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ADAPTIVE ESTIMATES OF PARAMETERS OF REGULAR
VARIATION

By PETER HALL AND A. H. WELSH

Australian National University

The problem of estimating shape and scale parameters for a distribution
with regularly varying tails is related to that of nonparametrically estimating
a density at a fixed point, in that optimal construction of the estimators
depends substantially upon unknown features of the distribution. We show
how to overcome this problem by using adaptive methods. Our main results
hold very generally, for a large class of adaptive estimators. Later we consider
specific versions of adaptive estimators, and describe their performance both
in theory and by means of simulation studies. We also examine a technique
proposed by Hill (1975) for solving similar problems.

1. Introduction. This paper deals with the estimation of shape and scale
parameters for a distribution with regularly varying tails. Following Hill (1975),
Hall (1982) and Welsh (1985) we assume a general nonparametric model, in
which the only available information is in the form of asymptotic properties of
the distribution’s tail. Therefore inference has to be based on extreme values
from the tail of the sample. Hill (1975) and Hall (1982) examined the number of
extreme values required to achieve optimal performance, and showed that in
general this number depends on unknown properties of the tail. Therefore the
size of the extreme subsample used to construct the estimators must itself be
estimated from the sample. Our main aim in the present paper is to show that
there exists a large class of adaptive, “asymptotically optimal” methods for
estimating the size of the subsample of extremes. We study one of these methods
in detail, first in theory and then by means of simulation studies, and show that
it does indeed possess nearly optimal properties. We also examine a technique
proposed by Hill (1975) for solving similar problems.

We may assume without loss of generality that the regularly varying tail is at
the origin. Following Hall (1982), suppose

(1.1) F(x) = Cx°[1 + Dx*? + o(x")]

as x | 0, where « > 0, C >0, 8 > 0 and D is a real number which we take to be
nonzero. Hill (1975) and Hall (1982) proposed the following classes of estimators
of « and C: let X,,; < -.. < X,,, denote the ordered n-sample,let 1l =r=n-1
and put

(1.2) & = (log Xpre1 — r* TEi log X)) and G, = r/nXi..

Hall (1982) showed that optimal performance is achieved by taking r = r, =
An26/@6+e) for some A > 0, and Hall and Welsh (1984) proved that &,, and C,,
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332 HALL AND WELSH

possess rates of convergence which are optimal in the class of all possible
estimators of @ and C. In view of these estimators’ optimal properties and
attractively simple construction, we shall take them as our basic estimates of o
and C. We shall show how to construct estimates 7, of ro, and prove that &;, and
C;, share optimal convergence rates with &,, and C,. These results will be
presented in Sections 3, 4 and 5. Specifically, Section 3 provides an invariance
principle for the estimators &, and C,; Section 4 suggests estimates of r,, and
applies the results of Section 3 to obtain limit theorems for d;, and C;,; and
Section 5 reports simulation studies of our estimators.

In slightly different circumstances, Hill (1975) proposed a simple and attractive
sequential decision procedure for estimating r. In Section 2, we consider this
procedure in detail and show that at least for large samples, it is not appropriate
for models like (1.1). We conclude this section by giving an heuristic argument
describing why the procedure fails to give satisfactory results.

Large-sample properties of &, and C, are based on the fact that rescaled
logarithms of ratios of extreme order statistics, specifically

As = oS log(Xn,s+l/an)’

are approximately distributed as centered exponential variables. The approxi-
mation is very good for r close to 1, but deteriorates as r increases. Indeed,
it is largely for this reason that performance of the estimators «, and C,
becomes worse as r increases beyond the optimum, r,. Therefore we might
carry out a sequence of goodness-of-fit tests on the “exponential” samples
S ={A;,1 =s=r}, r=1, and stop when the samples start to fail the test. We
could take 7y equal to the largest value of r which provides a satisfactory
exponential fit. However, the deterioration of the exponential approximation is
very gradual. As r increases beyond ro,, we are adding a small number of
nonexponential “drops” to an “ocean” of very nearly exponential random vari-
ables A; in 4. We must add a very large number before the nonexponential A;’s
become sufficiently many to swamp the nearly exponential values and lead us to
reject the hypothesis of exponentiality. By that time, we will have substantially
overestimated ro. This type of behaviour is described quantitatively in Section 2,
where for the sake of simplicity we consider a single test, rather than a sequential
test. It is easy to see that if a single test fails to pick up the fact that r is an order
of magnitude too large, then the sequential test will lead us to overestimate ro.

2. Goodness-of-fit approach. Hill (1975) suggested an approach to esti-
mating ro which is based on sequentially testing appropriate functions of the
observations for exponentiality. Qur aim in this section is to show that Hill’s
method does not perform well in the case of models like (1.1). We choose a simple
special case of (1.1) and treat it in detail. We stress that versions of the results
below can be derived in a very general context, although with more complicated

analysis.
For simplicity assume that
2.1) F'u)=u@l+u) for 0<u =< u,

some uo > 0. This entails F(x) = x{l —x+ O(x*)} asx | 0. Thus,a =8=C=1,
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and the “optimal” r in the sense of minimising integrated square error, is r = ry
= 213323 (see Hall, 1982). We draw an independent n-sample from this distri-
bution and denote the order statistics by X,,; < --- < X,,,.. For each n set

(2.2) Y; = Yi(n) = i log(Xpis1/Xw), 1<isr,

and Y = r'Y%, Y. If the factor (1 + u) were to be omitted from (2.1) then the
variables Y;, 1 =i =< r, would be independent and exponentially distributed. Hill
(1975) suggested increasing r until Y;, -- -, Y, fail a test for exponentiality. We
fix the sample size and investigate the asymptotic effect which nonexponentiality
has on the procedure.

There is of course a wide variety of statistics which can be used to test
exponentiality. We chose to avoid the chi-squared goodness-of-fit test so as not
to become involved in the controversy over the choice of cells. Instead, we
examined the well-known statistics considered by Bartholomew (1957), Proschan
and Pyke (1964) and other authors. Bartholomew’s results show that of the three
statistics he examines, the quantity

(2.3) S=Y?2YL, Y?

is the most sensitive to departure from exponentiality in the upper tail. The
statistic S admits comparatively simple asymptotic analysis, and in our case is
equivalent to the statistic H™ suggested by Hill (1975, page 1172). For these
reasons we concentrate on S.

The main result of this section is the following theorem.

THEOREM 2.1 Define S as in (2.3), using the Y;s given in (2.2). Assume
r=r(n) = o(n*®) as n — », and that r — . Then one may write

(2.4) S =8, + 0,(r'/?,

where Sy has the distribution S would have under the null hypothesis of exponen-
tiality.

It may be proved that r~*/2(S, — 2r) is asymptotically normally distributed
with finite nonzero variance; see Proschan and Pyke (1964) for a unified account
of limit theory for statistics like S. The remainder term in (2.4) is of smaller
order than r'/2, and so for r ~ An®, with 0 < y < %, the chance of rejecting the
null hypothesis in an asymptotic test of exponentiality will converge to the
significance lével of the test. Since the optimal r is of order n?3, this approach
to selecting r is likely to result in r of too large an order of magnitude. The test
is certainly of no benefit in selecting the right multiplicative constant in the
optimal formula, r ~ \n?3,

ProoF oF THEOREM 2.1. In view of (2.1), X,; = U,;(1 + U,;) for uniform
order statistics U,;. Moreover, by Rényi’s representation of order statistics (see
David, 1981, page 21), we may write

U, = exp{—E}‘:{“ Zj/(n —j+ 1}, 1=i=n,

where Z,, ..., Z, are independent exponential random variables. Then we may
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write (2.2) as
Y, =Z, i1 + iflog(1 + Uy,isq) — log(1 + Uni)}
=Znin1 + 1(Upir — Un)(1 + Uk) 7,

where U}, lies between U,; and Upiv1. Let Y = (Y3, -+, Y,), Y=r7' 3L, Y;
Z=ZnZny, yZpnr)and Z=r"1¥";Z, ;+,. Expanding S(Y), defined in
(2.3), in a Taylor expansion about Z and writing S, = S(Z), we obtain

S(Y) = So + Tl,- + R,,

(2.5)

where
Ty = Yia Qi(z)(Yi = Zn-i+1),

R, =% Y, 2;'=1 Qij(Y*)(Yi - Zn—i+1)(Yj - Zn—j+1)1
g:(Y) = 8S(Y)/aY; = 2Y%(Y,¥Y = r* 3}, Y),
Q;(Y) = 8°S(Y)/8Y.9Y;
=2Y43r 2 ey Y7 — 2r'YY, — 2r'YY; + I =) VY
and the ith element of Y* lies between Y; and Z,_,.,. In view of (2.5),
| Y*=Z| = r ' iy i(Unis1 — Un) = Op(r/n)
and
P2 (i Y)W = Bkt Z3-ien) V2
< [r! Tkt ({Unier — Un)}1Y? = Op(r/n).
Therefore
1Qi(Y*) | = O,(Ir™ (L + Yi + Yj + Znin1 + Znojur) + 16 = )}
uniformly in 1 < i, j < r, whence
IRl = Op(V[Ticy Zjma r A+ Yo+ Y + Znmina + Znjn) + 10 =)}

* i(Un,i+1 - Uni)j(Un,j+1 - Unj)]
= 0p(r3/n2),

Thus, we have
(2.6) . S =8, + Ty, + O,(r®/n?.
Let T = Yie1 qi(2)i(Upjivs — Upni)(1 + Upiv1) 7. Since
|1+ U™ = (1 + Upie) ™| < 2(Unins — Un),
then
| Ty = Tor| = 2 Bie1 | gi(2) | i(Unjins — Uni)®
(2.7) = 0,(1) i1 1 + Zp—i41)i(Upjiva — Uni)?
= 0,(r*/n?).



PARAMETERS OF REGULAR VARIATION 335

From the inequality | x™*(1 — e™) — 1| < x, we obtain
Unis1 = Uni = Upin{l — exp(—Zn-i+1/1)}
= Upi+1(Zn-i+1/D)(1 + Rini),
where | Rini| < Zn_i+1/i. Furthermore, supi<i<n(n/i)Un; = Op(1). Thus, with
Ts = Yie1 @(Z)Unii1Zn-is1(1 + Unin1) ™!

and
Te = Yi=1 G(Z)Univ1Zn-is1,
we have
| Tor = T3l = Xie1 | qi(Z) | Uy, i+1Z5-is1/l
28 = 0,(1/n) i1 (1 + Zn-is1)Z3mir1 = Op(r/n)
and
| Tsr — Tar| < Tie1 | Gi(Z) | Unis1Zp-ina

(2.9)

= 0,(1/n%) Tie1 2 + Zn-is1)Zn-is1 = 0p(r®/n?).
Combining (2.6)-(2.9), we have
(2.10) S = 8o + Ty + O,(r®/n?).
Next we show that Ty, = O,(r*?/n). Note that with
;= exp{—Y % 1/(n — j + 1)} = Mi/n,
Uni = cmexp{ SEf(Z—1)/(n—j+ D} = cu(l + Roni),

where
- zi-1 ||
| Roni| = l Py J 1 exp‘lsuP1<k<n T 1
- i— 1
B
uniformly in i. Hence
| Uni = cuil = 0,(1)G/n) | T3 (Zj— 1)/(n—=Jj + 1),
so with Ts, = 35—y qi(Z)cniZn—i+1, We have
Z;—1
|T4r T5r| = 0 (1) 2 =1 (1 + Zn l+l)Zn—l+1(l‘/n) 2 —_J_}ﬁ ‘
(2.11)
= Op[n™" Tie1 (T 1/(n — j + DA = 0p,(r°?/n).
Furthermore, since r*/2|Z — 1| + r'/2 | r™* $ie1 Z3—i+1— 2| = Op(1), then
(212) \ T5r = ;=1 (Zn—i+1 - 2)Zn—i+lcni + Op(r3/2n—l).

From (2.11) and (2.12) we obtain T4, = O,(r*?n™"), and combining this estimate
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with (2.10), we have S = S, + 0,(r**/n + r/n?). If r = 0(n*®) then the remainder
here is 0,(r'/?), which proves Theorem 2.1.

3. Invariance principles. In this section we derive invariance principles
for &, and C,. These results are applied in Section 4 to yield limit theorems for
@z, and é;o.

Let H = [hy, hy], where 0 < h; < hy < ®, and write r = r(h, n) = [hn%/+1)]
(the integer part of hn2/?»*Y) Consider the stochastic processes

A} (h) = n?/®* (g, — a)
and
Cx(h) = n”®*Y(log n)(C, - C),
where p = /a, h € H and &, and C, are defined in (1:2). Define
G(h) = W(h)/h + DC™*p(1 + p)'h*,

where W(-) is standard Brownian mgtion. We prove weak convergence of A}
and C} to G in the Skorohod topology on D[k, h.].

THEOREM 3.1. If (1.1) holds, then A}(.) converges weakly to aG(-) and
C*(-) converges weakly to C(2p + 1)7'G(-) as n — .

ProOF. We shall need
LEMMA 3.1. Let {Z;} be independent exponential random variables. If
r=r(h,n) =[hm], h € H, with m = m(n) — © and m/n — 0, then
(3.1) exp—p X7 Zi/(n — j + )] = (r/n)*{1 + Ai(r)}
and
n-~r Zj [ -1 r—1 n—i Zj
3.2) eXp[ o X7 —— 1}11 r7t YiZo exp| —p X Sn-r+1 ————1
= p(1 + p) X r/n)*f1 + Aqx(r)}.

where supen| Ar) | = 0,(m %),/ =1, 2.

PROOF. Lét S, = Y%7 (Z;—1)/(n—j+ 1). Then
exp[—p X Zi/(n — j + 1)] = (r/n)*{1 + Ai(r)},

where | Ay(r)| < M[r™* + |S,| exp{p|S:|}]. It follows from the invariance
principle for tail sequences (see for example, Heyde, 1977) that

(3-3) SuphEHrl/ZI Srl = Op(l)y

as n — o, and so (3.1) obtains.
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Next, write
Sy =X (Z;— D/(n—j+1)

HEZ-D/n-j+) -2 EZ-D)/n-j+1) =8:~85,
ands,; = X', j7", for i < r. By the invariance principle for tail sequences again,
(3.4) SUPosizn-1(i + 1)¥*| Sni| = Op(1),
as n — . Also, as n — o,

(3.5) suprerr™ X268 (0 + )7V + 1)/r} = O(m™?)
and

(3.6) Suphenr ™ Tig {0+ D/r)? = (1 + p)7' 4 O(m™).
Hence, by (3.3)-(3.6),

(3.7) suprenr™ LI {0 + 1)/r}?| Sl = Op(m™?),

as n — o, Now with | R;;| < M| Sy| exp{p | S:l},
r~! Yiss exp{—p z}:rf—r+l Zij/(n —j + 1)}
= r7! 3128 exp(—ps)(1 + Ry)
(3.8)
=r7 T2 (@ + /e[l + O{G + D7THIA + Ra)
=(1+p) + A(r),

where supren| A(r) | = 0,(m™*/2), by (3.6) and (3.7). Condition (3.2) obtains from
(3.1) and (3.8).

To continue the proof of Theorem 3.1, observe that for a distribution function
F satisfying (1.1), we have

(3.9) log F~'(e™®) = log C~ Ve — a Yz + DC™*e™" + o(e™")},

as z — . Let {Z;} be standard exponential random variables. Using Rényi’s
representation of order statistics we may write

(3.10) Xni = F{expl= 25" Z/(n = j+ D)}, 1<isn
Combining (1.2), (3.9) and (3.10) we have
nPlC g (471 — oY)
= nOr o S S 2/ =+ D) = S5 B =+ 1) = 1]
— n?/®*VDCexp{—p Tj={ Zi/(n = j + 1)}
1= X5 expl—p X1 Zi/(n — j + D}l + Ru(r),
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where suppen| Ri(r) | = 0,(1), by Lemma 3.1. Applying Lemma 3.1,
np/(2p+l)a(&r—l - a—l)
=h7TIn e 3n 1 (Zj— 1) = DC (1 + p)'h* + Ra(r),
where supien| R2(r) | = 0,(1).
It follows from Donsker’s theorem that n™"/®+) ¥ _ ., (Z; — 1) converges

weakly to W(.), and hence that n”**Vq(a;' — a™!) converges weakly to
—G(-). Thus A} (-) converges weakly to aG(-). Finally,

n@*(log n)"Y(log €, — log C) = a™}(2p + 1)'A¥(k) + Rs(r),

where supsen| R3(r) | = 0p(1), and so Theorem 3.1 is proved.

4. Adaptive estimates. The invariance principles of Theorem 3.1 lead
immediately to the following limit theorems for &; and C:, in which 7 denotes a
random variable taking integer values.

THEOREM 4.1. If condition (1.1) holds, if r = r(n) = [\n?*/®*V] and #/r —> 1
in probability, then

n?/® (& - o) — aZ

and
n#/@+ ) (Jog n) G - C) —» C2p+1)'Z

in distribution as n — o, where Z denotes a normal variable with mean
DC~*p(1 + p)\* and variance \ 1.

Note that the mean square error of each limit distribution in Theorem 4.1 is
minimized by taking A = Ao = {C%(1 + p)?%/2D?%p3}/@+1),

Theorem 4.1 holds very generally, in that it requires no assumptions about
the nature of the random sequence 7, other than that #/r — 1 in probability.
During the remainder of this section we develop a specific estimate, 7, of ro =
Aon?/@+1) Then we may deduce from Theorem 4.1 that the adaptive estimators
az, and C;, perform as well as &, and C,,, in the sense of minimizing asymptotic
mean square error.

Distributions satisfying condition (1.1) usually arise as

(i) powers of smooth distributions, i.e. of distributions admitting a Taylor
series expansion of at least three terms about the origin; or

(ii) extreme value distributions F(x) = e, x > 0, or stable distributions
with index 0 < a < 1; or

(iii) stable distributions with index 1 < o < 2.

In the first case p will usually equal 1, but may equal 2 if F”(0) = 0. In the second
case p = 1, and in the third case, %2 < p < 1. (These inequalities also hold in



PARAMETERS OF REGULAR VARIATION 339

many cases where a = 1.) Thus for all the above cases, p € (%, 2]. In fact, usually
p € (%, 1], and we often have p = 1. Thus it is reasonable to assume that we
know a (possibly conservative) interval (p;, p2) such that p € (p1, p2)-

We now describe our estimators of p and \Ao. Suppose we know that
p E (pl, pz). Choose 0 < ¢ < 2p1/(2p1 + 1) and 2p2/(2p2 + 1) < <7< 1 such
that 2p,(1 — 71) < 0. Set s = [n°], t; = [n™] and &, = [n"?]. With &, defined as in
(1.2), set

p = |log| (&, — &)/(a&, — &) |/log(t:/tz) |
and

Ao = | &:/(2)*(n/t)*(bs, — @) |7 ®*D,
Then put

Fo = [f\onzﬁ/(zfsﬂ)l

THEOREM 4.2. With the above definition of o, we have ry/ro— 1 in probability
as n— o,

PrOOF. It follows from the definition of s, t; and ¢, that s — o, s/n?/@*1) _;
0, tj/n — 0, tj/n?*/®*) 5 0 (j = 1, 2) and n*/t§s'?> — 0 as n — . It follows
from Theorem 2 of Hall (1982) that

& — a = 0,(s2)

and

&, — a=aDCp(1 + p)7(t;/n)*{1 + 0p(1)}, j=1,2.
Therefore

(&, — 6)/ (G, — @) = (t1/t2)*{1 + 05(1) + Op(n*/t3s"?)}

= (t/t2)*{1 + 0, (1)},
so that
p = p + opf(log n) 7'}

Hence

{26/(26 + 1) — 2p/(2p + 1)}log n = 0,(1),

which implies that
n2°/(2+1) /nzp/(2p+1) -1

in probability, as n — . Next, notice that
(n/t1)" (s, — &5)/ds = (n/t1)*{(@y, — a)/a + Op(s™?)}

=DC™p(1 + p) 1 + 0,(1)},
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TABLE 5.1
Relative root mean squared errors (RMSE) of estimators of a = 1 estimated from 200 samples.
Sample size n 50 100 200 500

RMSE (THEOR) 235 .187 .148 .109
RMSE (THEOR)/RMSE (a = a):

r KNOWN 1.11 1.18 1.16 1.09

p» KNOWN .66 .70 5 81

p UNKNOWN .56 51 .61 .62
whence

log{(n/t1)"(&:, — a&,)/a.} + (p — p)log(n/ty) + Y2 log(2p)
= log{DC™"p(1 + p)~Y} + % log 20 + 0,(1)
= —{(2p + 1)/2}log Ao + 0,(1).

Thus
log Xo — log Ao = 0,(1),

and the result obtains.

5. Simulation results. In order to examine the finite sample properties of
our estimators, a simulation study (200 replications) was performed for samples
of size n = 50, 100, 200 and 500. The samples were generated as follows. Let Y
be an exponential random variable with E(Y) = 1/C. Then X = YY* has a
distribution function F satisfying (1.1) with D = —C/2 and 8 = a. In this case,
p=1and ro = [2n%?] for all « > 0 and C > 0. Notice that for the values of n in
the simulation, ro = 27, 43, 68 and 125 respectively, so that the effective sample
size for estimating o and C is quite small. We restrict attention to the case
«a =1 and consider separately the situations where r is known, where p is known
and where p is unknown.

In the case where p is known, we set s = [n%¢] and ¢t = [n°%], while in the case
where p is unknown we put s = [n%%], t; = [n°?] and t, = [n°®®]. The results are
given in Table 5.1, which lists first the root mean squared error (RMSE) of
(e — 1) predicted by Theorem 2.1, and then the square root of the relative
efficiencies.

When r is unknown, the performance of & depends on both n and the extent
of knowledge about p. The estimator 7, typically underestimates r,, which
increases the variance of &. For the sample sizes considered, the standard
deviation of 7, is of the order of half the mean in each case, and this affects the
performance of &. When p is assumed known, & performs well for moderate
sample sizes.
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