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A CONVERSE TO SCHEFFE’S THEOREM

By DENNIs D. Boos
North Carolina State University

Convergence of densities implies convergence of their distribution func-
tions via Scheffé’s theorem. This paper is concerned with the converse: what
are sufficient conditions to obtain convergence of densities from convergence
of distribution functions? A general lerama is given and local limit results are
obtained for translation and scale statistics.

1. Introduction. When does convergence in distribution lead to conver-
gence of the associated densities? Specifically, let T, = (a1,(T1. — b1n), -+,
asn(Thn — bin)) be a standardized random vector in R* which converges weakly
to a distribution having density (Radon-Nikodym derivative) g with respect to
(wrt) Lebesgue measure u on R*. If T, has density g, wrt u, what are sufficient
conditions for g, to converge to g, say pointwise a.e. u? Lemma 1 below gives one
set of such conditions and Theorems 1 and 2 of Section 3 verify these conditions
for certain translation and scale statistics. The statistical motivation for these
new local limit theorems arose in a Bayesian context and is discussed briefly at
the end of Section 3.

2. The main lemma. Let G, and G denote the distribution functions (dfs)
of g, and g and let “=” stand for weak convergence. If G, = G, a sufficient
condition for g,(x) — g(x) a.e. u is that each subsequence g, have a further
subsequence g, converging to some density g*. In that case, Scheffé’s theorem
(Serfling, 1980, page 17) yields G,» = G* which would contradict G, = G if
g* # g on a set of positive u measure. However, the existence of convergent
subsequences is not easy to verify in the absence of a metric space. (In the
topology of pointwise convergence g, is compact if {g,} is closed and {g,(x)} is
bounded for each x. Unfortunately, this topology is not metrizable here, e.g.,
Dugundji, 1966, page 273). Thus, it is convenient to use uniform convergence on
compacts for which the Ascoli theory is available (e.g., Royden, 1968, page 179).
This leads to Lemma 1 and (2.3). If the equicontinuity is uniform, then we can
extend the result to uniform convergence on R*, i.e., wrt the norm sup, | g.(x) —
8(x)| =118 — &l

A

LEMMA 1. -Suppose that G, and G have continuous densities g, and g wrt u on
Rt IfG,= G and

2.1) sup, | g.(x)| < M(x) < », each x € R*
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and

{8.} is equicontinuous, i.e., for each x and ¢ > 0 there exists
(2.2) 6(x, ¢) and n(x, ¢) such that |x — y| < 8(x, ¢) implies that
Ign(x) - gn(y) | < cfor alln= n(x’ C),

then for any compact subset C of R*
(2.3) SUp,ec| gn(x) — g(x)] - 0 as n — w.

If {g,} is uniformly equicontinuous, i.e., 5(x, ¢) = 8(¢) and n(x, ¢) = n(e) in (2.2)
do not depend on x, and g(x,) — 0 whenever | x,| — =, then

(2.4) SUp.ert| 8. (x) — g(x)] = |lgn — €lle = 0 as n — .

ProOOF. Conditions (2.1) and (2.2) are exactly what the classical Ascoli
theorem requires for {g,} to be compact wrt the topology of uniform convergence
on compacts. Thus, if g, is a subsequence of g,, then there is a further
subsequence g, which converges uniformly on each compact subset of R* to
some g*. Scheffé’s theorem then shows that g* = g a.e. u, and since they are both
continuous g*(x) = g(x), each x € R*. So, for each compact set C

(2.5) sup.ec| gn-(x) — g(x)| — 0,

and (2.3) follows by the usual argument (Royden, 1968, page 37, problem 11).
Now, suppose that (2.4) is false. Then, there must exist an ¢ >0 and a subsequence
n’ of n and a sequence x, such that

(2.6) | & (') — 8(x,/)| >¢ forall n'.

If the x,  are bounded, then there exists some C which contain all the x, and
(2.6) contradicts (2.5). If the x,- are not bounded, then there is a subsequence x,,-
such that at least one coordinate of x,- is tending to +. Since g(x,-) — 0 as
n” — oo we have by (2.6) that g,-(x,-) = ¢/2 for all n” sufficiently large, say all
n” = no. Let 6 = 6(e/4) be such that | x,» —y| < 6 implies | g, (%) — gn(¥)|
< ¢/4 for all n = n(e/4). Then

Xyt

(2.7) Grr(xpr + 68) — Gur (0 — 0) = f gn(y) dy = (26)%c/4

for all n” = max(no, n(e/4)) since g,-(y) = ¢/4 for all ¥ in the § neighborhood
of x,- (let |-] on R* be the maximum of the coordinates). But G,-(x,- + ) —
Go(x, —08) = 2| G — Gl + G(xp» + 8) — G(x,» — 5), and |G — G|l — O
by Polya’s theorem in R* and G(x, + §) — G(x, — &) = g(x*-)(28)*, where
xXp» € (xp» — 8, X,» + 8). Since at least one coordinate of x,» — o, the same is
true for x};-. Thus, g(x¥-) — 0 as n” — o and (2.7) is contradicted. O

3. Application to translation and scale statistics. A statistic T(X) =
T(X,, ---, X,) is a translation statistic if T'(x + a) = T'(x) + a for all real a and
vectors x = (xy, ---, x,). Let X;, ---, X, be independent and identically
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distributed (iid) observations with common density f(x). Then, using the trans-
lation property we have

Go(y +t) = P(T(X) =y + t)
= f I(T(x) =y+t) 1k f(x) dxy - - - dxn

=1 _fI(T(x) >y) [Th: f(x; + &) dxy --- dx,

=1- f I(T(x) > y)exp{Ziz log f(x; + ¢)} dxy - - - dx,.
Now, to get derivatives of G,(y) we need only justify the interchange of operations

d* d*
&y G.(y) = a Gn(y +t) |=0
3.1)

k
= - f I(T() > 5) 5 exp(Ss log fxi + ) eo ds -+ dix.

Klaassen (1984) introduced this approach and showed that if f is absolutely
continuous with [ | f’(x)| dx < oo, then

(32) g.(y) = f I(T(x) > )X = (/) (x)] 1= f(x:) dxy - -+ dxn.

For notational convenience, the first derivative of f is often written f’, and if G,
is a df then g, is its first derivative.

We can get similar representations for the logarithm of positive scale statistics
S(X), i.e., those satisfying S(ax) = aS(x) >0foralla>0and x = (x4, - - - , x,).
Then,

H,(y+t)=P(log S(x) <y +t)

(3.3)
=1- f I(log S(x) > y)exp{X %, log(e‘f(e'x;))} dx; -+ dx,.

If f is absolutely continuous with [ | xf’(x)| dx < o, then

(3.4) hu(y)= f I(log S(x) > y) ¥i (—1 - xi}'}" (xi)> [ f(x) dxy -+ dx,.
Obviously, higher order derivatives may be taken under sufficient regularity
conditions. A similar approach is also possible for two-sample shift statistics and
ratios of positive scale statistics.

Two local limit results can now be given. Let I(f) = [Z, [f’(x)/f(x)]?*f(x) dx,
L(f) = [*, [-1 — xf"(x)/f(x)]*f (x) dx, and let ®(x) and ¢(x) be the standard
normal df and density. F is the df associated with f and T(F) is the target
“parameter” of T),.
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THEOREM 1. Let X, ---, X, be independent with common density f(x) on
R'. Let T, be a translation statistic such that G,(y) = P(nY} T, — T(F)]| <y) —
®(y/a), each y. If f is absolutely continuous and I(f) < o, then with g(x) =
o ¢(x/a) we have

lgn — gl =0 as n— .

THEOREM 2. Let X,, ..., X, be independent with common density f(x) on
R. Let S, be a positive scale statistic such that H,(y) = P(n'?[log S — log S(F)]
<y) — ®(y/a), each y. If f is absolutely continuous and I,(f) < o, then with h(x)
= ¢ '¢(x/c) we have

lhrn — hlle—0 as n— oo,

PrOOFS. Since both proofs are virtually the same, only the first will be given.
From I(f) < « via Cauchy-Schwarz we get [ | f’(x)| dx < o and thus (3.2) with
gn(y) replaced by n™Y2g,(n""?y + T(F)) can be written as

g.(y) = E[n™"2 3L —(f'/f) (XolI(nVY(T, — T(F)) > y).

One application of the Cauchy-Schwarz inequality yields g,(y) < [I(f)]"? and
another gives '

| 82(x) — 8.(3) | = [I(F)]?| Ga(x) = Gu(W) V2 = I(f) | x — y |2

Hence, {g,} is uniformly bounded and uniformly equicontinuous so that Lemma
1 applies. 0

Relation to local limit theorems. Theorems 1 and 2 yield local limit theorems
for virtually all location and scale estimators in use as long as I(f) < o or I;(f)
< o, On the other hand, when 7T,(X) = X the sample mean, then characteristic
function arguments yield better results. From Feller (1966, page 515, 516) we
know that if X; has finite 2nd moment and characteristic function w such that
| w|" is integrable for some integer r, then || g, — g ||« — 0. Moreover, if | w|" is
not integrable for some r, then g, must be unbounded. Since I(f) < « leads to
bounded g,, it must be a stronger condition. For example, if X; has the uniform
density f(x) = I(-% < x < %), then I(f) = ® but | w(t)|?® = 4t %sin?(t/2) is
integrable.

Extensions. Analogous results for two-sample shift statistics and ratios of
positive scale statistics should be clear. Boos (1983) also gives results for conver-
gence of g/, to g’ and for the convergence of certain bivariate densities. However,
the methods of this section are not ideally suited for joint densities, and there
are no “density” versions of Slutsky’s theorem or of the Cramér-Wold device to
help extend results from 1 to k dimensions.

Statistical application. The motivation for considering convergence of densi-
ties of statistics arose in Boos and Monahan (1983). They cogsider Bayesian
analysis based on the sampling density £ (x | #) of an estimator § rather than on
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the full likelihood of the sample. Convergence of the resulting posteriors then
depends on convergence of 4;(x|¢) and Theorems 1 and 2 are relevant. For
example,  might be the sample median or a trimmed mean. (We know that the
density of the sample median converges pointwise (Serfling, 1981, page 85), but
Theorem 1 adds the uniformity.) However, the approach is most useful in a
semiparametric framework where Z(x | #) is unknown but can be estimated by
the bootstrap. In that case analogues to Theorems 1 and 2 can be proved for the
bootstrap density estimator Z4(x | #) as long as I(f,) or I,(f,) stay bounded, where
f» is the density generating the bootstrap samples.
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