is asymptotically negligible. The optimal choice “naj — positive const.”
may be treated likewise, to the effect that (na,)"?(m, — m) is asymptotically
biased.

REMARK 2. As in Schuster (1972) the Cramér-Wold device may be applied
to show that (na,)?(m, — m) converges jointly in distribution at finitely many
points xi, - - -, Xz, with m,(x1), - - -, m,(x,) being asymptotically independent.

REMARK 3. The results of this paper may be extended to the case when X is
multivariate, by applying the results of Stute (1984). Beyond technicalities there
will be one major difference to the univariate case, however, in that transforming
to the uniform distribution now leads to a distribution with uniform marginals,
but otherwise depending on the distribution of X.
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