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ASYMPTOTIC PROPERTIES OF w, AN ESTIMATOR OF THE
ED50 SUGGESTED FOR USE IN UP-AND-DOWN
EXPERIMENTS IN BIO-ASSAY

BY CHRISTOPHER D. KERSHAW
AFRC Unit of Statistics, Edinburgh

Wetherill’s estimator w is asymptotically equivalent to the mean of peaks
and valleys in the sequence of responses in an up-and-down experiment. The
asymptotic distribution of w is derived and the asymptotic variance expression
is simplified. Some values of asymptotic means and variances are calculated
for logistic response. They are compared with analogous values for the
estimator suggested by Dixon and Mood. These estimators are also compared
by some computer simulation. For the conditions investigated, Dixon and
Mood’s estimator is to be preferred to . *

1. Introduction. Inthe up-and-down method binary response observations
are made sequentially. The rule followed is that if the response at the current
level is positive then the next observation is made at some fixed distance d below
this level, otherwise it is made at d above. This method has been used in bio-
assay where it is assumed that the probability of positive response increases
monotonically with stimulus level. Some of the earliest references to this method
are in Dixon and Mood (1948) and Brownlee, Hodges and Rosenblatt (1953).
They suggest that one should use, as approximate estimators for the ED50,
estimators which are asymptotically equivalent to the mean of the levels visited
(in the following this is referred to as the mean level estimator).

Tsutakawa (1967a) gives conditions under which such estimators are asymp-
totically normally distributed and derives expressions for the asymptotic mean
and variance of these estimators. Wetherill (1966) and Wetherill, Chen and
Vasudeva (1966) discuss another estimator w. They say that an intuitive esti-
mator of the ED50 is the level midway between any two consecutive levels visited
for which responses are of opposite sign. The estimator w is just the unweighted
mean of all such estimates from an experiment. This estimator is asymptotically
equivalent to the mean of the peaks and valleys in the sequence of levels visited
(see Choi, 1971), where a peak is defined as a level reached from below at which
there is a positive response, and a valley is a level reached from above at which
there is a negative response. To find the asymptotic expectation of this estimator,
Wetherill et al. suggest that one should view the process as a Markov chain of
alternating peaks and valleys. They make a finite Markov chain approximation
to the process and then find approximations to the equilibrium probabilities for
the states by calculating eigen vectors for two matrices. They remark that the
matrices are often ill conditioned and that it is difficult to obtain accurate eigen
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vectors. Choi also adopts this approach and in an appendix finds an expression
for the variance of w in small samples. These papers do not give an expression
for the asymptotic variance of w. Theorems 1 and 2 in Section 2 obtain asymptotic
expressions for the expectation and variance of w, and in Section 3 the asymptotic
variance expression is simplified.

2. The asymptotic distribution of wv. In the following the response curve
is assumed to be monotonic increasing, and to take values above and below %.
Suppose the starting level in an up-and-down experiment is x,. The stimulus
levels that can be visited are x;, for some integer i, where

(21) X; = Xo + id.

Suppose the probability of positive response at x; is F;. The sequence of levels
visited in operating the up-and-down rule can be thought of as states visited in
a Markov chain with transition probabilities of moving from x; to x;+1 or x;_;
being 1 — F; and F; respectively. Under the conditions that have been assumed,
it is easy to show that the states form a positive class with some equilibrium
distribution {II;}, where the II; satisfy the equation of the form

(2.2) IL(1 — F;)) = D1 Fisa.

Tsutakawa’s method to find the asymptotic distribution of the mean of the levels
visited is to regard the sum of the levels visited as a functional on this Markov
chain. In deriving the asymptotic distribution for i, it is useful to consider the
following Markov chain in which the state of being at level «; is further subdivided
into states (x;, ), where § = 1, 2, 3 or 4. State (x;, 1) is entered when level x; is
reached from x;_; and the level two steps before was x;, (x;, 2) is entered if instead
this level was x;_,. State (x;, 3) is entered when level x; is reached from x;,; and
the level two steps before was x;; (x;, 4) is entered if instead this level was x;.o.
The equilibrium probability of being in state (x;, §) will be denoted by ;5. From
states (x;, 1) and (x;, 2), one moves at the next step to states (x;—;, 3) or
(x;41, 2) with probabilities F; and (1 —F;); from states (x;, 3) and (x;, 4), one
moves at the next step to states (x;—1, 4) or (x;+1, 1) again with probabilities F; and
(1 — F,). For all of these states the level visited two steps previously is known.
Expression for the ; in terms of the II; can be easily derived. To reach state
(x;, 1) one must be at level x; two steps before and take a step down followed by
a step up. The equilibrium probability of being at x; is II; and there is probability
of moving into state (x;, 1) after two steps of F;(1 — F;_), so m;; is given by

(2.3) ma = Fi(1 — Fi_))IL.

By similar arguments w5, ;3 and m; are given by

(2.4) iz = (1 — Fi2)(1 — Fiy)Iiy,
(2.5) w3 = (1 — F;)Fia 11,

(2.6) i = FipoFip1 Iiys.
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State (x;+1,,) is reached if and only if one has just arrived at x;., from a valley of
x;; state (x;_,3) is reached if and only if one has just arrived at x;_; from a peak
at x;. Wetherill et al. derived equations for equilibrium probabilities for the
Markov chain of alternating peaks and valleys. They tried to solve these equations
by finding eigenvalues of matrices. If in their equations they had substituted the
expressions for ;.1; and m;_; 3 for the equilibrium probabilities for valleys and
peaks at x;, they would have found after a short amount of calculation that these
values are proportional to the unique solutions of the equations.
Define

2.7) gx;,0)=x;,—p if =1 or 3,

(2.8) g(x;,0) =0 if =2 or 4,

where

(2.9) P = Xjs=13 TjsXi/ Ljo=13 Tjo-

Suppose that (yr, 07), for T =1, ---, n, are the first n states visited in this

Markov chain (here n + 1 observations are made; yr equals the level that would
be moved to following T' + 1 observations). In Theorem 1 the asymptotic
distribution of the mean of the values of g(yr, 67) is derived. In Theorem 2 this
result is used to derive the asymptotic distribution of @ and it is shown that p is
the asymptotic expectation of w.

THEOREM 1. Y%, g(yr, 07)/n has an asymptotic N(0, U/n) distribution,
where

U=Y,mog(x;,0)*

(2.10)
+ 2 Yo mo8 (%, 0) Dikermiioy Tre&(Xk, &IV, 0, k, ¢)

and
(2~11) U(j, 0’ k, ¢) = M(], 0, i’ 00) + M(l’ 00’ k’ ¢) - M(]’ 0, k, ¢’)

and M(j, 0, k, ¢) is the mean first passage time from state (x;, 0) to (xz, ¢). Any
(i, 8o) such that (x;, 6,) is a possible state can be used in (2.10).

ProoF. This result follows from applying results in Chung (1966). The mean
of the g(yr, 67) is a functional on the Markov chain with states (i, 8).

Consider Y725 g(yr, 6r), where 7 is the time at which there is a first return to
the initial state (y;, ;). From Theorems 5 and 6 on page 87 of Chung it follows
that this sum has expectation 0. Theorem 7 on page 88 of Chung gives an
expression for the expected square of the sum. After using the identity M j =
1/=j, one can deduce that this expectation equals U/x;. The asymptotic nor-
mality of the mean of the g(yr, 6r) follows on applying Theorem 1 on page 99 of
Chung. For the result to hold, absolute convergence of terms in the summations
is required. In Section 3 of this paper it is shown that for a monotonic increasing



88 CHRISTOPHER D. KERSHAW

response curve taking value above and below Y, these sums are absolutely
convergent.

THEOREM 2. The estimator w has an asymptotic N(p, U/q®n) distribution
where

(2.12) q = Yjs=1,3 Tj.

PRrROOF. Y%, g(yr, 67)/n divided by the proportion of times 7 =1 or 3, is
(2.13) (Zj xj()\j+1 + ’Yj—1)/2j0\j + ‘Yj)) - D,

where A; is the number of peaks at x; and v; is the number of valleys. From
Theorem 2 on page 92 of Chung it follows that
(2.14) Plim ¥ ;(\; + v;)/n = q,

where Plim denotes the limit with probability one. It follows that the expression
in (2.13) has an asymptotic N(0, U/q®n) distribution.
From the definition of w

(2.15) w=3; (x+ d/2)(Njs1 + )/ 2i (N + 7))
The numbers of peaks and valleys differ by at most 1 so
(2.16) [Zi N —v)l=1 or 0.

The difference between i — p and the expression in (2.13) is bounded in modulus
by

(2.17) a2y (\+vj),

which tends in probability to 0. So w — p and the expression in (2.13) have the
same asymptotic distribution, that is w also has a N(p, U/q?n) distribution.

The expression for U can be simplified; to do this one must express the
M(j, 0, k, ¢) for 8 and ¢ = 1 or 3 in terms of m;,, where mj, is the mean first
passage time from x; to x;.

3. Simplification of the asymptotic variance expression. Cases where
(xz, ¢) can be reached from (x;, #) in a minimum of one, two or more than two
steps will be considered separately.

CASE 1. States reached in one step. Starting in state (x;, 1) one can move in
one step to (x;_;, 3) with probability F; and to (x;+1, 2) with probability 1 — F;. If
one moves into state (xj4+1, 2), the expected further number of steps taken before
reaching (xj—, 3) is by definition M(j + 1, 2,j — 1, 3), so

(3.1) MG,L,j-1,3)=1+Q-F)MG+1,2j-1,3).
By an exactly similar argument

(3.2) M@, 3,j+1L1)=1+FM(G=1,4,j+1,3)).
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In considering Case 3 (i.e. where a state can only be reached after more than two
steps) expressions for M(j + 1, 2,7 —2,3) and M(j — 1, 4, j + 1, 3) are derived.

CASE 2. States reached in two steps. Starting from state (x;, §) then, whatever
the value of 6, it will take at least two steps to enter either state (x;, 1) or (x;, 3).
The probability of moving to any state from (x;, §) after two steps is independent
of 6, as 6 only gives information about the two steps made before entering (x;, ).
It follows that M (j, 6, j, 1) and M (J, 6 j, 3) are independent of ¢; that is

(3.3) M@, 6,), ¢) = M(j, ¢,J, #) for ¢ =1or3.

CASE 3. States reached in more than two steps. Suppose M(j, 0, k, ¢) is
required where ¢ = 1 or 3. Suppose further that (x;, ¢) cannot be reached from
(%, 8) in one step and also that j # & (i.e. (xx, ¢) cannot be reached in two steps).
Two steps previous to being in state (xx, ¢), one must be at level x, so one must
pass through some state (x;, 3), where 8 # ¢, in the sequence of states visited in
moving from (x;, 8) to (xx, ¢). The first passage time consists of the first passage
time from (x;, #) to any state (xx, 8) plus the first passage time from (x;, 8) to
(x&, ¢). The first of these times is just a first passage time from x; to x, and has
mean my,; from (3.3) the second has mean M (k, ¢, k, ¢) so

(304) M(J, 0’ k’ ¢) = mjk + M(k, ¢’ k7 ¢)°

Formula (3.4) can be used within formulae (3.1) and (3.2), which gives
(3'5) M(], 1,] - ]-, 3) = mjj-1 + (1 - E)(M(] - 1’ 3’.’ - 1’ 3)),
(3.6) M@,3,j+1,1)=mjjm + F(M(G+1,1,j+1,1)).

Expressions (3.3) to (3.6) do simplify calculation of the M(j, 6, k, ¢) as the
M(k, ¢, k, ¢) terms are mean first return times to the states and so equal 1/m,.

In the following the state (i, 6,) used in (2.10) is set equal to (0, 1). When
formula (3.3) and (3.4) apply throughout the expression in (2.9)

(3~7) U(j, 0, k7 ¢) = M(O’ 1’ 0’ 1) + Zjky
where
(3.8) Zjk = (1 = djo)mjo + (1 — dor)mor — (1 — &) M,

and §j is the Kronecker delta. In general a correction will have to be made to
the right-hand side in (3.7) whenever (3.5) or (3.6) have to be used in calculation.
In the following, U is calculated under the assumption that (3.7) always holds
and then the appropriate adjustment to this value is given.

The M(0, 1, 0, 1) term when substituted into the expression (2.10) for U will
vanish because Y, ;s mjsg(x;, 8) = 0. The expression for 2;; can be simplified

0 if j=0 or k=0

0 if j>0>k or k>0>jbecause then mj, + mo. = my
Zr=< mjo+my if 0<j<k or 0>j>kbecause then my; + my. = mp

M + me, if 0<k<j or 0>k>jbecause then mjy + my = my

mjo + my; if ]=k but ]#0.
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So the contribution to U from this term is
Tio a8 (%i0)% + 4To<j<hr<ij<o0s TioTrs&(%j, 0)8(xk, &)(mjo + my;)
+ 23 0,0, wjsmje8 (%;, 0)8(xj, ¢)(mjo + my;).

Harris (1952) shows that for i = 0, (m; + m;) = 1/I1;p;, where p; is the probability
that starting at x; one reaches x, before returning to x;. There exist recurrence
relations for calculating the p; (see T'sutakawa, 1967a).

The first term on the right-hand side of (2.11), when (i, §,) = (0, 1), must be
calculated using (3.6) if (j, ) = (=1, 3). The second must be calculated using
(3.5) if (k, ) = (-1, 3). The third must be calculated using (3.5) or (3.6) when
one of the pair (j, ) and (k, ¢) takes, for some integer r, value (r + 1, 1) and the
other value (r, 3). The adjustment to U due to the first term is

(3.10)  —2w_13(1 — F_;)M(0, 1, 0, 1)g(x_1, 3) Tijms=o,1) o8 (%), 0).

As Y mog(xj, 6) = 0 the summation factor in (8.10) is — m18(xo, 1). The
adjustment to U due to the second term vanishes because Y, ;, mjsg(x;, 8) enters
as a factor into the adjustment. The adjustment to U due to the third term is

2% mpmimaFM(j — 1, 8,7 — 1, 3)g(xj, 1)g(xj-1, 3))
+ 2(¥je1 mismiea (1 — F)M( + .1, 1, j + 1, 1)g(x541, 1)g(x;, 3)).
The term missing in the second summation in (3.11) is just the expression in
(3.10). Simplifying, using the identity M(j, 0, j, 8) = 1/xjs, it follows that the
total adjustment is

(3.12)  2¥; mp Fig(xy, 1)g(xj-1, 3) + 23, mjs(1 — Fj)g(xje1, 1)8(x;5, 3).

From (2.2), (2.3) and (2.5) it follows that mj41,1Fj+1 = 7j3(1 — F;) and that (3.12)
can be simplified to

(3.13) 42] H]FJZ(]. - -Ei—l)cjcj—l,
where ¢; = x; — p. From Theorem 2 and using the expression (3.8) and (3.13)

together with Harris’ result, it follows that @ has an asymptotic N(p, U*/n)
distribution where

U* = (Z; Wicfw;(1 + (2W;/p))
+ 4Z‘,o<i<j,j<i<0 I;cic; WLWI/ i — 2Mocd W3 + 42]’ chicj—lzf))/q2’

and W; = (F;(1 — Fj—1) + (1 — F})Fj+1), Z; = F?(1 — F;_;) and p, is defined as 1.
(Note that p = ¥, II;W;x;/3,; II; W; and g = T; ILW;).

Tsutakawa (1967a) shows that inf;p; > 0. He also shows that the sum of
II;| x;| * over all j is convergent for any positive integer h. From these results it
follows that all the summations that have been considered are absolutely conver-
gent.

It is interesting to compare the expression in (3.14) with the analogous
expression for the mean level estimator given in Tsutakawa (1967b). The ¢; equal
x;j — p; if throughout (3.14), p is replaced by ¥ II;x;, ¢ by 1, W, by —1 and Z; by

(3.8)

(3.11)
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0, then the resulting expression is the asymptotic variance expression for the
mean level estimator. So a program for calculating the asymptotic variance of i
can be easily adopted to calculate that of the mean level estimator.

4. Comparison of v and mean level estimator. The expressions for p
and U* are infinite sums, but the II; are decreasing to zero at least exponentially
as | i| — . The values of p and U* have been calculated for the case where the
response curve is logistic, that is

(4.1) F;=1/(1 + exp(—B(x; — p))).

In the calculations, the sums were truncated 40 steps above and below the level
nearest to u.

From symmetry the asymptotic biases for w for p/d equal to x and —x will, for
all x, be of the same magnitude but opposite sign; the asymptotic variances will
be equal. If u/d equals k + x, for some integer k, then the asymptotic bias and
variance will be the same as when u/d equals x (the scale has been translated
without the phasing of levels being altered). If one knows the bias and variance
for u/d € [0, %2 ) then one can deduce the bias for all u/d values. Table 1 gives
calculated values of biases and variance of i for 3d = 0.25, 0.50, 1.00, 2.00, 3.00,
4.00 and p/d = 0.00, 0.10, 0.20, 0.25, 0.30; 0.40, 0.50 (the biases for u/d = 0.00
and 0.50 are zero; this follows from the symmetry arguments). The remarks
concerning biases and variances for w also apply to the mean level estimator.
Table 2 gives calculated values for the mean level estimator, analogous to those
in Table 1, of biases and variances.

The biases for both estimators are small when d is small. The asymptotic
variance expressions for w are, for the small values of d, slightly above those for
the mean level estimator, and much more dependent on the value of u/d for large
values of d. These calculations appear to contradict the evidence given by
Wetherill (1966) and Wetherill et al. (1966) in that the mean level estimator
appears to have some definite advantages over w. They reported results of
simulations where an estimator suggested by Brownlee et al. (1953) (which is

TABLE 1
Values of asymptotic bias/d and asymptotic variance X 3n for w (where n is the number of observa-
tions). Values of bias/d are 0.000 to 3 decimals for fd = 0.25, 0.50 and 1.00.

6d

u/d 0.25 0.50 1.00 2.00 3.00 4.00
var 82n var 82n var 82n bias/d var 8?n bias/d var 82n bias/d var 8n

0.500 4.428 4.769 5356  0.000 6202 0.000 5.836  0.000 4.660
0.400 4.428 4.769 5356  0.002 6258 0.0156 6.174  0.034 5.313
0.300 4.428 4.769 5356  0.004 6407 0.025 7.111  0.056 7.314
0.250 4.428 4.769 5357 0.004 6499 0026 7.731  0.061 8.798
0.200 4.428 4.769 5357 0.004 6592 0025 8384 0059 10.508
0.100 4.428 4.769 5357 0.002 6.744 0016 9.514 0.038  13.852
0.000 4.428 4.769 5357 0.000 6802 0.000 9972 0.000 15.353
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TABLE 2
Values of asymptotic bias/d and asymptotic variance X 3°n for Epy. Values of bias/d are 0.000 to 3
decimals for 8d = 0.25, 0.50, 1.00 and 2.00.

pd
uld 0.25 0.50 1.00 2.00 3.00 4.00
var 82n varg?n var@°n varp?n bias/d varg:n bias/d varp®n
0.500 4.253 4.514 5.056 6.220 0.000 7.324 0.000 7.879
0.400 4.253 4514 5.056 6.221 0.003 7.361 0.013 8.078
0.300 4,253 4514 5.056 6.224 0.006 7.458 0.021 8.606
0.250 4.253 4514 5.056 6.225 0.006 7.518 0.023 8.941
0.200 4.253 4514 5.056 6.270 0.006 7.518 0.022 9.281
0.100 4.253 4514 5.056 6.230 0.003 7.677 0.013 9.845
0.000 4.253 4.514 5.056 6.231 0.000 7.714 0.000 10.065
TABLE 3

M.s.e.’s of Epyand w from 96 observation experiments, with 2000 simulations per set of conditions,
B = w//3; together with asymptotic predicted m.s.e.’s.

d=0.05 d=0.5 ) d=1.0 d=1.0
100x  100x 4gq, 100X 40, 100X 440, 100X
Start of asymptotic m.s.e. of asymptotic s.e. of asymptotic m.s.e. of asymptotic
m;e. predicted e predicted ) predicted o predicted
DM w Epm w
m.s.e. m.s.e. m.s.e. m.s.e.
0.0 1.50 1.57 1.59 1.66 1.83 1.90 1.99 2.04
0.5 1.62 1.57 1.69 1.66 1.88 1.90 1.88 1.94
1.0 1.59 1.57 1.68 1.66 1.98 1.90 2.10 2.04
1.5 1.68 1.57 1.79 1.66 1.91 1.90 1.94 1.94
2.0 1.65 1.57 1.77 1.66 1.88 1.90 2.06 2.04
2.5 1.78 1.57 1.93 1.66 1.97 1.90 1.98 1.94
3.0 1.72 1.57 1.87 1.66 1.05 1.90 2.21 2.04
3.5 1.84 1.57 1.04 1.66 1.98 1.90 2.03 1.94
4.0 1.76 1.57 1.92 1.66 1.95 1.90 2.15 2.04
d=1.5 d=1.5 d=2.0 d=2.0
100 x
100x  Asymp- 100x 100X = jgg, 100X 44, 100
Start . asymptotic asymptotic asymptotic
m.s.e. of totic pre- m.s.e.of . m.s.e. of . m.s.e. of .
E, dicted Iy predicted Fom predicted _ predicted
oM ms.e m.s.e. m.s.e. m.s.e.
0.0 2.38 2.29 2.87 2.81 2.99 2.87 4.24 4.15
0.5 2.28 2.25 2.17 2.18 2.74 2.75 3.40 3.57
1.0 2.32 2.25 2.25 2.18 2.49 2.46 1.69 1.62
1.5 2.40 2.29 2.87 2.81 2.86 2.75 3.69 3.57
2.0 2.35 2.25 2.25 2.18 3.02 2.87 4.24 4.15
2.5 2.25 2.25 2.25 2.18 2.83 2.75 3.46 3.57
3.0 2.45 2.29 2.94 2.81 2.47 2.46 1.74 1.62
3.5 2.35 2.25 2.24 2.18 2.86 2.75 3.65 3.57

4.0 2.39 2.25 2.35 2.18 3.04 2.87 431 4.15
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asymptotically equivalent to the mean level estimator) usually had higher m.s.e.
(mean square error) than w. Kershaw (1983) also contains results of simulations;
these indicate that the estimator suggested by Dixon and Mood (1948) (which is
also asymptotically equivalent to the mean level estimator) conforms more closely
in small samples to its asymptotic predicted behaviour than the estimator of
Brownlee et al. Experiments were simulated for d = 0.5, 1.0, 1.5 and 2.0 with
starts at 0.00 (0.5) 4.00 and 8 = x/+/3 (this is the value of 3 for which the logistic
tolerance distribution has unit variance). In all, 2000 experiments were simulated
for each set of conditions. Table 3 gives values of m.s.e.’s for Dixon and Mood’s
estimator (denoted by Epy) and w, where experiments consist of 96 observations.
The m.s.e.’s are usually close to the asymptotic predicted values. The m.s.e.’s of
w are always above those of Epy for d = 0.5 and 1.0, and oscillate above and
below m.s.e’s for w for d = 1.5 and 2.0. Here simulations and asymptotic
predictions agree well. Certainly there is no evidence to support the view that w
has any advantages over Epy.

5. Conclusions. There may be situations where the performance of w is
better than Epy;, but calculations of asymptotic properties backed by simulation
results have indicated that there are circumstances where Epy; is to be preferred.
The results given in this paper allow one to explore the asymptotic mean and
variance of w and Epy for a wide variety of response curves. They cannot,
however, be used to give confidence intervals for estimators unless one has a
good estimate of the slope or scale parameter, as the variances and asymptotic
predicted variances are both very dependent on such parameter values.
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