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EDGEWORTH CORRECTED PIVOTAL STATISTICS AND THE
BOOTSTRAP

By LAVY ABRAMOVITCH AND KESAR SINGH!

Rutgers University

A general procedure for multistage modification of pivotal statistics is
developed to improve the normal approximation. Bootstrapping a first stage
modified statistic is shown to be equivalent, in terms of asymptotic order, to
the normal approximation of a second stage modification. Explicit formulae
are given for some basic cases involving independent random samples and
samples drawn without replacement. The Hodges-Lehmann deficiency is
calculated to compare the regular ¢t-statistic with its one-step correction.

1. Introduction and basic ideas. Let 6, be an estimator of a parameter
0r, based on a random sample of size n from the population F. Consider the
pivotal statistic T = (0, — 0r) /v, where v, is the estimated standard error of 4,,.
In order to use a statistic like T to form confidence intervals for 6§, one requires
the sampling distribution of T. Typically T approaches the standard normal
distribution in law as n increases. In many interesting cases, the probability
distribution of T also admits a valid expansion of the following form:

(1) P(T = x) = ®(x) + Tk n™7’pi(F, x)¢(x) + o(n™"?)

where ® and ¢ are the d.f. and the density of the standard normal distribution;
the P/’s are certain polynomials in x whose coefficients depend upon the first few
central moments of F. The number of terms in the expansion depend upon the
number of finite absolute moments of the population F. The remainder term is
typically O (n~**92), Evidently, the knowledge of certain moments of F is required
to use such an expansion for approximating P(T < x). Needless to say, an
experimenter generally does not have this information unless a large scale survey
has been conducted on the population on a previous occasion. The subject of this
paper is the direct and indirect use of Edgeworth expansions to increase the
asymptotic accuracy in situations where the population moments are unknown.
If the population moments are unknown, a natural approach is to substitute
the appropriate sample moments in the r.h.s. of the above expansion. In this
situation, no matter how small the remainder is in the original expansion, the
error term in the resulting expansion after sample substitution is at least O,(n™?),
unless P;(F, x)= 0, in which case it may be smaller. The same asymptotic order
can typically be achieved by bootstrapping T. To be more specific, consider
drawing repeated random samples of size n from the empirical population based
on the original sample and recomputing T for each second stage sample, using
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the original 6, in place of 6 in each case. The histogram of a large number of
these bootstrap values of T generally approximates the true distribution of T
with a remainder of order O,(n™") (see Efron, 1979, Singh, 1981, and Babu and
Singh, 1983, for some background). A third approach to using the expansions
constitutes the main topic of this paper. In this case one tries to modify T so
that the modification does not contain terms of certain higher orders in its
Edgeworth expansion. One interesting feature of this approach is that it can be
used to reduce the remainder beyond O(n™1).

While this manuscript was under preparation the authors came across two
recent publications Hall (1983) and Withers (1983) which are discussed briefly
later in this section.

Part of our approach used in modifying statistics like T is found in Johnson
(1978). Johnson looked at Student’s t-statistic specifically and without formal
justification used a Cornish-Fisher expansion to modify the t-statistic so as to
eliminate the effect of population skewness. Our general procedure, though
different from Johnson’s approach, gives essentially the same result when applied
to the first step correction of Student’s t-statistic. In addition, our general
procedure immediately suggests higher order corrections and makes the idea of
these modifications clear mathematically. A connection between these modifi-
cations and the bootstrap is also discussed. The basic modification of T is the
topic of Theorem 1.

THEOREM 1. Suppose that T admits an Edgeworth expansion
P(T < x) = ®&(x) + n™?p(F, x) + o(n™?)

uniformly in x, where p(F, x) is a polynomial in x whose coefficients possibly
depend upon F. Let p, be an estimator of p(F, T) which satisfies the condition
that

2) foralle >0, P(|pn—p(F, T)|>¢)=o0(n?
as n — «, Then T, defined as
T,=T+ n %,

has the following Edgeworth expansion.
3) P(T) = x) = ®(x) + o(n™¥?)
uniformly in x. )

REMARK 1. If p(F, x) ié a polynomial in x whose coefficients depend on F
only through its first »r moments, if these coefficients as a function of these

moments have bounded partial derivatives in a neighborhood of the true moments
of F,and [ | X |**** dF <  for any 6 > 0, then

P(|p(F,, T) — p(F, T)| >¢) = o(n™?)

for any ¢ > 0. Here F,, denotes the empirical c.d.f. Thus, in this case, one can
take T, = T + n~Y?p(F,, T).
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All the proofs are deferred. The remainders in (2) and (3) are generally
O(1/n). In fact the Edgeworth expansion of T4, if it exists, typically looks like

®(x) + n7'q(F, x)p(x) + o(n™?).
And Theorem 1 suggests the following second stage corrections:
T, = Ty + n7'Gy,
where ¢, is an estimator of q(F, T,) satisfying
P(|¢n — g(F, T)| >¢) = o(n™)

for any ¢ > 0. Here too, §, can be taken as q(F,, T;) under certain restrictions.
T, will not have a 1/n term in its own Edgeworth expansion. Theoretically this
process can be carried out up to k-terms. However, with moderate sample
practicality in mind it is probably not worth going beyond a two-step correction.
The reason for this is that higher order corrections involve estimation of higher
order moments. As is generally known, these are hard to estimate with reasonable
accuracy. In Section 2, certain variations of T, and T are discussed which may
improve performance in the case of moderate sample size.

Is there any gain to be made in bootstrapping T, or T, instead of using the
standard normal approximation? The answer turns out to be an encouraging
“yes”. The standard normal approximation to the distribution of T} is valid with
a remainder of order o(n~'/?), whereas the bootstrap distribution of T, approxi-
mates its true distribution with an error term o(n™"); thus the bootstrap gives an
extra step of accuracy. This fact is due to the bootstrap distribution of T, having
the Edgeworth expansion

®(x) + n7iq(F,, x)¢p(x) + o(n?) = &(x) + n"q(F, x)¢(x) + o(n™!) (as.).

The validity of this expansion for the bootstrap distribution usually does not
require additional assumptions because all the requirements on F, are guaranteed
for all large n by the same requirements on F. Thus bootstrapping T, basically
amounts to a second-stage correction. This is an important fact, since it is usually
very tedious to get hold of the exact expression for T%. It is comforting to know
that the asymptotic accuracy achieved by the normal approximation of T is also
obtained by a computer-based alternative, namely, bootstrapping 7. Thus boot-
strapping amounts to substitution of certain tedious analytical computations by
the computer’s brute force! Indeed, bootstrapping 7> amounts to a third-stage
correction.

The methods in this paper can be used to construct confidence intervals for
6r which keep the same kind of asymptotic precision as discussed above for
confidence levels. Let —z,, = ®7'(a/2) for some a € (0, %), so that z,, =
®71(1 —a/2). Let us confine ourselves to the case Ty, = T + n~?p(F,, T). Define

Ay = 2472 — n_l/zp(Fny za/2)’

and
Ay = —242 — N VD(Fny = Zap2).
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Then the following result holds:

THEOREM 2. If T admits a one-term Edgeworth expansion and the conditions
of Remark 1 hold, then

(4)  Pr<b,— av,) = P(Ty > zo0) + 0(n""?) = /2 + 0o(n”?)
and
(5)  P(0r> 0, — asv,) = P(Ty < —2.p) + 0(n™V?) = a/2 + o(n7?).

Thus [0, — @1Us, 6, — asv,] is a one-step corrected C.I. which leaves out «/2 +
o(n~2) probability in each tail. Usually, p(F, -) is an even polynomial; thus
P(Fn, 2as2) = p(Fn, —2zas2). In this case, the one-step modified interval has the
same length as the naive C.I. [# — zv,, 6 + 2v,] based on the CLT. Note that
bootstrapping T also leads to essentially the same C.I. though one does not need
to know the polynomial p(F, -) for bootstrapping.

The idea of Theorem 2 can be stretched to obtain a two-step modified C.I.
based on T,. Let us assume that the coefficients of the polynomial q(F, -) are
smooth functions of the initial few moments of F (in the sense of Remark 1).
Assume also that F has sufficiently many moments, so that

T, =T, + n7'q(F,, Ty).
Define
b1 = wy — p(Fn, wo)n™* + p(Fn, wo)p’ (Fn, wo)n™"
and
b2 = w1 — p(Fn, w)n™% + p(Fu, w)p’(Fn, w)n™"

where wy = —2zu2 — q(Fn, —2a2)n™ and we = zu2 — q(Fn, 2a2)n~'. Then
arguments similar to those used for Theorem 2 can be used to show that

P(Or < 6, — byv,) = P(T2 > z40) + 0(n™Y) = a/2 + o(n7Y)

and
P6r > 0, — bovn) = P(T2 < —2ap) + 0(n7?) = a/2 + o(n™).

Thus (8, — byvn, 6 — bov,) is a two-step modified C.I. This interval leaves out
/2 + o(n™Y) probability in each tail. Assuming that p(F, -) is an even polynomial,
we present Table 1 containing information on the length and the coverage
probabilities of the intervals based on T, Ti, and T.. It is assumed that
n~! r(F, -)¢(x) is the second term in the Edgeworth expansion of T.

Thus the first step modification basically distributes the error probability
more evenly over the two sides than the naive one, keeping the same length and
same coverage probability up to O(n™?"). The second stage modification provides
even better balance for the error probabilities, though it may alter the length of
the interval by a O(1/n) amount. However, the increment (decrement) in the
length is accompanied by an appropriate increment (decrement) in the total
coverage probability.
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TABLE 1
C.I. (T C.I. (Th) C.I. (T2)
Length 220/2Un 224/2Un 224/2Un
+ n7q(F, = zas2)
"g(F, za/2)]
+o(n-—-1)
Lower side a/2 + [p(F, — 2op)n~? a/2+n"q(F, — 2.9)¢(x) a/2 +0(n7Y)
probability + n7(F, — 242)]¢(x) +o(n™)
+o(n™)
Upper side a/2 = [P(F, zap)n "2 a/2 = n7q(F, z.2)p(x) /2 +o0(n™Y)
probability + 07 (F, z42)]6(x) +o(n™)
+o(n™)

How do we use the modified statistics for the purpdse of testing a hypothesis
on the parameter of interest 6z? For the sake of argument, let us take Ho:0r = 0
vs. H;:07 > 0. An obvious suggestion would be to compute T; or T, taking 8= 0
and reject Hy iff the computed value exceeds 100(1 — «) percentile of the
approximating distribution (« is the desired level of significance). It turns out
that this straightforward way of using the modified statistics has a serious
drawback. To understand this drawback, let us first note that T typically has
the following form:

=T+ n~Cy(F) + Co(F)T?]

where C,(F) and C,(F) depend upon certain moments of F' (see the specific
forms of T} in the following sections). Consider a case where T is of the form
Vn(fr — 6r)/5(0r) where Var(dr) ~ o%(¢r)/n. Assume that Co(F) < 0 (often,
us(T) ~ Cy(F)/~n, where us(T) stands for the third moment of T). If the true
parameter 0z is > —a(F)/Cy(F) and T is computed taking 6 = 0, it is clear that
T converges to —oo, in probability. In other words, the power of the test described
above converges to zero for all 8r € (—a(F)/C2(F), »)! One way to avoid this
highly undesirable phenomenon is to carry out the tests alternatively as follows:
Construct a confidence interval for 6, one-sided or two-sided depending upon the
problem, using the methods described earlier, and reject H, iff the confidence
interval does not intersect the null hypothesis. Another possible way of avoiding
the above phenomenon (at least in theory) is to reject Hy right away if T' = c,,,
where ¢, is a pos1t1ve sequence — ® s.t. ¢, = o(vn) and Py (T=c,) =o(n™).If
H, is not re_]ected then compute T and compare it with 100( 1 — a) percentile of
the approximating distribution. At present, we do not see much practicality in
the second idea, hence we recommend the use of confidence intervals for carrying
out a test. Note that finer adjustments of the probabilities in each tail of a C.I.
is specially important if the one-sided interval is to be used as the acceptance
region of a one-sided test.

Hall (1983) considers Ty(x) = T+ P(F,, x)/ Vn as a first step modified statistic
depending upon x. Here typically P(T + n~Y2P(F,, x) < x) = ®(x) + o(n™Y?).
Now the Edgeworth expansion of T;(x) can be found for each x. This procedure
can also be repeated to obtain T:(x), also a function of x. Since these modified
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statistics depend upon x, the remainder of the Edgeworth expansions are uniform
only on compact sets, unlike the remainders of 7T; and T5. In his Section 5,
Withers (1983) uses the machinery he develops on Edgeworth expansions to
obtain a statistic A(F,, x), for a given sufficiently regular functional 6 of a suitable
F and a real number x, such that P(\(F,, x) < 0) = ®(x) + O(n™"), for any
r > 0. Thus the result can be used to obtain a confidence interval with coverage
probability a + O(n™"). Our approach of step-by-step modification of pivots and
the use of bootstrap appears to be much more accessible.

In the following section, the case of the ¢-statistic for a general population is
considered. The modifications ¢; and t, are explicitly discussed including the
specific conditions that validate the various Edgeworth expansions involved. Also
discussed is a problem relating to the bias of certain sample moments used in ¢,
and t,. The use of certain jackknifed versions of these statistics is suggested.
Some simulation studies on the distribution of ¢, and ¢, are reported. Also
included in this section is a Hodges-Lehmann deficiency result comparing ¢, and
tf, where tf is the one-step corrected ¢-statistic on a symmetric population. One
of the implications of this result is that “nothing is lost asymptotically” by using
the two-step correction unnecessarily when the population is in fact normal.
Section 3 deals with similar corrections in the case of random sampling without
replacement. Specifically, the Studentized mean and the Studentized ratio esti-
mators are examined. Section 4 deals with Studentized linear combinations of
sample means from two or more independent samples. Finally, Section 5 contains
the essentials of the proofs.

2. Modified t-statistic: z; and t,. Let X;, X,, ---, X, be univariate
observations from a population F whose mean is u. Let o2, y3 and p, denote the
second, third and fourth central moments of F. Define t = Vn(X— u) /%, where

X=n731X; and =731 (Xi—X)"/(n-1).

The first-stage modification of ¢ is given in the following theorem:

THEOREM 3. Assume that F is continuous and has fini_te sixth moment. Define
ty =t + (43/6.3Vn)[2t% + 1] where i3 = n™2 37 (X; — X)2. Then,

Pt <x) = ®(x) + o(n™¥?)
uniformly in x.

We shall see later in this section that the remainder is O(n™!) under stricter
conditions. Theorem 3 is a consequence of Theorem 1 and the following Edge-
worth expansion for ¢, which is valid under the conditions assumed:

P(t = %) = ®(x) + (us/65°Vn) (22" + 1)o(x) + o(n™),

The above Edgeworth expansion easily follows from Bhattacharya and Ghosh
(1978). An outline of the proof is given in the last section.

In the following theorem, we define t, and state the conditions under which
its distribution approximates the standard normal distribution up to a remainder
of the order o(n™?).
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THEOREM 4. Define

b(F,) — 6a(Fn)

2in (88 = 8t) — — a(F )t

to =11 —

where

a(F) = [—254 u? + 168 us0? — 360 o)

1
720
and

b(F) = é‘i‘g [—191 ud + 120 p40? — 252 o).

If F is differentiable in an open interval, where its derivative is strictly positive and
[ x' dF is finite, then

P(t; < x) = &(x) + o(n™)

uniformly in x.

The differentiability condition on F can be replaced by a slightly weaker
condition: F has an absolutely continuous component whose density is strictly
positive on an open interval.

Here too, the main task is to show that ¢; admits an appropriate Edgeworth
expansion (in this case the remainder is o(n™") and the 1/ Vn term is missing).
One can immediately write down ¢, using this expansion and the ideas presented

in the previous section.
That the bootstrap distribution of ¢; approximates its true distribution up to

o(n™Y) is formally stated as

THEOREM 5. Under the same conditions, as assumed in Theorem 3,
n sup.| P*(tye) < x) — P(ti = x)| - 0

where P* denotes probability under the empmcal population F and t is the
statistic t, computed on a random sample of size n from F and using X at the place
of u.

Under the existence of 20 moments and the same differentiability condition
on F, one can show that

/2 sup, | P*(typ) < x) — Pt = x)| > 0

where P*(tys) < x) stands for the bootstrap distribution of ¢..

A question of asymptotic comparison arises in the use of the modified statistic
to. One can specify the size of a test on u up to 0(1/n) using t.. But if the
underlying population is symmetric, one can do the same thing with the one-step
modification ¢} of the t-statistic. Indeed, t} differs from ¢ by O,(n™"). Note that
t¥ uses the knowledge of symmetry whereas ¢, does not. The question then is:
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How do t; and tf compare on symmetric populations if both size and power are
taken into account. This question is investigated in terms of the Hodges-
Lehmann deficiency (a definition of the deficiency is contained in Section 5
where we have sketched a proof of the following theorem). It turns out that the
deficiency is zero if the kurtosis us/0* of F equals 3, t,, is deficient if us/0* > 3
and t¥ is deficient if us/0* < 3. Thus ¢, and tf are equivalent on a normal
population. At present we do not have an heuristic explanation for this result,
which could possibly suggest its generalization to other statistics.

The theorem also deals with the difference in the lengths A(¢;, «) and A(t}, a)
of confidence intervals based on ¢, and t}. The coverage probabilities of both the
intervals are @ + 0(1/n).

THEOREM 6 (a). If F is symmetric and it satisfies the conditions of Theorem
4, then the Hodges-Lehmann Deficiency of t; as compared to t} is given as

Ya(pa/o* — 3)(1 + 2232).
(b) Let \(ts, a) and \(t¥, o) be as mentioned above. Then,

)\(tz, a) - A(tf, a) = n"l [g 22/2 + l Za/z] (E'“3 - 3) Sn + o(n"l).
3 3 04
A simulation study was carried out on the true distributions as well as on the
bootstrap distributions of ¢, t; and t,. The study was done on x % populations with
various degrees of freedom and sample sizes. It was found that the usual sample
estimates of the coefficients of skewness and kurtosis used in computing ¢, and
t, have substantial amount of bias. This tended to contaminate the improvement

TABLE 2
Simulation values for true and bootstrap distributions.

True values based upon 100,000 repetitions with sample size 30. The second entry is the median of 18
bootstrap values. Each bootstrap value is based upon 5,000 resamples. (All entries are in percentages.)

T Normal
Distribution probabilities t ty t2
1 4.67, 3.27 1.67, 1.09 1.93, 1.52
2 5 10.49, 8.45 5.76, 4.27 6.06, 5.09
Xz:“ 95 97.47, 96.61 94.77, 95,32 94.93, 94.52
99 99.79, 99.53 98.95, 99.10 98.94, 98.64
1 2.94, 2.36 1.53, 1.34 1.50, 1.54
2 5 8.15, 6.98 5.62, 5.04 5.49, 5.50
Xs 95 96.42, 95.90 94.62, 95.00 95.19, 94.60
99 99.48, 99.34 98.82, 98.96 99.06, 98.70
1 2.54, 2.08 1.53, 1.24 1.40, 1.56
2 5 7.57, 6.68 5.71, 5.02 5.43, 5.60
X0 95 95.92, 95.44 94.49, 95.06 95.11, 94.72

99 99.32, 99.18 98.72, 98.96 99.04, 98.66
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achieved by t; and t,. To avoid this problem we jackknifed the estimates before
using them in computing ¢, and ¢,. A two-stage jacknifed version of ¢; and t; we
used in this simulation study; the jackknifed versions are denoted by t,(J;) and
ta(J2). In general the improvement from ¢ to t; was found to be substantial, while
the further improvement from ¢, to t, was less substantial. For small sample sizes
and large skewness, there were cases where t; and ¢, departed from normality by
about the same amount or ¢, departed slightly more.

Table 2 contains ¢, t;(J2) and t2(<J5) of sample size 30 for three x 2 populations.
We have tabulated the true distribution function and its bootstrap approximation
at four normal percentiles. All the entries are in percentages. The first entry in
each box is the true distribution based on 100,000 replications and the second
one is the bootstrap approximation, median taken over 18 samples (5,000 boot-
strap values for each sample). An appreciable amount of variability was found in
the bootstrap approximations from sample to sample; however, the median value
tended to beat the normal approximation, especially when the discrepancy
between the true value and the normal approximation was substantial.

3. Modifications in the case of random sampling without replace-
ment. Consider a finite population consisting of N distinguishable units
Uy, U,, ..., Uy. Let Y be a univariate characteristic whose value for U; is Y.
Let Fy denote the d.f. which assigns mass 1/N to each of Y;s. The following
notation is also used below:

un=N23VY;, ok =NT13V (Y — un)?

and
pan = N2 IV (Y, — un)® for any real a > 2.

Suppose a random sample of size n is drawn from the population without
replacement and the measurements on the sampled units are found to be
Y1, ¥e, « + +, ¥n. The following version of t-statistic is often used for the purpose of
inference on uy:

Vn(3 — un)
t,=-—"——=—— (t, = t-statistics in sample surveys
1=-p", ( i p ys)

where y = (1/n) 3% v;, 2[1/(n —1)] 37 (1 — ¥)? and p = (n/N). The classical
CLT of Erdos and Renyi can be used to show that under certain conditions
P(t; = x) —» ®(x) as (n, N — n) — ., In order to obtain the modified version of
ts, which eliminates the effect of population skewness, a one-term Edgeworth
expansion for ¢, is required. We borrow such a result from Babu and Singh (1982)
(BS) to obtain ;.

THEOREM 7. If n — oo, n/N < Y4, ug+s,n is bounded for some 6 > 0 and F,
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converges weakly to a continuous distribution, then

P(t, < s)

1 ,ua,N[
=®(x) + —=—5|3+* -
(x) ol ol x

ON

1-2p
1-p

(x* — 1)](1 — p)%¢(x) + o(n71?)

uniformly in x. Thus, if we define

1 ﬁaN[ 1-2p ]
ton =t + —= o |3t2 — —= (t2 - 1) |(1 — p)*/4,
1 ol 5% 1_p( )1 = p)

then,
Vn sup.er | P(ts1 < x) — ®(x)| — 0.

For a bootstrap method which approximates the true distribution of ¢, up to
o(n~Y?), see BS. It is not known to the authors if the condition Fy converges
weakly to a smooth distribution is sufficient for the Edgeworth expansion of ¢,
up to o(n™?!). The expansion would hold if we assume a superpopulation model,
i.e., Fy is the empirical d.f. of a random sample of size N from a population F,
where F satisfies the conditions of Theorém 4.

The formula for ¢, in terms of ¢,; would be the same as that for ¢, in terms
of t;, provided we ignore the terms of order O(1/N).

Finally, we consider in this section the ratio estimators used in sample surveys.
Suppose, we have an auxiliary variable W, whose population values are W, W,
..., Wy and the sample values are w;, ws, - - -, w,. The ratio estimator of uy is
defined as Wr where

r=(Ity/Itw;) and W=N713Y¥W;
W is assumed known. The generally used pivotal version of the estimator is
(recall that p = n/N)

r* = W¥n(r — R)/[(1 — p)n™" 32 (3 — rw;)?]?

where R is the population ratio (XV Yi/I¥ W;). For the validity of one-term
Edgeworth expansion of r*, in view of the theory in BS, one needs to assume
that the 6 + § absolute moment of the vector (Y, W) is bounded and also that
the population satisfies one of the following two conditions:

(1) The joint population of (Y, W) has a weak limit which has a nonzero
absolutely continuous component.

(2) The joint population of (Y, W) has a weak limit whose marginal corre-
sponding to Y is continuous and whose marginal corresponding to Z is lattice.

Note that condition (2) above is suitable in the cases where the variable under
study is continuous and the auxiliary information is some discrete measurement.
For instance, in an agricultural experiment, Y could be the yield and W could be
the number of times the plots are irrigated. Assuming the validity of the one-
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term Edgeworth expansion, the one-step correction of r* is given as follows:

* — gk I r* a 2p)
rf=r J-ll( )2 — ];l-(“l-—---ZII(A',—rw)3

2
— (r*)? [:_Z Y (iw; — rwd) — %L 37 (v — rw;)?

_; X1 (yi = rwy) (wi — w)]}

where v = (1/(n — 1)) X¥ (y; — rw;)*

Here too, the Jackkmfed versions rf(J,) and rf(J,) are expected to improve
the performance of rf. An appropriate way to bootstrap the one-step modified
statistics in the situation of random sampling without replacement is to enlarge
the sample [N/n] times, repeating each sample value [N/n] times, to form a
sample population and resample from this population without replacement.

4. The k-sample mean problem. Suppose that k& independent samples
{ X1, Xigy -+, Xin, 1= 1, 2, - -+, k are drawn from the populations Fy, F,, ---,
F, having means ui, pa, ---, ux. Let the linear combination Y% Zu; be the
parameter of interest. This situation corresponds to comparison of two population
means or to inference on a contrast in the one-way ANOVA situation. In sample
surveys, this situation occurs in the case of stratified sampling, in which case
{Xi1, Xia, -+ -, Xin,} is typically drawn without replacement from the ith stratum
of the population.

Consider first Case 1 where {Xj, - - -, Xi,} are i.i.d. having distribution F;. In
this case, an appropriate version of ¢-statistic is as follows:

= SHAR: - w)/[Sh 2 init S

where X; = n;' 3% X;; and % = (n; — 1) ¥ (X,; — X:)%. Here the one-step
modified statistic ¢, is

t =t + (1s/6vn(5))2F* + 1)
where
n=3Ytn, ¢*=1/n) 3f niwie?, w;= (4n/ny),

;t_s = l Z’f niw?#&ia o} = f (x = Mi)2 dF; and pus; = f (x — /-li)3 dF;.

The estlmates (a)2 and jis are taken to be (1/n) Y% niw?<? and (1/n)
Zl nlwl ﬂS,z where 4 M3, = (n,) 21 Xu X )3
In case 2, consider the stratified sampling situation. Now the ith subsample is
drawn from the finite population F; y, without replacement. Let p; = n;/N; denote
the sampling fraction. The stratified sampling version of above ¢ and ¢, are given
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as follows: (let u; n, denote the mean of F; )
te = 24X — min)/[2F 231 = p)) LH/ni]?

ta = toe + (1/6v0) (5)[Bt2as — (¢% — 1)fis]
where
? =3k n(1 — p)oie?, fs= 1/n)Tk ni(1 — pi)wius,
and
fis = (1/n) T4 ni(1 — p) A = 2p)wius,i.

For technical reasons, we need to assume in the following theorem that n/n;
sSA< oo,

THEOREM 8. Incasel,if [ | x|®dF; < o for each i, one of the F;s is continuous,
then
Vn sup,| P(%; < x) — ®(x)| — 0.

In case 2, if [ | x|%*° dF;n, is bounded for each i and one of the F; /s converges
weakly to a continuous d.f., then

Vn|P(ty < x) — ®(x)| — 0.

The essential arguments behind this theorem are outlined in Section 5. The
second stage corrections in this set-up gets quite cumbersome and we chose to
exclude that part. Of course, the asymptotic accuracy of 2nd stage correction
would be achieved by bootstrapping ¢; or ¢, ;, under suitable conditions.

We expect to return to a similar study of the general ANOVA set-up with
unspecified error distribution.

5. The proofs.
PRrOOF OF THEOREM 1. Let us define T, = T + n~'p(F, T). In view of the
assumed Edgeworth expansion for 7,
P(Ty<=x)=P(T, < x} N {|T| < log n}) + o(n™¥2),

On the set |x| < log n, n(x) = x + n~Y?p(F, x) is an increasing function of x,
after certain n onwards. If x € [n(— log n), n(log n)], it follows that

P({Ty =} N {| T| = log n})
=P({T<x—-n"YpF, x) + o(n)} N {|T| < log n}) = &(x) + o(n™¥?).

Also, T & [n(—log n), n(log n)] implies {| T'| > Y% log n}, after certain n, which
has probability o(n~"?). Thus we have,

Vn sup, | P(T + n"?p(F, T) < x) — ®(x)| — 0.
Now the claim (3) follows using the condition (2).
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REMARK 1. Under the conditions of the remark, it follows using an elemen-
tary argument that, on {| T'| < log n}

{|P(F, T) = p(Fa, T)| > ¢} C Ui {| m; — u! | > ¢/(log n)*}

for some positive real ¢ and k, where m; = n™* 37 X! and u/ = [ x* dF (u/ is the
highest order moment appearing in p). Now the conclusion follows from the

following result.
If &, &, - -, £, are iid. r.v.’s with mean zero and finite (1.5 + §)th moments

for any 4 > 0, then
P(l Z? El' > nC/(log n)k) = O(n_1/2),
This result is obtained by trunking ¢/s at vn and applying Markov’s inequality

on the sum of truncated r.v.’s.

PROOF OF THEOREM 2. On a set with probability 1 — o(n~"/2), the function
7(x) = x + n™?p(F,, x) is strictly increasing in x for | x | < log n, after certain n
onwards. On this set,

{01: < 0,, - alv,,} = {T > al} = {Tl > ﬁ(al)} = {Tl > 2a/2 + n"lA,,}
where | A, | =< ¢ with probability 1 — o(n"*?). The claim (4) follows this. One

proves (5) similarly.

PrOOF oF THEOREM 3. Using §-method, we express t as follows:
t = Vn [Zi/0 = Z1Z/20"] + va(t)

where Z; = (X — u) and Z, = n™* 37 (X; — u)? — o2 and, for every ¢ > 0,
P(|va(t)| > en™Y2) = o(n~"?), so that y.(t) does not matter for the one-term
expansion. Now the Edgeworth expansion for (vVn/o)[Z, — Z,Z,/247 follows
from BG (Bhattacharya and Ghosh, 1978). As for the conditions, one requires
the third absolute moment and the strong nonlatticeness of the vector [(X — ),
(X — u)?. These conditions are easily concluded from the conditions of the
theorem.

The formula for t, is deduced using Theorem 1.

ProOOF OF THEOREM 4. Here too, the main task is to show that ¢; admits an
appropriate Edgeworth expansion. One can immediately write down t, using this
expansion and the ideas presented in the previous section. We express t, as

t = Vngn(Zy, Zs, Zs) + vE(ty)

where Z,, Z, are as defined earlier and Z; = [n7' 37 (X; — u)® — pus),
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P(n|vk(t)| >¢) = o0(n™") and the function g, is given as follows:

1 1
8n(Z1, Zo, Z) = <— - —)Zl -z +
o on 4no

M3 1
+ 603n + —6_0'3 [2M3Z% - 3(72Z1Z2]

1
1647

Thus the problem reduces to the Edgeworth expansion of a trivariate mean. To
this end, we appeal to Theorem 2(a) of BG. Except for the fact that the function
&» depends upon n, all other requirements of the above mentioned theorem is
trivially seen to be satisfied. But the proof of this theorem of BG goes through
for g, without any change, using the fact that the coefficient of Z, in g, is
bounded away from zero. The following moment expansions are used in writing
down the Edgeworth expansion explicitly:

EvVng,=o(nY), Var(vng,) =1+ a(F)/n + o(n™), E(Vng,)’=o(n™),

and

+ [—'12(74Z% - 20[1,3Z¥Z2 + 80'2Z%Z3 + 90’2Z1Z§].

b(F)

E(Vng,)* =3+ =+ o(n™)

where a(F') and b(F') are as defined in the statement of Theorem 3.

PROOF OF THEOREM 5. An Edgeworth expansion up to o(n™') for
P*(tf = x) is carried out, following the proof of the earlier theorem, step by step.
The two statistics tf and ¢, are structurally identical; the only difference lies in
the underlying populations. In the case of t¥ the population is F, a discrete
population!

It suffices to show that F' induces all the required properties in F, asymptoti-
cally, with probability one. Clearly, in view of the SLLN, the first twelve moments
of F' are bounded, for all large n, a.s. The other property which F is required to
possess is an appropriate limiting smoothness. In the expansion of t;, the
differentiability condition assumed on F is actually utilized to deduce that, for
any a > 0,

SUD, <jeyzne | E exp(ity(X — p) + ito(X — p)® + its(X — p)’)| <1
when t = (t1, tz, t3). We have the same bound for Y — X, where Y is a random
sample from F, for all large n a.s. in view of the following:
LEMMA. Let &y, &, - - -, £, be a random sample from a k-variate population,
having a finite first absolute moment. Then, for any a > 0,
supje<ns [N ST exp(i i t-£) — E exp(it-£)| — 0 as.
where t = (ty, tg, - - -, ts).
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_PROOF. Let R,(t) denote [n™* 37 e®% — E(e**)]. First note that, since
e % is bounded by 1 for all ¢, it follows using Markov’s inequality that, for any
e>0,

(5) P(|R.(t)] > ¢) < 4e™

for a 6 > 0. Clearly, one can divide the zone 0 < || ¢t|| = n® into small subzones,
{I;: j € A}, each with diameter < ¢ s.t. the cardinality of A is < K(¢)n**. Now, if
tj e I f then

(6)  supjey<ne| Ra(t)| < maxyjer | Ra(t;)| + 2e[E | &1l + 070 Z2 [ &ll].
Using Bonferroni inequality and (5) it follows that
max..jea | R.(¢;)| = 0 as.

which implies the lemma, utilizing (6) and the fact that E || £, || < o.

PROOF OF THEOREM 6(a). The definition of Hodges-Lehmann deficiency is
briefly stated as follows: Consider a sequence of contiguous alternatives
u + 8/vn. Suppose, the tests t and t;, each at a level a, require sample sizes n
and n + d, respectively to attain a power 8. (It is assumed that the sample sizes
can be thought of as real variables, exteriding the power functions appropriately.)
If d, — d as n — =, d is said to be the deficiency of ¢; relative to ¢.

To express the dependence on the sample size, let us write ¢, for ¢ and ¢, for
t;. Following the arguments of Theorem 4 and evaluating the first four cumulants
of t,under HoEx =pand Hi:Ex = u + 5/~/r—z we deduce (let K, = (us/a* — 3))

Pay(ts = 1) = 3(x) + T3 110 _ 3016() — £ 6(x) + 0(n™)
12n n
PHI(tn <x)=®(x—96) + [K41; 3 (x — 5)3 - 3(x —9)) — %
30K, 1( . 8Ky 8%\
‘T‘E(“T* 2)"‘ )

_8 ((x — 8)2 — 1)] gx=9) o(n™).
2 n

From these two expansions, we derive the expansion for the power of t,, when
the size is fixed at o

1 — Power(t¥)

_ ¢(za - 6) iﬁ_ & K4Z§, K4za 2 & 3 -1
= ®(2, 6)+—n [<4 8 4 6+-—8 6+246 + o(n7h).
We repeat the procedure for t,.q; under Hy:Ex = u and Hy:Ex = u + 6§/ Vn.
These expansions come out to be

1+ K, 1 < 7K,

1 (x3 — 3x) + 3 2 + T)x]n'lqb(x) + o(n™)

Pyy(tntar < x) = &(x) — [
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Pﬂl(tn+d,1 = x)

d
—‘I’(x—&—;;)

1+ K, 3 1 6_2 7K, 1182K,
[ ((—=6)° = 3(x — 8)) + = ( 2+3+ 12 (x — 9)
30 256K, o
S+ S (B + 4K)((x — 6)2 — 1) [n7'¢(x — 8) + o(n7Y).
4 24 6
The power of t,+4,1, when the size is «, is given as follows:
1-Power(t,) = <z -6 - —d—)
2n
22 K, K22 Kz, 2 K, ‘ -1 -1
+[<4+24+12 é+ 3 6+24 n~'¢(z, — 8) + o(n™').

The expression Y5 K(1 + 222) of the deficiency follows from the above two power
expansions.

Proor oF THEOREM 6(b). It follows from the one-term Edgeworth expan-
sions of t and ¢, for a symmetric population that

2|11+ K 1 TK4
Ntz @) = 22ap0n + [ 1 2 (235 — B24) + (2 + ~3—> a/zJ +o(n™)
and
2 K, —
AMEF, o) = 22,0, + - [— 412 3 (232 — 324p2) + za/z] + o(n™Y).

The claim follows from these expansions.
The results of Section 3 including Theorem 7 are based on the Edgeworth

expansions established in Babu and Singh (82).

PrROOF OF THEOREM 8. The numerator of the k-sample t-statistic can be
written as

\ Zy=n"" Tk T @il Xy — )
where w; = n/l/n, Clearly
= Var(Z,) = (n7! 3k, niw?e?)/n.
The 2-term stochastic expansmn of t looks similar to that of t.

where Z, and & are as defined above and
Zz =n7! E{Ll n,l wj [(Xu - ﬂt - O',]
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Thus the one-term Edgeworth expansion of ¢ reduces to that of a bivariate mean
consisting of k types of independent random variables. If it is assumed that for
each i, (n/n;) = \ < x, i.e. the sample sizes n;'s are of the same order, then it
suffices to assume the strong nonlatticeness of [(Xi — u:), (Xiu — i) for at
least one i, which indeed is implied by the continuity of the corresponding
population. The finiteness of the third absolute moment of the above vector is
required for each i. In order to obtain explicit expression for the correction term,
one needs the following moment expansions:

E(Z, - Z:Z,/25%)(Vn/3) = — (#s/2Vn&%) + o(n7V?),
E(Z, - Z,Z,/26%%n/3®) = 1 + o(n™?)
and
E[(Z: — (Z:Z,/25%))(Nn/é) + (is/2Vna®d)P = —2(s/Vn &9).

The arguments in the stratified sampling case are exactly similar.
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