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REGRESSION MODELS WITH INFINITELY MANY
PARAMETERS: CONSISTENCY OF BOUNDED
LINEAR FUNCTIONALS'
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Consider a linear model with infinitely many parameters given by y =
Y&, x0; + ¢ where x = (x;, X3, ---)" and 0 = (6, 05, ---)’ are infinite
dimensional vectors such that Y%, x? < © and Y&, 62 < . Suppose inde-
pendent observations yi, ys, ---, Y. are observed at levels xi, X3, -+, Xp.
Under suitable conditions about the error distribution, the set of all bounded
linear functionals T'(8) for which there exists an estimate 7}, such that T,, —
T(6) in probability will be characterized. An application will be extended to
the nonparametric regression problem where the response curve f is smooth
on the interval [0, 1] in the sense that f has an (m — 1)th derivative that is
absolutely continuous and [§ ™ (¢)? dt < .

1. Introduction. Consider a linear model given by

(11) y = Z:‘;l x,-B,» + = <X, 0) + &,
where the unknown 6 = (6,, 0, - - -)’ and the known x = (x;, xo, - - - )’ are infinite
dimensional vectors in the Hilbert space /% = {(ay, a3, ---)' | Y21 a? < =}

(-, -) denotes the inner product of #% ¢ is the random error satisfying certain
conditions to be specified later. Let ® C #% be the parameter space. (1.1) extends
the scope of the usual linear model where @ is typically a finite dimensional
space.
Suppose we are interested in estimating T'(0) = Y.i2; ¢;0;, for some ¢;, i =1, 2,
.+, with Y%, ¢? < . In standard terminology, T(-) is called a bounded linear

functional on /2. Assume that indepenflent observations y;, Y, -+, Y, are
observed at levels x;, X5, -+, X,,. Let T, be an estimate for 7'(6). From the

asymptotic viewpoint, a minimum requirement for reasonable T, to possess
seems to be T, — T'(6) in probability. However, T, may fail to be consistent
either because it is a poor estimate or because the underlying structure of the
problem (particularly, the behavior of x; sequence) does not admit any consistent
estimates at all. Thus before checking the consistency of any proposed estimate,
one should first examine the intrinsic structure of the given asymptotic setup.
For this purpose, it is desired to obtain a necessary and sufficient condition on
the x; sequence to guarantee the existence of a consistent Tn for T'(0). In Section
2, such conditions will be derived (Theorem 2.1). Under the given model (1.1),
we call T'(.) a consistently-estimable bounded linear (c.e.b.l. hereafter) functional
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for O if there-exists some consistent estimate 7', for T(0), 6.€ ©. Our result shows
that T'(-) is c.e.b.1. if and only if 7'(8) = O for any 6 € O such that ¥, (x;, 0)2
< oo, Further discussion on Theorem 2.1 will be provided in Section 3.

Section 4 is devoted to applying these results to solve a problem in nonpara—
metric regression. Suppose that the response curve fis m — 1 time continuously
differentiable on [0, 1] with f ™~ absolutely continuous and f SF™(8)? dt < o0,
Independent observations y; = f (t) +e,1=1, 2, , n, are made and random
errors ¢;'s.are i.i.d. with the commion dlstribution -possessing a finite Fisher’s
information and a finite variance. The goal is to characterize the set of.all c.e.b.l.
functionals. :In particular, we would like to obtain conditions to determine
whether the kth derivative of f at a point ¢ is c.e.b.l. or not. The:limiting behavior
of the sequence of design points {¢;, ¢, - - -} is crucial here. We call a point t* a
limiting point of degreek for the sequence {t;} if there exists a subsequence {¢/}
of {t;} such that t/ — t*.as i — o and Y2, (t/'= t*)?* = . When k = 0, this is
exactly the usual definition of limiting points. Our result. shows that for 0 < k:=<
m — 1, f®(t*) is c.e.b.l. if and only if t* is a.limiting point of degree k. This
brings up a connection with a result on polynomial regression obtained by Wu
(1980). . . . .

When 0Ois ﬁmte-dlmensmnal (i.e., under the usual linear model), con51stency
for least squares estimates has been studied by -Drygas. (1976) and Wu (1980);
the latter is more relevant to our work here. Wu showed that (2.4)-in Theorem
2.1 was necessary and sufficient for 77, < T(6), where T', is the least squares
estimate for T(6). Note that: for the usual linear model, using the least squares
estimate has been a common-practice. But'in the case that © is infinite dimen-
sional, it is typical that the least squares estimate no longer works: it can fail to
be consistent easily (for examples, see Section 4). Thus it is interesting to observe
that for the finite dimensional 0, if the least squares:estimate is inconsistent,
then no-other estimates can be consistent. For the nonlinear regression models
(with finitely many parameters), a necessary condition for a given setup to admit
a consistent estimate was obtained by Wu (1981).

- 2. Main results. In this section, the notation (-, - ) will be used to denote
either the inner product in #2 or the inner product in R" without ambiguity.
Consider the linear regression model with infinitely many parameters given
by (1.1). Since the results we shall derive here may also be applicable to the case
where the parameter space 0 is not the entire /2 (e.g., ® = {6 (0, 8) < 6% 0 € /%
for some known real number ) and to the case where the usual linear model
with finitely many parameters is considered, a suitable condition on the param-
eter space will be given as follows. Let ©* be the closed linear space generated by
0. For 6 >0, let B(6) = {6](0, 8) < ¢, 0 € ©6*}. Assume that

(2.1) ® contains B(é*) for some 6&* > 0.

The probability distribution of the random error ¢ is assumed to satisfy the
following two conditions:

(22) Ee=0 and 0< Vare=¢®><o (¢ may or may not be known),
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and

(2.3) ¢ has a finite Fisher’s information (i.e., ¢ has a density f which is
positive (a.e.), absolutely continuous and [Z.(f ' (x)?/f (x)) dx < ).

We now present the main theorem of this paper. The convention that the
“inf” of an empty set is + o will be adopted. O denotes (0, 0, ---.)’.

THEOREM 2.1. Assume that (2.1) ~ (2.3) hold. For the regression model (1.1),
the following statements are equivalent:

(i) T(-) is a c.e.b.l. functional for 6 € ©.
(i1) (Pairwise consistency). For any 0* € 0, T'(-) is a c.e.b.l. functional when the
parameter space is restricted to {0, 0*}.
(iii) For any 0 € O such that T(0) # 0,

(2.4) Y1 (X, 0)2 = oo,
(iv) For any 6> 0,
(2.5) lim inf, {>% (x;, 0)2|0 € B(8), T(0) = 1} = 0.

(v) There exists a sequence of estimators {T}, where T, is based on the first n
observations, such that E(T, — T(0))? — 0, as n — o, for any
0 € 0.

Proor.
“(1) = (ii)” holds obviously.

“(ii) = (iii)”. Suppose there exists a 8* € @ such that T'(8*) # 0 but (2.4) does
not hold. Let h; = (x;, 8*). Then 3%, h? < «. Let P, and Q, be the probability
measure of (yi, - -+, y,)’ when 6 = 0 and 0 = 0* respectively. Consider the case
where the parameter space is restricted to {8, 0*}. It is clear that (ii) implies that
P, and Q, are asymptotically mutually-singular. However, this is contradictory
to Theorem 1 of Shepp (1965) (for a different proof, see the Appendix of Li,
1982). Note that a similar argument was used in Wu (1981).

“(iii) = (iv)”. Since the “inf” of an empty set is + o, we may consider
those 6 such that {#]|0 € B(5), T(0) = 1} # ¢ only. For such a 6 and any
¢ > 0, define

A, =1{0]6 € B(), T(0) =1, and XL (x; 0)* <c}.

Since A, C A,_,, it suffices to show that A, = ¢ for some n. Observe that due to
(2.1), (2.4) holds for any 6 € B(6*) with T'(8) # 0. This in turn implies that (2.4)
is satisfied by any 8 € B () with T'(#) # 0. Now we have

(2.6) Ny=1 An = ¢;

otherwise, for any 6 € Ny-; A,, we get Y, (x;, 0)> < ¢ < » for any n, a
contradiction to (2.4). Now, consider the weak topology on the space ©* (since
0* is a Hilbert space, weak topology and weak* topology are identical). By
Alaoglu’s Theorem (c.f. Royden 1972, page 202), B(6) is weakly compact. Since



604 KER-CHAU LI

T(-) and (x;, -) are weakly continuous, it is clear that A, is weakly closed.
Moreover, since A, C B(8), A, is also weakly compact. From compactness, (2.6)
implies that there exists some N such that NY_, A, = ¢.

Since A, C A, we get Ay = ¢. Thus the proof is complete.

“(iv) = (v)”. Let v be the element in ©* such that (», ) = T'(#) for any 6 € 0*
(such a » exists because of Riesz representation theorem). Without loss of
generality, we may assume that (v, ) = 1 and x; € 0*, i = 1, 2, ---. Before
constructing the consistent estimators, we shall make a suitable orthogonal
transformation on the vector of observations (y;, - - - y,)’ and choose a convenient
complete orthonormal system on ©* so that the design matrix takes the form

X10 , X11 0 . -0 | 0 -
X920 , 0 Xog (VI I Q .

l |
Xno | 0o . © v Xpn l 0 ...

and the first coordinate of the new parameter is what we want to estimate. To
carry out this idea, let V, be the vector space generated by {», x;, - - -, X,} and
let U, = {u]| (u, ») =0 and u € V,.}. Consider the linear transformation L from
U, to R" defined by mapping u to ({(x;, u), - -+ (X,, u))’. It is a well-known fact
in linear algebra that there exists an orthonormal basis {e,, -- -, e,} in U, and
an orthonormal basis {g;, ---, g.} in R" such that L(e;) = m;g; for some
nonnegative number m;, i = 1, ..., n (m; may be taken as the square roots of
the eigenvalues of L’L). We extend the orthonormal basis {v, €, - -, €,} in V,,
to a complete orthonormal system in ®* by adding an arbitrary complete ortho-
normal system in the orthogonal complement of V, in 6* to the set {v, ey, - - -,
en}' Write y(n) = (yly ] yn),’ C(n) = (el, ] 8n)ly A(n) = ((xl, y>’ ) <xn’ y))’;
let Z; = (y™, g) and ¢/ = (¢, g;). Now, it is clear that

(28) Zi = (A(n), gi><ll, 0) + mi(ei, 0) + eil, 1= 1’ .o, n,

and the random errors ¢/ are uncorrelated with the common variance ¢2. Thus
for (Z,, ---, Z,)’ and the complete orthonormal system {», e,, - - -}, the design
matrix is of the form (2.7) with x;, = (A", g;) and x; = m;. Note that to be
precise we should have used the notations x{% and x™ instead of x;, and x;; (and
e!™ instead of e;) because the transformation L depends on n. However we omit
the superscript (n) to avoid complexity of notation.

Now, construct the estimator T, by setting

A Yy xiobi?Z;
2.9 T, =FF—77—,
(2.9) Yy xhbi?

where b; = max {x;;, 1}. A .
To establish (v), it suffices to show that ET, — T(8) — 0 and Var T, — 0.
Since Z; are uncorrelated,

Var T, = ¢¥(X%, xhbi)/ (D x5b72)? < 62/ Tk, x%bi2
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We now proceed to show that
(2.10) Sr,xhbi?—> o as n— o

in order to get Var T, —0.
Let I, ={i|i < n, x; <1}. Write

2 1-2 __ 2 2 =2
1 xpbi? = Yier, Xio + Yier, XioXi -

Suppose (2.10) does not hold. Then there exists some positive number M such
that

(2.11) Yiel, xh < M,
(2.12) Yier, xhxit < M,

for n in an infinite subset of positive integers. Let W™ =y — Yiel, XioXi'e€;.
Because of (2.12) it is clear that ™ € {§| T'(#) = 1 and § € B(1 + M)}. From
the definition of L and A™, we have

inf(S11 (xi, 0)16 € B(L+ M), T(9) = 1} < T2 (xi, &)’
= IL@™ = ») + AP

where || - || is the Euclidean norm in R". Since {g;} is an orthonormal basis, the
last expression equals

Y (g, L™ —v) + A™)?,
which, since L(e;) = x;;g;, in turn equals
Yo (& — Zies, (tjo/x;)x;;8; + A™)?
= Yier, (8, A + Yier, (& A™) — x,0)®

= Ziel,, x%.

The last equality follows from the definition of x,. Now by (2.11), this is
contradictory to (2,5) for & = M + 1. Hence (2.10) holds and Var 7, — 0, It
remains to show that ET,, — T'(8) — 0 for any 0 € 0. For this purpose, it suffices
to verify that
Yy xiobixi (e, 0)

Sh xhbi?

Now, by the Cauchy-Schwartz inequality, the numerator of (2.13) does not exceed
(Thy xb7)Y? - (Thy %7077 (e, 0)D)Y? < (Ty xBb7A)V2) 0.

Therefore by (2.10), (2.13) holds and consequently T, is consistent. The proof
for “(iv) = (v)” is now complete. Finally, “(v) = (i)” holds obviously. 0

(2.13) —0, as n — oo,

3. Discussion. Several important features about Theorem 2.1 are now in
order, First, “(ii) == (i)” means “pairwise consistency implies consistency”, which
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certainly may not be true in other contexts. In fact, the following example
demonstrates what may happen without the structure given by (1.1).

EXAMPLE 1. Suppose © = {(6, ---, 0, ---)| T21 07 = o} U {(0, 0, ---)}.
The observations y; satisfy the model y; =6, + ¢&,i=1, 2, . . -, where ¢ are i.i.d.
normal with mean 0 and variance ¢% Suppose we want to estimate 6,. Without
much difficulty, it can be verified that when the parameter space is restricted to
two points {(0, 0, --.), (6%, ---, 6%, --.)}, then consistent estimates exist. But,
it is also clear that when the parameter space is the whole 0, 6, is not consistently
estimable.

The next important feature about Theorem 2.1 concerns the statement (iii).
By the equivalence between (iii) and (i), the consistency problem (which is
stochastic in nature and therefore is relatively complicated) can now be reduced
to verifying the deterministic equation (2.4).

A useful consequence is given in the following:

COROLLARY 3.1. The set of all c.e.b.l. functionals is a closed linear space.

PROOF. Let ® = {0: 6 € 0 and Y72, (x;, 0)2> < ). Then T is a c.e.b.l.
functional if T'(§) = O for § € ©’. Hence this corollary follows from the fact that
the orthogonal complement of any subset in a Hilbert space is closed. O

However, unlike the finite dimensional case, the set ®’ may not be a closed
space; it may only be a dense subset of the orthogonal complement of the space
of all c.e.b.l. functionals. Thus caution should always be taken when one wants
to characterize the set of all c.e.b.l. functionals; see, for instance, Example 2 of
Section 4.

We now discuss the case where (2.2) is violated and the observations may be
dependent or correlated and may have unequal variances. First, we observe that
the independence assumption about observations is needed only when verifying
“(i1) = (iii)”. Thus, if the observations are dependent but uncorrelated with
common error distribution and satisfy (2.2), then it still holds that (iii) = (iv)
= (v) = (1) = (i1). Thus (iii) is sufficient for T to be a consistent estimator in
most situations. Next, suppose the covariances of the observations are known up
to a constant. Denote the covariance matrix of the first n observations by V,,.
Let A, be the lower triangular matrix such that A,V, A" - I,..,. Now, transform
the original data (y;, ---, ya)’ to (24, -+, 2,)" = Au(31, -+, ¥n)’. For the new
data, the observations are now homoscedastic and uncorrelated. Let (a;,, - - -, a;;,
0, - - ) be the ith row of A,. The regression model for z; becomes

zi = (Xi=1 ayx;, 0) + ¢f.

(Note that since A, is the left-upper submatrix of A,, z; should be independent
of n.) Thus writing x} = ¥ !_; a;;x;, we can establish “(iii) = (iv) = (v) = (i) =
(iii)” after substituting x; by x} in the Theorem 2.1. Moreover, if {¢;} is Gaussian,
then the ¢/, 1 = 1, 2 ... are independent; hence “(ii) = (iii)” holds and the
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analogue of Theorem 2.1 is now established. However, to what extent the
condition about the existence of the second moment of the error distribution can
be released is not clear to the present author yet. '

A comment about the consistent estimators constructed by the method used
in the proof of “(iv) = (v)” is given below. By examining the proof carefully, it
is not hard to see that we may replace b, in (2.9) by b, = max {x;, A}, or by

(3.1) be = (W* + x})'/%,

where \ is any fixed positive humber. The role of A here is similar to the role of
the ridge constant in the ridge regression or the role of a smoothing parameter
in any ill-posed problem; it controls the tradeoff between the variance and the
bias. Therefore, one might expect that an adaptive choice of A should be more
usefu] in practice. This should be investigated in the future. Also, for other
commonly-used estimation procedures such as the smoathing spline method
(which essentially uses (2.9) with b, similar to (3.1)) in the nonparametric
regression setting of Section 4, their consistency property should also be examined
under the general framework discussed here.

An anonymous referee kindly provided the author with a proof of “(iv) = (v)”
that depends only on Banach structures of the parameter space ®. When reduced
to our Hilbertian 0, his estimator is somewhat similar to (2.9) with (3.1).

The equivalence between (v) and (i) is also interesting. Without the specific
setup, particularly the c¢onditions (2.2) and (2,3), (i) generally does not imply (v).

Our last remark concerns the estimability of the linear combinations of
parameters as defined in Scheffé (1958); i.e., a linear combination of parameters
is estimable if there exists an unbiased estimator. In the finite dimensional case,
it is true that if 7'(+) is consistently estimable then T'(-) is estimable. But this is
not necessarily the case in the infinite dimensional situation. 7'(.), when repre-
sented as an element in the Hilbert space concerned, can be outside of the linear
space generated by {x;, .-, X,} for any n but still retains the property of
consistent estimability. This will become clearer when we consider the nonpara-
metric regression setting of the next section.

4. Nonparametric regression. In this section, the following nonpara-
metric regression problem will be considered. For m = 1 (m is considered as a
fixed integer hereafter), let W3[0, 1] = {f ™V is absolutely continuous on [0, 1]
and [3 f™(¢)? dt < ). WE[0, 1] is a separable Hilbert space when equipped with
the inner product (£, g) 3% [6£(t)g“(t) dt. (It should be clear from the context
whether (-, -) is the inner product of Wg[0, 1] or the inner product of /%).
Suppose a sequence of points in [0, 1], {t1, to, - - -} is given. We observe y;, i = 1,
2, ++ -, which follow the nonparametric regression model:

(4.1) yi = f(t) + &,

where f € W70, 1] and ¢ are i.i.d. with a common distribution satisfying the
conditions (2.2) and (2.3). Our goal is then to characterize the set of all c.e.b.l.
functions on W3[0, 1].
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Let {fi, f2, ---} be a complete orthonormal system of W%[0, 1]. Any f in
W20, 1] can be represented as Y, ;= (f, f; }f;. In particular, for any ¢ € [0, 1], the
bounded linear functional D{?, defined by (D, f) = f(t), can be written as
Y= (D, fi)f;. Take 6; = (f, f;) and x; = (D{, f;) = f;(t). Denote 6 =
(01, 02---)" and X = (x4, X2, ---)’. When any observation y is made at the point
t, we can rewrite (4.1) as

y=f(t)+e= (DO, f) +e=(x,0) +e.

Hence our setup is indeed a special case of (1.1) with ® = /% We may apply
Theorem 2.1 to derive the desired results as follows.

LEMMA 4.1. T(-) is a c.e.b.l. functional if and only if
(42) Iz f(t)> =0, foranyfin WZ[0, 1] such that T(f) # 0.

PROOF. Represent f and D{” as 0 and x;. It follows that (x;, 8) = f(t,).
Therefore Theorem 2.1 applies. (4.2) follows from (2.4). O

Now let us consider an important class of bounded linear functionals on
W3[0, 1], namely the differential functional D{®, which maps any f in W0, 1]
to its kth derivative at the point t, f*'(t). Note that D{* is a bounded linear
functional only when 0 < k < m — 1. To characterize the set of all D{® which are
consistently estimable we shall, equivalently, determine the consistency region of
degree k, defined to be the set

(4.3) C, = {t|t € [0, 1] and D{¥ is consistently estimable}.
Recall the definition of the limiting points of degree k from Section 1. Observe
that according to our definition, a limiting point of degree k is also a limiting
point of degree less than k. Other useful properties about limiting points are
described in the following lemma. The topology considered here is restricted to
[0, 1]; e.g., (2] is an open set, etc. We omit the proof.

LEMMA 4.2. A point t* is a limiting point of degree k if and only if
(4.4) Yien (ti — t*)** =, for any open neighborhood N of t*.
In particular, the set of all limiting points of degree k is closed, and the set of all
limiting points which is of degree 0 but is not of degree k is discrete.

The consistency region of degree k is now characterized below.

THEOREM 4.1. For any integer k such that 0 < k < m — 1, the consistency
region of degree k, Cy, consists of all limiting points of degree k.

The following properties of C, follow from Lemma 4.2 and Theorem 4.1.

COROLLARY 4.1. C; is compact, C, D Ci1, and Cy — C,,—; is discrete (and is
therefore countable.)
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PROOF OF THEOREM 4.1. First, we show that for any limiting point ¢ of
degree k, D{¥ is a c.e.b.l. functional. By Lemma 4.1, it suffices to show that for
any f such that f®(t*) # 0, ¥, f(t;)? = «. Let v be the smallest nonnegative
integer such that f(¢*) # 0. Because of the continuity of ), it is easy to see
that |f(t)| = Y| f™(t*)(t — t*)|” for any ¢t in an open neighborhood N of t*.
Since v < k and t* is a limiting point of degree k, it follows that ¢t* is also a
limiting point of degree v. Apply Lemma 4.2 (taking k to be v) and we conclude
that

T f(6)? = Tuen f(6)? = Yof V(t*)? Tien (i — t*)> = oo,

(4.2) is now established and D{¥ is therefore a c.e.b.l. functional.

Next, for any t* which is not a limiting point of degree k, we shall demonstrate
that there exists fin WZ'[0, 1] such that f®(t*) # 0 and Y2, f(¢;)* < o; this then
implies that D{¥ is not a c.e.b.l. functional due to Lemma 4.1. By Lemma 4.2, let
N be an open neighborhood of ¢* such that Yien (¢ — t*)** < . Construct a
function f in W%[0, 1] such that f(t) = 0 for any t & N, f*(t*) = 0 for
any v < k, and f®(t*) # 0. It follows that Y%, f(:)? = Y.e~n f(t:)?
< Yien M (t; — t¥)** < », where M = sup{f(¢)*| t € [0, 1]}. Therefore D{¥ is
not a c.e.b.l. functional, and the proof is complete. [

By Theorem 4.1, we may easily see whether D{* is a c.e.b.l. functional or not.
We call D{¥ a c.e.b.l. functional of differential type if t € C\. An application of
Corollary 3.1 then shows that any element in the closed linear space generated
by all c.e.b.l. functionals of differential type is also a c.e.b.l. functional. Naturally,
we would like to know if there are any other c.e.b.l. functionals or not. The
following example gives some clues to the answer. It also demonstrates that the
space of all 6 such that (2.4) does not hold may not be closed s was already
pointed out in Section 3.

EXAMPLE 2. Suppose t; — t* as i — © and Y2, (t; — t*)*™ = . By Theorem
41,D¥,k=0,1, ---, m — 1, are the only c.e.b.l. functionals of differential type.
We now show that the linear space generated by Di¥, k=0,1, .--, m — 1, is
exactly the set of all c.e.b.l. functionals.

Consider an f in W#[0, 1] which is orthogonal to D{¥, k=0,1, ---, m — 1;
ie., f®(t*) =0, for 0 < k< m — 1. To show that (f, - ) is not a c.e.b.l. functional
we have to find a g such that (f, g) # 0 and Y %, g(t;)* < « (by Lemma 4.1). By
some trivial argument it can be shown that for any ¢ > 0, there exists a g which
equals 0 in a small open interval I containing ¢* such that ||f — g|| <e. Take ¢
small enough to insure that (f, g) # 0. It follows that 32, g(t;)* = X%, g(4:)* <
o, where n is an integer such that ¢; € I for { > n. Thus the desired result is
established.

Note that in this example, the set of all g such that Y2, g(¢)? < » is not
closed. To see this, consider the function go(t) = (¢ — t*)™. Obviously, g§* (t*) =
<o =g (%) = 0 and Y32, go(t;)> = . However, if the set of all g such that
Y%, g(t:)* <  were closed, then this set would equal the orthogonal complement
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of the space of all c.e.b.l. functionals (i.e., {g|g”(t*) = ... = g™ V(¢*) = Q) =
{g] X1 g(t:)* <  }). Thus a contradlctlon is obtained because &o can’t be in
both sets.

The argument used in the Example 2 can be generallzed to show that the set
ofall c.e.b.l. functionals eqUals the closed space generated by all ¢.e.b.l. functionals
of differential type when Cy — C,,— _; is a finite set (bt the cardmahty of Cny
may be infinite). Consider f in W£[0, 1] such that fO(¢t) = = f‘""”(t) =0
for all t € C,,_, and f®(¢) = 0 forall t € Cy, k = 0, 1, ---, m — 2. Since C,,_, is
compact and Cy — C,,-, is a finite set, without much difficulty we can construct
a function g in W#[0, 1] such that

g(t) = Q for ¢t in a union of ﬁmtely many open intervals covering
(4.5) Cp-y; ‘k)(t) =0fort€Cy k=01, -- —2and |[f—gl <e
for ¢ > 0.

It follows that for ¢ small enough, we have (f, g) # 0 and 32, g(#)? < ». Thus f
is not a c.e.b.l. functiondl and the desired result is obtaihed. ,

However, for the case that C, — C,,_, is not a finite set, it is stlll not clear to
the present author whether a g satisfying (4.5) exists or not. Thus it remains
unknown whether the set of all c.e.b.l. functionals equals the closed linear space
generated by all c.e.b.l. functionals of differential type or not.

Finally, we draw the connection between our results here and those obtained
by Wu (1980) in the congideration of the polyriomial regression model. Suppose
the model is y; = f(¢;) + e = Yot 0; t + ¢;, where ¢; are 1ndependent random
errors satisfying conditions (2.2) and (2 3) and t; € [0, 1] Then the following
statements hold:

(i) The consistency region of dégree k(0 < k< m — 1) contains (but may
~ not equal) all the limiting pdints of degree k.
(ii) The set of all c.e.b.l. functionals equals the linear space generated by the
c.e.b.l. functionals of differential type obtained by (i):
(iii) From (ii), it is easy to identify the cons1stency region. (of degree k): 1t
equals [0, 1] if the dimension of the set of all c.ebl functlonals is m;
otherwise it equals the set of all limiting points of degree k.

These results can be derived from Theorem 4 of Wu (1980) (in particular,
(4.4) and (4.6). can be simplified; see Li, 1982). At the revision of this paper, the
author learned that Wang and Wu (1983) essentlally derlved these results by a
different method which also works for the extended Tchybycheff system It is
interesting to observe that their Propositioni 2 can be derived from our Theorem
4.1 because their space of response functions has only finite dlmenslons and is
contained in our richer space W70, 1]. For the same reason, the above results
(i) ~ (iii) for polynomlal regression follow immediately from our results for
nonparametric regression (Note that we have established (ii) for finite Co — C_y;
but when C, — C,,-, is infinite, due to the finiteness of the d1mens1ons of 0, (ii)
is also obvious). Wang and Wu (1984) have further results extending their earlier
paper to the multivariate case.
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